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Abstract 
The main objective of this work is to develop a methodology 
to reduce the Québec single-family building stock into a 
limited number of archetypes that each represent a segment 
of the entire stock in terms of both the annual energy 
consumption and highest electrical demands. The selection 
of the archetype for each segment is based here on a 
technique similar to the one used to generate typical 
meteorological years using cumulative distribution 
functions (CDF). Using this technique, a set of seven 
archetypes are determined to represent 1.4 million single-
family houses.  

In the application section of the paper, the archetypes are 
used to simulate changes in space heating and domestic hot 
water systems and examine the impact on annual energy 
consumption, annual greenhouse gas emissions, and peak 
electrical demand. 

Introduction 
Building stock aggregation is referred to as a ‘bottom up’ 
approach where individual buildings are analysed and 
aggregated to evaluate the performance of a building stock 
(CMHC, 2004).  For example, total energy use can be 
estimated by adding up the energy estimates for all the 
individual buildings within the stock.  This may prove to be 
computationally intensive if the scale of the aggregation is 
at the national level with millions of buildings.  To reduce 
the effort, it is possible to use a subset of statistically 
representative buildings or “archetypes” to estimate the 
characteristics of the entire stock (Reinhart & Cerezo 
Davila, 2016).  Furthermore, archetypes can be segmented 
to represent buildings in a stock that have common features 
(e.g. all buildings equipped with gas furnaces and electric 
water heaters). In addition to archetypes for buildings, sub-
archetypes for equipment and occupant behaviour can be 
created which makes it easier to model changes of a group 
of building archetypes. 

This work is divided in two main parts. First, a methodology 
to reduce a building stock into a limited number of 
archetypes using cumulative distribution functions is 
presented. Then, the usefulness and computational 
efficiency of the archetypes is analyzed by simulating 
changes in space heating and domestic hot water (DHW) 
systems and examining the impact on: i) annual energy 
consumption; ii) annual greenhouse gas emissions (GHG) 
emissions; and iii) grid electrical demand.  

Literature review 
Methodologies to develop archetypes have been the subject 
of many investigations and Neale (2021) updated the review 
of Reinhart and Cerezo Davila (2016) on recent archetype 
work.  
One of the earlier studies by Swan and Ugursal (Swan & 
Ugursal, 2009) reviewed bottom-up approaches including 
the generation of archetypes. De Jaeger et al. (De Jaeger et 
al., 2020) quantified the error caused by the simplification 
of using a limited number of archetype buildings instead of 
simulating all buildings. Different clustering techniques are 
used to identify buildings that are more similar to each other 
than to others of another group. Peak heat demand and 
annual heat demand for space heating are used as key 
performance index. Regarding the peak heat demand, the 
NRMSE is 13% if the buildings are grouped into ten clusters 
and 8% for 40 clusters compared to the full simulation.  
The NREL approach  for the development of ResStock 
follows five steps (Reyna et al., 2022): 
 
1- Stock characterization based on building characteristics. 
2- Sampling. ResStock uses 550,000 samples to represent 

133 millions dwellings. 
3- Physics-based simulations. Sample buildings are 

simulated using EnergyPlus. 
4- Calibration and validation. Annual consumptions are 

validated against the data of the Residential Energy 
Consumption Survey (RECS) of the U.S. Energy 
Information Administration (EIA). 

5- Model outputs. Annual and hourly energy use outputs. 
 
Reyna et al. (2022) segmented ResStock into 165 subgroups 
based on five climate zones, two wall types, six housing 
types, and three vintage bins.  Thermal energy use for each 
segment are presented. No attempt is made to use 
archetypes. 
For work of a similar scale to the present study, 
Theodoridou et al. (Theodoridou et al., 2011) divided a 
stock of 2.5 millions buildings into 5 archetypes. Similarly, 
Dall’O’ et al. (Dall’o’ et al., 2012) divided 1320 buildings 
into 7 archetypes. Finally,  for a good overview of clustering 
techniques, the reader is referred to the work of Ghiassi and 
Mahdavi (Ghiassi & Mahdavi, 2017) and Dahlström et al. 
(Dahlström et al., 2024). 
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Methodology 
Single-family building stock in Québec 

