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ABSTRACT  
An accurate determination of the required borehole length is an important step in the design of vertical ground heat exchangers used in ground-
coupled heat pump systems. The ASHRAE Application Handbook presents a method to determine the design length. The method rests on three 
key calculations. First, effective ground thermal resistances corresponding to three thermal pulses of 10 years, 1 month and 6 hours need to be 
calculated. Second, the effective borehole resistance needs to be evaluated. Third, the ground temperature has to be corrected for borehole thermal 
interaction using a temperature penalty. The effective ground thermal resistances are evaluated using the so-called cylindrical heat source (CHS) 
analytical solution to transient heat transfer in the ground. This solution is relatively simple and effective ground thermal resistances can be 
calculated relatively easily as they do not depend on the length of the borehole. However, the CHS neglects axial heat conduction which can be a 
factor after a number of years. As for the temperature penalty, the handbook provides a table for estimating it. However, the table is incomplete 
and applies to a limited number of rectangular equally-spaced borehole configurations. 

This paper proposes an alternative to the design length equation currently used in the ASHRAE handbook. In the proposed approach, the 
effective ground thermal resistances are evaluated using g-functions calculated based on the finite line source analytical solution. Because g-functions 
account for borehole thermal interaction, the correction provided by the temperature penalty is no longer needed. Furthermore, the determination of 
the effective ground thermal resistances is not restricted to rectangular bore fields of equally-spaced boreholes. However, as described in the paper an 
iterative calculation procedure is required as effective ground thermal resistances depend on the length of the borehole which is unknown a priori. In 
the last part of the paper, the proposed procedure is applied to determine the required length of 12×10 bore field. Results indicate that the 
procedure predicts a bore field length which is in the range predicted by five other design software tools. 

INTRODUCTION  

An accurate determination of the required borehole length is an important step in the design of vertical ground heat 
exchangers used in ground-coupled heat pump systems. The ASHRAE handbook (ASHRAE, 2011) proposes an equation 
which is based on the work of Kavanaugh and Rafferty (1997) to determine the required length of vertical ground heat 
exchangers. This equation has been presented by Bernier (2006) and Philippe et al. (2010) in the following form: 

 𝐿 = 𝑞ℎ𝑅𝑏+𝑞𝑦𝑅𝑦+𝑞𝑚𝑅𝑚+𝑞ℎ𝑅ℎ
𝑇𝑚−�𝑇𝑔+𝑇𝑝�

 (1) 



 
where L is the required borehole length (L = nb × H, where H is the borehole length and nb is the number of boreholes), Tm 
is the mean fluid temperature in the boreholes, Tg  is the undisturbed ground temperature and Tp  is a so-called temperature 
penalty. The first term in the numerator accounts for heat transfer (assumed to be in steady-state) in the borehole from the 
fluid to the borehole wall where Rb is the borehole thermal resistance (Kavanaugh, 2010). The next three terms in the 
numerator account for transient heat transfer in the ground. These three terms can be regarded as three consecutive ground 
thermal pulses qy, qm, and qh each multiplied by their respective effective ground thermal resistance Ry, Rm, and Rh. The 
ground thermal pulses are considered negative when heat is extracted from the ground and positive for heat injection into 
the ground. The magnitude and duration of these pulses are project dependent but typically, t1 =3650 days, t2 =3680 days 
and tf  =3680.25 days. As shown in Figure 1, the ground thermal pulses correspond to three time periods. The assumed 
duration of the yearly average ground load, qy , is equal to t1. The average monthly ground load (during the month of the 
peak hourly load), qm is assumed to last from t1 to t2. Finally, the peak hourly ground load, qh, is assumed to last from t2 to tf.  

