Book: Probabilistic Machine
Learning for Civil Engineers |
||
/main page/Book |
||
The
MIT Press
|
Table of
Content & Introduction Table of Content Nomenclature Chapter 1: Introduction Chapter 2: Linear Algebra Chapter 3: Probability Theory Chapter 4: Probability Distributions Chapter 5: Convex Optimization Part two: Bayesian Estimation Chapter 6: Learning from Data Chapter 7: Markov Chain Monte Carlo Part three: Supervised Learning Chapter 8: Regression Chapter 9: Classification Part four: Unsupervised Learning Chapter 10: Clustering Chapter 11: Bayesian Networks Chapter 12: State-Space Models Chapter 13: Model Calibration Part five: Reinforcement Learning Chapter 14: Decision in Uncertain Contexts Chapter 15: Sequential Decisions |
|
How
to cite |
Goulet, J.-A. (2020), Probabilistic Machine Learning for Civil
Engineers, The MIT press |
|
Where to buy |
The MIT press Amazon (US) Amazon (CA) |
|
Videos |
||
Slides |
[link] |
|
Erratum |
[.txt] |