Data-based archetypes rely on building parameters (thermal 
resistance of the envelope, occupancy profile etc….) for 
their determination. Unfortunately, these parameters are 
typically known only for a few buildings. In the future, if 
electric smart meter data are made available it might be 
possible to extract these parameters with some confidence 
(Neale et al., 2022). In the mean time, one has to rely on 
statistical studies as well as general surveys to evaluate the 
building stock. One such study was performed for the 
single-family building stock in the province of Québec, 
Canada (Neale, 2021). This stock was developed using an 
approach similar to the development of ResStock (Five 
steps mentioned in the literature review).  

Neale estimated that there were a total of  1 900 220 single-
family (SF) buildings in the province of Québec in 2017 
(Neale, 2021). A subset of 200 000 buildings out of this 
total, called the Québec Single Family Building Stock 
Energy Model (QSFBSEM), was developed by Neale 
(Neale, 2021) and covers 30 regions of the province.  The 
QSFBSEM is composed of four types of single-family (SF) 
buildings that are shown in Figure 1. This stock will be used 
here to illustrate the methodology used to obtain archetypes. 

 

 
Figure 1:Single family (SF) dwelling types examined in 

the present study. 

The QSFBSEM is based on 20 building parameters which 
are presented in Table 1. They cover a wide range of values 
(or categories) that are based on probability distribution 
developed using a segmentation and characterization 
process (Neale et al., 2020).  For example, there are 24 
categories of windows. There are also 15 different load 
profiles and up to 5 occupants per building giving a total of 
75 different profiles for domestic hot water consumption, 
occupant heat gains, and electrical load (and associated heat 
gains) from appliances and lighting. The data set of the  
QSFBSEM is publicly available (Neale et al., 2020). 
The QSFBSEM can be used to determine the energy 
consumption of a particular segment of this subset. For 
example, it is possible to determine the energy consumption 
of houses heated with natural gas in the Montréal region.  
The database consists of energy consumption profiles 
created by simulating the 200 000 buildings in TRNSYS 
with a 15 minute time step using actual weather for 2017 for 
each of the 30 regions. These calculations are 
computationally intensive and take about 36 hours on a 
recent computer. Some of the output values, which are 
evaluated at each time step for every building, are shown in 
Table 2. 

 

Table 1 Building characteristics used in the QSFBSEM 

Parameters Number of Categories 

Location 30 

Building type 4 

Load profiles 15 

Window types 24 

Heated floor area 5 

Window-to-wall ratio 3 

Building rotation 4 

Occupants 1 to 5 

Adjacent buildings 4 

Number of floors 1 or 2 

Wall thermal resistance 4 

Roof thermal resistance 6 

Foundation thermal resistance 4 

Leakage area 5 

Air conditioning Yes or no 

Heating type 8 

DHW energy source 3 

Aspect ratio 5 

Pool yes or no 

Spa yes or no 

 

Table 2 Output values obtained from the QSFBSEM 

Variables  

(all in kWh for 15 min.) Definition 

𝒓𝒂𝒘𝑯𝑪 
Heating/cooling loads including 
contributions from internal gains and 
occupants 

𝒓𝒂𝒘𝑬𝒍𝒆𝒄 Total electrical consumption 

𝑰𝒏𝒕𝒆𝒓𝒏𝒂𝒍 𝒈𝒂𝒊𝒏𝒔 
Sum of the internal gains (lighting and 
appliances)  

𝑶𝒄𝒄𝒖𝒑𝒂𝒏𝒕 𝒍𝒐𝒂𝒅 Internal gains from occupants 

𝑫𝑯𝑾𝒍𝒐𝒂𝒅 
Energy requirement for domestic water 
heating 

𝑵𝒂𝒕𝑮𝒂𝒔  
Natural gas energy consumption (space 
and DHW) 

 𝑯𝒆𝒂𝒕𝒊𝒏𝒈𝑶𝒊𝒍  
Heating oil energy consumption (space 
and DHW) 

House archetype selection process 

The first important step in the evaluation of archetypes is to 
determine the desired level of granularity in the 
segmentation process. For the present study, the objective is 
to examine the province-wide impact of changes made to 
the heating (space and DHW) systems. Seven segments are 
adequate to represent the various combinations of heating 
systems as shown in Table 3. They represent 73 % (1.4 
million houses) of the entire SF building stock. The 
remaining 27% are houses where wood is an important 
contributor for space heating and will not be examined here. 
One archetype is to be determined for each segment. 