ASHRAE HANDBOOK METHOD 

The determination of the effective ground thermal resistances associated with the three heat pulses can be done in 
several ways. The method described in the ASHRAE handbook (ASHRAE, 2011) suggests using a one-dimensional 
analytical solution to transient heat transfer in the ground. The analytical solution used in the ASHRAE handbook is the 
cylindrical heat source solution (Carslaw and Jaeger, 1947). It gives the temperature distribution in the ground, including at 
the borehole wall, for a given heat transfer rate per unit length applied at the cylinder diameter (Bernier, 2000). Under the 
cylindrical heat source solution, the borehole temperature, Tw, following a heat injection rate per unit length, qy, for a period 
of time t is given by: 

 𝑇𝑤 − 𝑇𝑔 = 𝑞𝑦(𝐺𝐹𝑜 𝑘⁄ ) (2) 

 

where GFo is the analytical solution, also known as the G-factor, Fo is the Fourier number defined as Fo=4αt/d2, α is 
the ground thermal diffusivity, d is the borehole diameter, and k is the ground thermal conductivity. Equation 2 can be 
written in terms of an equivalent ground thermal resistance, Rground: 

 𝑇𝑤 − 𝑇𝑔 = 𝑞𝑦𝑅𝑔𝑟𝑜𝑢𝑛𝑑 (3) 

 
The effective ground thermal resistances used in Equation 1 are obtained based on the principle of superposition. For 

example, to determine the impact of qy at the end of the calculation period (i.e. at tf), qy is first assumed to prevail from 0 to 
tf. Then its thermal influence from t1 to tf  is subtracted. A similar procedure is applied for qm and qh resulting in the 
following: 

𝑅𝑦 = (𝐺𝐹𝑜𝑓 − 𝐺𝐹𝑜1) 𝑘,   𝑅𝑚 = (𝐺𝐹𝑜1 − 𝐺𝐹𝑜2) 𝑘⁄ , 𝑅ℎ = 𝐺𝐹𝑜2 𝑘⁄  ⁄    (4.a.bc) 

 
with Fof=4α(tf)/d2, Fo1=4α(tf-t1)/d2, and Fo2=4α(tf-t2)/d2. The value of G is presented graphically in the ASHRAE Handbook. 
A correlation is also proposed by Bernier (2001). Finally, Philippe et al. (2010) have presented correlations to easily obtain 
Ry, Rm, and Rh for t1 =3650 days, t2 =3680 days and tf =3680.25 days. 

The determination of the design length of a bore field using Equation 1 is relatively simple. The values of Ry, Rm, and 
Rh are independent of the borehole length as the G-factors are based on a one-dimensional (radial) solution to ground heat 



transfer. Thus, contrary to the method proposed later, it does not involve an iterative solution procedure. However, as 
noted by Philippe et al. (2009) axial heat transfer effects start to play an important role after a few years of operation. Thus, 
values of Ry are not very accurate when t1  is long. Luckily, the product qyRy is usually small compared to the other terms in 
Equation 1 and any error in Ry is typically not significant in the determination of L. 

The use of G-factors neglects thermal interactions among boreholes and may cause significant error in cases where 
there is a large annual thermal imbalance in the ground. Thus, a temperature penalty, Tp, has been introduced to account for 
these borehole thermal interactions. In effect, Tp is a temperature difference which corrects the value of the undisturbed 
ground temperature to account for the fact that boreholes do not "see" the undisturbed ground temperature when they are 
thermally interacting with each other. Two of the methods proposed for calculating Tp will now be described.  

ASHRAE handbook method to estimateTp 

The ASHRAE handbook proposes a set of tabulated values for Tp. These values are given for a 10×10 bore field after 
10 years of operation of a 350 kW (100 tons) load for various cooling and heating scenarios and borehole separations. 
Correction factors are provided for 1×10, 2×10, 5×5, and 20×20 bore fields. Values were obtained for a ground thermal 
conductivity of 1.5 W/m-K but the ground thermal diffusivity is not given. 

The calculation procedure to obtain these values of Tp is defined more precisely by Kavanaugh and Rafferty (1997) 
and it has been analyzed by a number of authors. Fossa and Rolando (2013) have compared the temperature penalty 
obtained using the ASHRAE method to the ones calculated using g-functions obtained with the finite line source solution. 
Results indicate that the ASHRAE method underestimates the temperature penalty by 40 to 50% for some particular cases 
leading to a typical average underestimation of the bore field lengths of around 12%.  