 

 

Table 3 Segments of the SF building stock 

 
The objective is to find an archetype that: i) has a 
heating/cooling load profile similar to the average of all 
houses in that segment and ii) reproduces adequately the 
highest electrical loads experienced by all houses in that 
segment.  

The selection of the archetype house for each segment is 
based here on a technique similar to the one used to generate 
typical meteorological years (Wilcox & Marion, 2008) 
where cumulative distribution functions (CDF) for weather 
parameters (maximum dry bulb temperature, global solar 
radiation etc..) are combined to determine typical weather 
months. In the present case, two CDFs are evaluated. The 
first one calculates the CDF for the heating and cooling 
(HC) loads and the other evaluates the CDF for the highest 
electrical loads during the year. Cumulative differences 
between individual CDF profiles and the average CDF 
profile are calculated for both the HC loads and the highest 
electrical loads. The house that has the minimum weighted 
cumulative difference value is the archetype house.  

In order to reduce load fluctuations and improve the 
archetype accuracy, it was found necessary to first modify 
the raw heating and cooling loads (𝑟𝑎𝑤𝐻𝐶௜,௝) and electrical 
consumption data (𝑟𝑎𝑤𝐸𝑙𝑒𝑐௜,௝) according to Equation 1:  

 𝐻𝐶𝐿𝑜𝑎𝑑𝑠௜,௝ ൌ   𝑟𝑎𝑤𝐻𝐶௜,௝  ൅  𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝐺𝑎𝑖𝑛𝑠௜,௝  ൅  𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑡 𝑙𝑜𝑎𝑑௜,௝ 

 

   𝐸𝑙𝑒𝑐𝐿𝑜𝑎𝑑𝑠௜,௝ ൌ  𝑟𝑎𝑤𝐸𝑙𝑒𝑐௜,௝ െ  𝑒𝐷𝐻𝑊 𝑙𝑜𝑎𝑑௜,௝ െ 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝐺𝑎𝑖𝑛𝑠௜,௝ 
(1)  

where 𝑖 is the time and 𝑗 is the house number. 
Thus, 𝐻𝐶𝐿𝑜𝑎𝑑𝑠௜,௝ are the net heating/cooling loads, which 
include envelope heat transfer (and infiltration) and solar 
gains but exclude internal gains and occupant loads. 
Furthermore, 𝐸𝑙𝑒𝑐𝐿𝑜𝑎𝑑𝑠௜,௝ excludes the electrical DHW 
consumption and internal gains from the raw electrical data.  

The following averaged values for the whole segment are 
then calculated for each time step:  

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝐺𝑎𝚤𝑛𝑠തതതതതതതതതതതതതതതതതതതത
௜,௔௥௖௛ = ∑ 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝐺𝑎𝑖𝑛𝑠௜,௞/𝑛ℎ𝑜𝑢𝑠𝑒𝑠௡௛௢௨௦௘௦

௞ୀଵ  
 

𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑡 𝑙𝑜𝑎𝑑തതതതതതതതതതതതതതതതതതതത
௜,௔௥௖௛ =  ∑ 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑡 𝑙𝑜𝑎𝑑௜,௞/𝑛ℎ𝑜𝑢𝑠𝑒𝑠௡௛௢௨௦௘௦

௞ୀଵ  
 

𝐷𝐻𝑊𝑙𝑜𝑎𝑑തതതതതതതതതതതതത
௜,௔௥௖௛ =  ∑ 𝐷𝐻𝑊𝑙𝑜𝑎𝑑௜,௞/𝑛ℎ𝑜𝑢𝑠𝑒𝑠௡௛௢௨௦௘௦

௞ୀଵ  
 

𝑁𝑎𝑡𝐺𝑎𝑠തതതതതതതതതത௜,௔௥௖௛ =  ∑ 𝑁𝑎𝑡𝐺𝑎𝑠௜,௞
௡௛௢௨௦௘௦
௞ୀଵ  
 

𝐻𝑒𝑎𝑡𝚤𝑛𝑔𝑂𝚤𝑙തതതതതതതതതതതതതതത
௜,௔௥௖௛ =  ∑ 𝐻𝑒𝑎𝑡𝑖𝑛𝑔𝑂𝑖𝑙௜,௞/𝑛ℎ𝑜𝑢𝑠𝑒𝑠௡௛௢௨௦௘௦

௞ୀଵ  

(2) 

where 𝑛ℎ𝑜𝑢𝑠𝑒𝑠 is the number of houses in that segment. 
Values in Equation 2 can be considered to be sub-
archetypes. Each archetype has its own set of sub-
archetypes.  

In addition, averaged heating/cooling loads and electrical 
loads for all houses in that segment are calculated at each 
time step:  

 𝐻𝐶𝐿𝑜𝑎𝑑𝑠തതതതതതതതതതതതത
௜ ൌ ෍   𝐻𝐶𝐿𝑜𝑎𝑑𝑠௜,௝/𝑛𝑇𝑖𝑚𝑒𝑆𝑡𝑒𝑝

௡்௜௠௘ௌ௧௘௣

௝ୀଵ
  

 𝐸𝑙𝑒𝑐𝐿𝑜𝑎𝑑𝑠തതതതതതതതതതതതതത
௜ ൌ ෍  𝐸𝑙𝑒𝑐𝐿𝑜𝑎𝑑𝑠௜,௝/𝑛𝑇𝑖𝑚𝑒𝑆𝑡𝑒𝑝

௡்௜௠௘ௌ௧௘௣

௝ୀଵ
  

(3) 

where 𝑛𝑇𝑖𝑚𝑒𝑠𝑡𝑒𝑝 is the number of time steps (=35040 in 
the present case, i.e. 15 minute time steps for a full year). 

Then, the 200 highest values (out of 35040) of 𝐸𝑙𝑒𝑐𝐿𝑜𝑎𝑑𝑠തതതതതതതതതതതതതത
௜ 

and the time 𝑖 at which they occur are determined. The 
corresponding values of  𝐸𝑙𝑒𝑐𝐿𝑜𝑎𝑑𝑠௜,௝ for each individual 
house are also determined. The value of 200 is a 
compromise and is based on preliminary simulations. If 
only one value is selected (i.e. the overall peak value) then 
the match between the electrical peak of all houses and the 
archetype will be very good. However, the timing of this 
peak might not correspond to the maximum for the electrical 
grid. By increasing the number of high values to 200, the 
highest value of the archetype might not be as accurate but 
there are better chances of predicting an accurate electrical 
load for houses when the electrical grid is at its maximum 
usage. 

Cumulative distribution function (CDF) 

Cumulative distribution functions (CDF) are calculated for 
𝐻𝐶𝐿𝑜𝑎𝑑𝑠 (𝐶𝐷𝐹ு஼) and the 200 highest 𝐸𝑙𝑒𝑐𝐿𝑜𝑎𝑑𝑠 
(𝐶𝐷𝐹௘௟௘௖ሻ for each house and for the average of all houses. 
Recall that the CDF gives the proportion of values that are 
less or equal to specific values. For example, if a CDF value 
of 0.7 is obtained for a specific 𝐻𝐶𝐿𝑜𝑎𝑑𝑠 value of 1 kWh, 
then 70% of 𝐻𝐶𝐿𝑜𝑎𝑑𝑠 are below 1 kWh. 