Kurevija et al. (2012) have also compared the length obtained by the AHRAE method with what they called the 
"Lund-Eskilson" model based on the finite line source analytical solution. The authors note that there are distinguishable 
discrepancies between the two approaches as the ASHRAE method uses a somewhat simplistic borehole interaction model. 
They have analyzed the effects of different borehole distances as well as different operating time for two sets of borehole 
arrays (21×2 and 6×7). For a bore separation of 4 m, differences of the order of 10 and 20% are noted for 21×2 and 7×6 
bore fields, respectively. 

Evaluation of Tp  based on g-functions 

Bernier et al. (2008) evaluated the temperature penalty using 3-D thermal response factors, also known as g-functions, 
introduced by Eskilson's (1987). A complete description of g-functions follows in the next section. Bernier et al. (2008) 
defined the temperature penalty as the difference between the borehole wall temperatures in the bore field and in a single 
borehole subjected to the same heat transfer rate per unit length. Using Eskilson's g-functions for 144 configurations, a 
correlation was proposed to predict the value of the temperature penalty. Although the correlation covers a large spectrum 
of possible configurations and operating conditions, it has some restrictions relevant to the boreholes layout which limits its 
application to rectangular grids and equally spaced boreholes. 

Much like Bernier et al. (2008), Capozza et al. (2012) have defined the temperature penalty as the difference from the 
value of the thermal disturbance averaged on the borehole walls of a bore field and the value of the thermal disturbance due 
to a single open-field borehole. The model uses the infinite line source and a correction factor which depends on the 
geometrical and physical parameters. The results are compared to those obtained with the ASHRAE handbook method and 
the one presented by Bernier et al. (2008). Contrary to these two methods, the model presented by Capozza et al. (2012) 
doesn’t have any limitation on the bore field configuration. It also has wider validity range for the thermo-physical 
parameters compared to the method of Bernier et al. (2008). Their results are in good agreement with the ones reported by 
Bernier et al. (2008). Their method was applied to a case study and they showed that the ASHRAE handbook method 
underestimates the required length by more than 10 %. 



ALTERNATIVE METHOD  

As indicated earlier, Equation 1 uses effective ground thermal resistances which are based on a one-dimensional 
(radial) analytical solution to heat transfer from a cylinder. This assumption can lead to errors, especially for Ry. 
Furthermore, as shown in the previous paragraphs, the value of Tp varies significantly depending on which method is used 
and is most often given for rectangular equally-spaced borehole grids. An alternative method is proposed here to alleviate 
these deficiencies. This alternative uses g-functions to determine the design length of bore fields. When g-functions are 
used, thermal interference among boreholes is implicitly accounted and there is no need to apply a temperature penalty. The 
values of Ry, Rm, and Rh are now based on g-functions and Equations 4(a-c) take the following forms: 

𝑅𝑔𝑦 = �𝑔�𝑡𝑓� − 𝑔�𝑡𝑓−𝑡1�� 2𝜋𝑘⁄ , 𝑅𝑔𝑚 = �𝑔�𝑡𝑓−𝑡1� − 𝑔�𝑡𝑓−𝑡2�� 2𝜋𝑘, 𝑅𝑔ℎ = 𝑔�𝑡𝑓−𝑡2� 2𝜋𝑘⁄�  (5.a.b.c) 

 
where gti is the g-function evaluated at ln(ti/ts) with ts equal to H2/9α as defined by Eskilson (1987). The subscript g has been 
added to the R values to indicate that they are based on g-functions. Then, with the g-function concept, the alternative 
design length equation is as follows: 

 𝐿 = 𝑞ℎ𝑅𝑏+𝑞𝑦𝑅𝑔𝑦+𝑞𝑚𝑅𝑔𝑚+𝑞ℎ𝑅𝑔ℎ
𝑇𝑚−𝑇𝑔

 (6) 

 
Some design software tools use a similar g-function based approach but often with a greater number of thermal pulses 

(Hellström and Sanner (1994), Spitler (2000)). 
The g-functions give a relation between the heat extracted from the ground per unit borehole length, qL, and the 

borehole wall temperatureTw (Eskilson,1987). The borehole wall temperature is given by: 