Individual CDF curves for 𝐻𝐶𝐿𝑜𝑎𝑑𝑠 (𝐶𝐷𝐹ு஼,௝) and the CDF 
curve for the averaged 𝐻𝐶𝐿𝑜𝑎𝑑𝑠 ሺ𝐶𝐷𝐹ு஼തതതതതതതതതሻ are evaluated. 
Similarly, a CDF curve for the 200 highest values of all 
houses (𝐶𝐷𝐹௘௟௘௖തതതതതതതതതത) and the corresponding values for 
individual houses (𝐶𝐷𝐹௘௟௘௖,௝) are determined. Representative 
CDF curves are presented in Figure 2 for segment #6 (see 
Table 3). This figure presents CDF curves for a sample 
(150) of individual houses, and the average of all houses. 
Then, the absolute value of the difference between 𝐶𝐷𝐹ு஼ೕ,೥

 

and 𝐶𝐷𝐹ு஼,௭തതതതതതതതതത and between 𝐶𝐷𝐹௘௟௘௖ೕ,೥
 and 𝐶𝐷𝐹௘௟௘௖,௭തതതതതതതതതതതത are 

calculated at different intervals (or bins) on the x-axis: 

𝛿ு஼,௝,௭ ൌ  ቚ𝐶𝐷𝐹ு஼ೕ,೥
െ 𝐶𝐷𝐹ு஼,௭തതതതതതതതതതቚ                 

𝛿௘௟௘௖,௝,௭ ൌ  ቚ𝐶𝐷𝐹௘௟௘௖ೕ,೥
െ 𝐶𝐷𝐹௘௟௘௖,௭തതതതതതതതതതതതቚ 

(4) 



 

 

where 𝑧 is the bin number. The distances between CDF 
curves are determined based on the Finkelstein-Schafer (FS) 
formula: 

𝐹𝑆ு஼,௝ ൌ  ∑ 𝛿ு஼,௝,௭
௡
௭ୀଵ  ,  𝐹𝑆௘௟௘௖,௝ ൌ  ∑ 𝛿௘௟௘௖,௝,௭

௡
௭ୀଵ  (5) 

where 𝑛  = 100 (𝐹𝑆 values do not change for 𝑛 ൐ 100). 
Finally, the archetype house is determined as the minimum 
value of 𝑊𝑆௝ : 

𝑊𝑆௝ ൌ 𝑊𝑆ு஼ ൈ 𝐹𝑆ு஼,௝ ൅  𝑊𝑆௘௟௘௖ ൈ 𝐹𝑆௘௟௘௖,௝       (6) 

where 𝑊𝑆ு஼ and 𝑊𝑆௘௟௘௖ are weighting factors (from 0 to 1 
with 𝑊𝑆ு஼ ൅  𝑊𝑆௘௟௘௖ ൌ 1).  

After some exploratory runs, it was found that values of 
𝑊𝑆ு஼ ൌ 0.5 and 𝑊𝑆௘௟௘௖ ൌ 0.5 minimized the value of 
𝑊𝑆௝.  

As shown in Figure 2, there is very good agreement between 
the archetype and the average of all houses for the 
𝐻𝐶𝐿𝑜𝑎𝑑𝑠.  The agreement for the 200 highest values of the 
electrical loads is also very good especially for the largest 
values (> 2.6 kWh).  

 

Figure 2: CDF values for the heating/cooling loads and for the 200 highest values of electrical loads.  

At this stage, values of the heating/cooling loads 
ሺ𝐻𝐶𝐿𝑜𝑎𝑑𝑠௜,௔௥௖௛ሻ and the electrical loadሺ𝐸𝑙𝑒𝑐𝐿𝑜𝑎𝑑𝑠௜,௔௥௖௛) 
profile for the archetype are known. It should be recalled 
that these values do not include equipment and occupant 
loads. The sub-archetypes for equipment and occupant 
loads, which have been evaluated through Equation 2, are 
used to obtain the final HC and electrical load profiles:  

𝐹𝑖𝑛𝑎𝑙𝐻𝐶𝑙𝑜𝑎𝑑𝑠௜,௔௥௖௛ ൌ   𝐻𝐶𝐿𝑜𝑎𝑑𝑠௜,௔௥௖௛ െ 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝐺𝑎𝚤𝑛𝑠തതതതതതതതതതതതതതതതതതതത
௜,௔௥௖௛ 

 
െ 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑡 𝑙𝑜𝑎𝑑തതതതതതതതതതതതതതതതതതതത

௜,௔௥௖௛ 
 

𝐹𝑖𝑛𝑎𝑙𝐸𝑙𝑒𝑐𝐿𝑜𝑎𝑑𝑠௜,௔௥௖௛ ൌ   𝐸𝑙𝑒𝑐𝐿𝑜𝑎𝑑𝑠௜,௔௥௖௛ ൅ 𝐷𝐻𝑊 𝑙𝑜𝑎𝑑തതതതതതതതതതതതതത
௜,௔௥௖௛ 

 
൅ 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝐺𝑎𝚤𝑛𝑠തതതതതതതതതതതതതതതതതതതത

௜,௔௥௖௛ 

(7)  

House archetype profile 

Figure 3 gives an example of the annual electrical load 
profile for houses in segment #6. Figure 3a gives the total 

electrical load (as calculated with equation 7) for the 
archetype house as well as the average of all houses in that 
segment while Figure 3b provides the difference (in kW) 
between the two curves in Figure 3a. Finally, Figure 3c is 
a zoomed portion of Figure 3a concentrating on the last 
week of 2017 with t = 8592 h corresponding to midnight 
on Sunday, December 24th. These figures show that the 
archetype adequately reproduces the behaviour of the 
houses for that particular segment. The RMSE (in Figure 
3b) is 0.37 kW with a maximum difference of 3.08 kW 
occurring at 𝑡 = 1476 h. As shown in Figure 3c, at the time 
of the Hydro-Québec grid peak in 2017 (at 𝑡 = 8682 h), the 
total electrical load for the archetype is 9.79 kW and it is 
9.69 kW for the average of all houses, a 1% difference.



 

 

 

 

Finally, as indicated in Table 4, the annual energy 
consumption is 21 679 kWh for the archetype house and 
22 309 kWh for the average of all houses, a 2.8% 
difference.  

The results for the other segments are also presented in 
Table 4. First, column 1 shows that the RMSE between the 
hourly values of the electrical load for the archetype and 
all houses is small; it reaches a value of 0.47 kW for 
segment #7. However, the maximum difference observed 
during a year (column 2) is much greater and can reach a 
value of 3.25 kW (for segment #5). This is likely due to 
weather conditions (solar gains for example) that are 
different for the archetype and the average of all houses at 
the time of the maximum difference. However, the time of 
the maximum difference does not coincide with any the 
fifty highest hourly grid peaks.  

Two peak conditions are examined in Table 4:  i) time at 
which the electrical loads of all houses are at their peak; 
and ii) time when the Hydro-Québec (HQ) grid peaked in 
2017. The first observation is that not all segments peak at 

the same time (column 4). A comparison of columns 5 and 
6 shows that the peak load predictions of the archetype 
house are in good agreement with the average results 
obtained for all houses. For example, for segment #6, the 
peak is at 𝑡 = 8672 h with an archetype prediction of 11.34 
kW while the average house has a peak of 11.87 kW, a 
difference of 4.6%. As shown by comparing columns 7 
and 8, the predictions are much better at the time of Hydro-
Québec’s peak (𝑡 = 8782 h in 2017). For instance, as 
indicated earlier, the load predicted by the archetype is 
9.79 kW while it is 9.69 kW for the average of all houses 
for segment #6.  
Finally, the predictions of the annual energy consumption 
(last 6 columns in Table 4) are also in good agreement 
except perhaps for the oil consumption in segment #7, 
which shows a larger difference. 

As a final point of comparison, the electrical load during 
Hydro-Québec’s peak and the combined energy 
consumption (electricity+ natural gas + oil) for the entire 
single-family building stock (1.4 million homes) is 
compared to those calculated using the archetypes in 
Table 5.  

Table 4 Comparison between the archetypes and the average of all houses for each segment  

 
Figure 3: Total electrical loads for the archetype house and the average of all houses in segment #6. 



 

 

Table 5 Load at HQ’s peak and annual energy 
consumption for the entire single-family building stock 

 
As shown in Table 5, the prediction of the electrical load 
during Hydro-Québec’s 2017 peak using the archetypes is 
within 0.41% of the value using the actual building stock for 
the seven segments. As for the total annual energy 
consumption, the prediction is within 0.27% of the building 
stock value.  