 𝑇𝑤 = 𝑇𝑔 − (𝑞𝐿 2𝜋𝑘⁄ ) ∙ 𝑔(𝑡 𝑡𝑠⁄ , 𝑟𝑏 𝐻⁄ ,𝐵 𝐻⁄ ) (7) 
 

where g represents the g-function and qL is the heat extracted from the ground per unit borehole length. As shown in 
Equation 7, g-functions depend on three non-dimensional parameters: B/H, the ratio of the borehole spacing over the 
borehole length; rb/H, the ratio of the borehole radius over the borehole length; and t/ts, a non-dimensional time where ts is 
a characteristic time. Typical g-functions curves are presented in Figure 2 for a 3×2 bore field as a function of ln(t/ts) for six 
bore field spacings, B/H, and for a particular value of rb/H (=0.0005). The curve for B/H=∞ corresponds to the g-function 
of a single borehole. One of the major advantages of these non-dimensional curves is that they apply to any 3×2 bore field 
with the same non-dimensional parameters. Eskilson (1987) provides g-function curves for a number of bore field 
geometries. Design software tools that use the g-function concept have a relatively large data set of g-function curves to 
choose from. Eskilson (1987) calculated g-functions using two-dimensional transient finite-difference equations on a radial-
axial coordinate system for a single borehole in homogeneous ground. The temperature fields for each individual borehole 
were superimposed in space to obtain a 3-D thermal response from a borehole field for a certain configuration. 

g-function curves are relatively simple to use for the determination of Rgy, Rgm, and Rgh. For example, the evaluation of 
these ground thermal resistances for a 3×2 bore field with the following characteristics: rb = 0.05 m (2 in.), B = 5 m (16.4 ft), 
H = 100 m (328 ft), k =3.34 W/m-K (1.93 Btu/h-ft-°F), α = 0.096 m2/day (1.04 ft2/day) and three consecutive heat pulses 
of 10 years, 1 month , and 6 hours lead to the following: ts =11574days, tf = 3680.25 days ln(tf/ts) = -1.14, t1 =3650 days, ln((tf 
–t1)/ts) = -5.94, t2 = 3680 days, ln((tf –t2)/ts) =-10.74 , gtf = 12.34 , g(tf-t1)=3.99, g(tf-t2) =1.55, and Rgh =0.074 m-K/W (0.128 h-
ft-°F/Btu), Rgm = 0.116 m-K/W (0.201 h-ft-°F/Btu), and Rgy = 0.398 m-K/W (0.689 h-ft-°F/Btu). 



  

Figure 1: Three consecutive ground thermal pulses used in Equation 1. Figure 2 Six g-functions curves for a 3 x 2 bore field. 

The example just presented is somewhat idealistic as H is known. In practice, in a design length calculation, H is 
unknown a priori and Rgy, Rgm, and Rgh have to be obtained iteratively. This poses some difficulties in the solution procedure. 
First, g-function graphs are given for specific values of rb/H and B/H. Eskilson recommends to apply a correction factor 
for values of rb/H other than the ones associated with the g-function, but it is unclear if this correction factor applies to all 
cases. For values of B/H other than the ones associated with the g-function, an interpolation is possible. Malayappan and 
Spitler (2013) used logarithmic interpolations between pre-computed g-functions for various B/H ratios. They report sizing 
errors of a few percent when this interpolation scheme is used. Another difficulty is the limited number of g-functions 
which are publicly available. 

In the approach proposed here, the required g-functions are calculated "on the fly" with the proper rb/H and B/H 
ratios. There are no correction factors or interpolations. The whole g-function curve does not need to be calculated since 
only three g-functions values are required. Furthermore, in the proposed approach, the g-functions are not restricted to 
rectangular equally-spaced bore fields. 

g-functions are evaluated based on the methodology proposed by Cimmino and Bernier (2013, 2014) which were able 
to reproduce Eskilson's g-function with a high level of accuracy using the finite-line source analytical solution. A full 
description of this technique is out of the scope of the present paper and only key features of the method will now be 
described. Eskislon's g-functions are based on the assumption that all boreholes in a bore field have the same borehole wall 
temperature and that this temperature is uniform over the height of each borehole. In their approach, Cimmino and Bernier 
(2014) divided boreholes into axial segments and applied the finite line source to each of these segments. The integral mean 
temperature at a certain radius is obtained using a modified version of the finite line source solution proposed by Claesson 
and Javed (2011). A system of equation is obtained from the temporal and spatial superposition of the contribution of all 
borehole segments. The solution gives the wall temperature (equal for all segments of all boreholes) and the heat transfer 
rate of each borehole segment for a given total heat transfer rate in the bore field. In the present work, 12 axial segments 
are considered for each borehole. A simplified example of this procedure is provided in the Appendix. 