All these results indicate that the seven archetypes can be 
used with confidence to predict the electrical peak and the 
total annual energy consumption of the entire stock. The 
main characteristics of the seven archetype houses are given 
in Table A-1 in the Appendix.  

Implementation in TRNSYS 

Once the archetypes have been selected, the corresponding 
TRNSYS assembly is extracted from the data base of houses 
of the QSFBSEM. Each archetype is also associated with its 
own sub-archetype for 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝐺𝑎𝚤𝑛𝑠തതതതതതതതതതതതതതതതതതതത

௜,௔௥௖௛,
𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑡 𝑙𝑜𝑎𝑑തതതതതതതതതതതതതതതതതതതത

௜,௔௥௖௛, and 𝐷𝐻𝑊 𝑙𝑜𝑎𝑑തതതതതതതതതതതതതത
௜,௔௥௖௛  calculated at 15 

minute time intervals.  
Figure 4 shows a simplified version of the resulting 
TRNSYS assembly for segment#6. The heating/cooling 
loads are calculated in the building model (Type 56 in 
TRNSYS) based on the Montréal weather and 
𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝐺𝑎𝚤𝑛𝑠തതതതതതതതതതതതതതതതതതതത

௜,௔௥௖௛  and  𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑡 𝑙𝑜𝑎𝑑തതതതതതതതതതതതതതതതതതതത
௜,௔௥௖௛ from a user 

file generated during the CDF calculations (Equation 2). 
The 𝐷𝐻𝑊 𝑙𝑜𝑎𝑑തതതതതതതതതതതതതത

௜,௔௥௖௛ data is transferred directly to the 
“Energy calculations” calculator where the energy 
calculations related to the heating/cooling systems are 
performed separately. It is then relatively easy to modify 
these energy calculations to study other heating systems. 

Simulating the seven archetypes with a 15 minute time step 
takes about 1 minute of computer time. This is about three 
orders of magnitude faster than calculating the 200 000 
houses of the QSFBSEM. The results obtained for one 
archetype are then multiplied by the number of houses in 

that segment to obtain the energy consumption of that 
segment. 

Application  
The use of archetypes facilitates the analysis of various 
changes to the building stock. In this section, a change often 
discussed in the province of Québec is presented. It 
concerns the replacement of natural gas for space heating 
and water heating (see segments #1 and #2 in Table 3). Five 
replacement scenarios are examined for space heating:  

a)  electric heating (with a 100% efficiency) 
b)  regular heat pumps 
c)  cold-climate heat pumps 
d)  ground-source heat pumps (GSHP) 
e)  hybrid heat pump system  
For water heating, natural gas is replaced with an electric 
hot water tank. 

Scenarios b, c, and d have electric backup when capacity is 
insufficient at cold external temperatures. In the hybrid 
scenario, a regular heat pump is used (including electric 
backup if required) down to an external temperature of 
- 12 ℃ at which point a gas furnace is employed (with an 
efficiency of 90%) for space heating.  

The performance of the heat pumps used for this analysis 
are shown in Figure A-1 in the Appendix. Figure A-1a 
presents the coefficient of performance (COP) while Figure 
A-1b gives the fraction of the heating load met by the heat 
pump both in terms of the external temperature. Data for the 
regular heat pump are those used by Neale (Neale, 2021). 
As shown in Figure A-1b, it is assumed that the capacity of 
a regular heat pump is zero below -12 ℃. The performance 
of the GSHP is based on a commercial model. Both the 
capacity and COP values of the GSHP, which are typically 
dependent on the return temperature from boreholes, were 
converted to values dependent on the external temperature 
based on a recent study (Viviescas & Bernier, 2023). This 
approximation implies that simulation of boreholes is not 
required when simulating GSHP. Finally, the cold-climate 
heat pump performance has been adapted from data of a 
commercial unit. 

In addition to energy consumption and electrical load 
prediction, the results of the next section include the 
decrease in greenhouse gas (GHG) emissions resulting from 
the five replacement scenarios. These calculations are based 
on emissions factors given in Table 6. It is further assumed 
that the emission factors for electricity would not be affected 
by an increase (or decrease) in the total grid load. 