 



  

Figure 3: Flow diagram of the iterative procedure Figure 4: Determination of the three g functions related to the 
three thermal resistances in consecutive iterations 

As mentioned earlier, the required bore length has to be determined using an iterative procedure which is presented 
schematically in Figure 3. This procedure can either be used for heating or cooling applications with proper signs for 
ground loads. The iteration procedure is comprised of five steps. In the first step, parameters are initialized and a guess 
value for L is chosen. Using this value of L, the three g-functions are evaluated based on H=L/nb. The third step involves 
the determination of the three effective ground thermal resistances (Equations (5)). In the fourth step, a new length is 
determined using Equation (6). Finally, this new length is compared to the previous length. If the two lengths agree to 
within a certain tolerance, typically set at 0.01%, then calculations are stopped, if not then a new iteration is started. 
Typically, less than 4 iterations are required to meet the convergence criteria. 

APPLICATION OF THE PROCEDURE 

The proposed procedure is verified against a test case originally presented by Shonder et al. (2000) who compared five 
different design software tools. The case is a heating application and the bore field consists of a 12×10 grid with a borehole 
spacing of 6.1 m (20 ft.). The three pulses qh, qm, and qy pulses are equal to -392.25 kW (-1.338e+06 BTU/h), -100.0 kW       
(-.341e+06 BTU/h) and -1.762 kW (-6012 BTU/h), respectively. The required borehole length is determined for t1=3650 
days, t2=3680 days, tf =3680.25 days. Other parameters can be found in Shonder et al. (2000) and Philippe et al. (2010).  

The solution process is illustrated on Figure 4 which shows a typical g-function graph and the 9 g-function points 
obtained after 3 iterations. The results for the 2nd and 3rd iterations are almost identical and each cross on the bottom curve 
represents two superposed points. The g-function curves are not required in the solution process but are drawn on Figure 4 
to illustrate the location of the point of the curve. An initial guess of L = 120×150 m (120×492.1 ft.) was chosen and the 
top three points correspond to the pairs [ln((tf-t2)/ts), g(tf-t2)], [ln((tf-t1)/ts), g(ft-t1)], [ln(tf/ts), gtf] with ts=H2/9α = 36764 days. This 
leads to a new value of L = 120×82.19 m (120×269.6 ft.) and a second iteration is initiated. The process converges after 3 
iterations with the final value of L = 120×81.55 m (12×267.5 ft). In their comparison exercise, Shonder et al. (2000) 
obtained results that ranged from 120×65 to 120×87 m (120×213.2 ft. to 120×285.4 ft.) for five different design software 
tools. Thus, the value obtained with the proposed procedure is in good agreement with other methodologies. 

The computational time required for these three iterations is 340 s on a computer equipped with an Intel core i7 
processor (2.80 GHz) and 4 GB of RAM. This relatively long computational time is due to the fact that the convergence 
criterion is strict (0.01%) and that 12 axial segments are used in the determination of the g-functions. Furthermore, the 
number of boreholes is relatively large which increases significantly the computational time associated with spatial 
superposition among boreholes. The same problem was solved by considering 1, 3, 6 and 9 segments for each borehole. 



The resulting borehole lengths for these cases are 81.98 m (268.89 ft.), 81.86 m (268.50 ft.), 81.68 m (267.91 ft.), and 81.60 
m (267.65 ft.), respectively with corresponding calculation time of 6 s, 27 s, 92 s and 195 s, respectively. Thus, in this case, 
computational time can be reduced by approximately 2 orders of magnitude without a significant loss in accuracy by 
reducing the number of borehole segments. 

CONCLUSION AND RECOMMANDATIONS 

This paper proposes an alternative to the design length equation currently used in the ASHRAE handbook. In the 
proposed approach, the effective ground thermal resistances are evaluated using g-functions calculated based on the finite 
line source analytical solution. Because g-functions account for borehole thermal interference, the correction provided by 
the temperature penalty is no longer needed. Furthermore, the determination of the effective ground thermal resistances is 
not restricted to rectangular bore fields of equally-spaced boreholes. However, an iterative calculation procedure is required 
as effective ground thermal resistances depend on the length of the borehole which is unknown a priori. New g-functions 
are calculated as the iterative process progresses and there is no need to apply correction factors to account for the rb/H 
ratio or to interpolate between different B/H curves. The proposed procedure has been checked against a well-known test 
case and results indicate that the procedure predicts a bore field length which is in the range predicted by five other 
software tools. More work is required to determine the best compromise between the number of borehole segments and 
the convergence criteria to obtain a reasonable computational time with an acceptable accuracy. 
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             APPENDIX 

 
In this apppendix, a simplified example is provided to better understand how g-functions are calculated in the 

proposed method. The example is for a bore field composed of 3 boreholes in-line (3×1), each with a radius rb = 0.05 m (2 
in.) and a height H =100 m (328 ft.). The boreholes are equally spaced by a distance B = 5 m (16.4 ft). The ground thermal 
conductivity, k, and diffusivity, α, are equal to 1.0 W/m-K (0.577 Btu/h-ft-°F) and 0.1 m2/day (1.07 ft2/day), respectively. 
The evaluation of the g-function is required for t =10 years. 

The determination of the g-function is independent of Tg and qL and values of Tg = 0 °C and qL=2πk are used here for 
convenience. In this simplified example, only one axial borehole segment is used to simplify calculations. However, in the 
approach proposed in this paper, 12 axial segments are used as suggested by Cimmino and Bernier (2014). Using the 
principle of spatial superposition, the borehole wall temperatures for boreholes 1, 2, and 3 (borehole #2 is the middle 
borehole) are given by: 

𝑇𝑤1 = 𝑞1 × 𝑀𝑇𝑞1,𝑟=0.05 + 𝑞2  × 𝑀𝑇𝑞2,𝑟=5 + 𝑞3  × 𝑀𝑇𝑞3,𝑟=10 (A.1.a) 

𝑇𝑤2 = 𝑞2 × 𝑀𝑇𝑞2,𝑟=0.05 + 𝑞1  × 𝑀𝑇𝑞1,𝑟=5 + 𝑞3  × 𝑀𝑇𝑞3,𝑟=5 (A.1.b) 

𝑇𝑤3 = 𝑞3 × 𝑀𝑇𝑞3,𝑟=0.05 + 𝑞2  × 𝑀𝑇𝑞2,𝑟=5 + 𝑞1  × 𝑀𝑇𝑞1,𝑟=10 (A.1.c) 

where MTq1,r=0.05  stands for the Mean Temperature over the segment length (= 100 m since only one segment is used 
in this simplified example) at a distance of 0.05 m from a line source having a heat transfer rate per unit length equal to q1. 
The values of MT are obtained using the analytical solution to the finite line source proposed by Claesson and Javed (2011) 
with a borehole buried depth of D =4 m (13.1 ft). One of the underlying assumptions behind the g-funtion is that all 
borehole wall temperatures are equal. Furthermore, qL is the average of the individual heat transfer rates: 

𝑇𝑤1 = 𝑇𝑤2,     𝑇𝑤2 = 𝑇𝑤3,   𝑞𝐿 = (𝑞1 + 𝑞2 + 𝑞3) 3⁄  (A.2) 

 
Solving the resulting system of 6 equations and 6 unknown results in the following: q1 = q3 = 6.593 W/m (6.857 

Btu/h-ft), q2 = 5.664 W/m (5.891 Btu/h-ft), Tw1=Tw2=Tw3=8.63 °C (47.5 °F) and the corresponding g-function is: 
 

𝑔 = (𝑇𝑤 − 𝑇𝑔)  × (2𝜋𝑘 𝑞𝐿⁄ ) = 8.63 