Table 6 : Emissions factors for GHG emissions  

 

 
Figure 4: Typical TRNSYS assembly 



 

 

Results 

Simulation results using the archetypes for segment #1 and 
#2 are shown in Figures 5 and 6 for the five replacement 
scenarios. Figure 5 shows the change in the grid load caused 
by each of the scenarios for the last week of 2017, which 
recorded very cold temperatures (see top portion of 
Figure 5). It is to be noted that the curves for the regular heat 
pump and hybrid heat pump are identical for 𝑡 < 8623 h 
(when 𝑇௘௫௧ > -12 ℃ሻ and that the electric and regular heat 
pump curves are the same for 𝑡 > 8623 h (when 
𝑇௘௫௧ < - 12 ℃ሻ. The maximum grid load increase occurs 
when electric systems or regular heat pumps are used. It is 
951.5 MW at 𝑡 = 8671.5 h. During Hydro-Québec’s peak (𝑡 
= 8682 h), the increase is 742.2 MW. The hybrid heat pump 
scenario increases the grid peak by only 43 MW during 
Hydro-Québec’s peak. 

 
Figure 5: Change in the HQ grid load for all five 

scenarios during the last week of 2017. 

 

Figure 6 summarises the annual results for all five scenarios 
in terms of: i) increase in grid load at Hydro-Québec’s peak; 
ii) increase in annual electrical consumption, iii) and 
decrease in GHG emissions. The GSHP scenario leads to 
the lowest increase in electrical energy consumption at 0.62 
TWh/yr. Scenarios b, c, and d experience almost the same 
GHG reduction at approximately 370 kt CO2/yr. This is 
slightly less than the electric heating scenario because of 
GHG emissions associated with refrigerant leakage for 
scenarios b, c, and d. The hybrid heat pump scenario is not 
far behind the others with a reduction of 288 kT CO2/yr.  

 
Figure 6: Change in grid load, annual electrical energy 
consumption and GHG emissions for all five scenarios. 

Results presented in this section are only applicable to 2017. 
Weather conditions and grid demand from other years may 
lead to different conclusions. 

Conclusion 
A methodology to determine province-wide archetype 
houses in Québec has been presented. The database of the 
Québec single-family building stock energy model 
(QSFBSEM) is first divided into seven segments (see 
Table 3). The segmentation is based here on the type of 
heating system, but the methodology is adaptable to other 
types of segmentation. Each segment has its own archetype 
(which are summarised in Table A-1) and sub-archetypes 
for internal gains, occupant load, and DHW load. 

The selection of the archetype house for each segment is 
based on the use of cumulative distribution functions (CDF) 
for the heating and cooling (HC) loads and for the 200 
highest electrical loads during the year. Cumulative 
differences between individual CDF profiles and the 
average CDF profile are calculated for both the HC loads 
and the highest electrical loads (see Figure 2). The house 
that has the minimum weighted cumulative difference value 
is the archetype house.  

It is shown that the seven archetypes can be used to 
accurately predict the performance of 1.4 million homes 
both in terms of the annual electrical energy consumption 
(within 0.27%) and peak electrical demand (within 0.41%). 
The use of archetypes reduces the calculation time by three 
orders of magnitude when compared to a full simulation of 
the entire QSFBSEM. 

In the final part of the paper, the usefulness of the archetypes 
is shown by examining five different scenarios to replace 
gas heating systems in Québec. As shown in Figure 6, the 
use of hybrid heat pumps would lead to the lowest increase 
in electrical demand (43 MW at Hydro-Québec’s peak) 
while the use of ground-source heat pumps would lead to 
the lowest increase in annual energy consumption (0.62 
TWh/yr). 

Future work 
While the archetype methodology developed here is 
accurate, there is room for possible improvements. For 
example, the weighting factors presented in Equation 2 
might not be optimum in all situations.  

In addition, more work is needed to determine if the 200 
highest electrical load values used for the cumulative 
distribution function captures enough of the peaks in the 
load profile.  

Finally, the approach used here should also be tested in 
conditions where cooling loads are dominant. 
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Appendix A 
Table A-1 Caracteristics of the seven archetypes 

 

   
Figure A-1 COP and capacity of heat pumps used in the present study 
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