Listen to the Earth's hum for imaging and monitoring

Ianis Gaudot

LPG, Université de Nantes

ianis.gaudot@gmail.com

Listen to the (seismic) Earth's hum

Why do we record seismic waves ?

1) to understand the seismic source properties (location, magnitude)

crucial for seismic hazard assessment

- 2) for imaging and monitoring (Earth's) structures
- understand geodynamics exploration (petroleum, etc...) geotechnical engineering

Cara et al., 2015

https://science.rpi.edu/earth

Imaging (Earth's) structures

understand geodynamics, exploration (petroleum, etc...), geotechnical engineering

Seismic imaging

Medical imaging

https://science.rpi.edu/earth

Monitoring (Earth's) structures (4D imaging, temporal variations)

understand geodynamics, exploration (petroleum, etc...), geotechnical engineering

From Brenguier et al., 2008

Time (year)

The Green's function

The Green's function

Compilation of Green's functions

3D seismic imaging

https://science.rpi.edu/earth

Global seismicity 1963-1995

Global seismicity 1963-1995

high costs, challenging field conditions ! Imit the resolution for imaging and monitoring

Continuous seismic records contain a lot of different signal of various origins

F. Thouvenot, pers. comm.

Time (s)

Origin of this permanent seismic signal ?

Source and wavefield properties ?

D'après Ebeling, 2012

PERIODS > 1 sec

Correlation and Green's function

Α

long record duration T

Correlation and Green's function

long record duration T

Correlation and Green's function

long record duration T

Listen to the Earth's hum

 , and the developed of the second of the sec

Listen to the Earth's hum : a revolution in seismology !

Earth's hum available everywhere and at any time

NO DETERMINISTIC SOURCES NEEDED !

عادا فلاأك

ΨP

بالارب أنرانها

revolution for imaging and monitoring

Listen to the Earth's hum for imaging and monitoring

- 1) Why and how does it work ?
- 2) Earth's structure imaging
- 3) Earth's structure monitoring

4) Other applications on Earth, and beyond !

uncorrelated seismic sources

direct ballistic waves

complex seismic wavefield

y

uncorrelated seismic sources

end fire lobs

y

Source at y=0 5a(b (a) 4a0 3a15 10 20 25 30 5 0 2arecording time since source S (s) (c) aЗ 0 A -a-15-1010 15 -5 5 0 -2acorrelation lag-time (s) (d) -3a0 -4a-5a -4a -3a -2a -a2a0 3a4a5aa-15-10-5 10 15 0 5 correlation lag-time (s) x

From Lehujeur M., 2015, Ph.D thesis

Stationary phase approach (« diffuse » case)

Stationary phase approach (« diffuse » case)

Stationary phase approach (« diffuse » case)

one single source + heterogeneous medium

Green's function

Conditions for the construction of the Green's function

CASE 1

uniform repartition of the sources

CASE 2

one single source + heterogeneous medium

Unfavourable conditions for the construction of the Green's function

non-uniform repartition of the sources

persistent localized source

homogeneous medium

high amplitude transient source

homogeneous medium

Stationary phase approach (« ballistic » case)

non-uniform repartition of the sources

From Lehujeur M., 2015, Ph.D thesis

Earth's hum = superposition of several effects when considering long duration records

Recording time in A

Earth's hum = superposition of several effects when considering long duration records

Recording time in A

Stutzmann et al., 2012, modelling approach

Spatio-temporal variability of the oceanic sources

Spatio-temporal variability of the human sources

Noise level in Bucarest

Groos et al., 2009

Persistent localized source (PLS) 26 s persistent localized source in the Gulf of Guinea Β Α 60° **BFO** 40° MOC 20 ΤΑΜ 20° MBO 0.10 $^{\circ}$ 0 MBAR -20° 3.5 km/s 320° 260 280° 300° 340 20° 40 240 0° 0.0 0° 20° -20° 40° -40° 90 100 110 120 130 140 150 50 60 70 80 average misfit (s)

Shapiro et al., 2004

Gaudot et al., 2016

Persistent localized source (PLS)

Gu et al., 2012

Earthquakes

Mojave Desert, California, US, 1992

Credit : Southern California Earthquake Data Center

Adazapari, Turkey, 1999

Credit :http://science.nationalgeographic.com

Earthquakes

Coda signal help to construct the Green's function !

Also valid for the other seismic sources (oceanic, human, etc...)
Coda characteristics depend on the wavelength/heterogeneities size ratio

Time

earthquake

volcanoes, storms

Time

Solution 1 Muting

Time

Solution 2 Normalization (ex : 1 BIT)

0.001

0.01

0.1

Frequency (Hz)

After Ebeling, 2012

0.01

0.1

Frequency (Hz)

0.001

0.01

0.1

Frequency (Hz)

Earthquakes

Coda signal help to construct the Green's function !

Also valid for the other seismic sources (oceanic, human, etc...)
Coda characteristics depend on the wavelength/heterogeneities size ratio

Long-Range Correlations in the Diffuse Seismic Coda

Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise

Shapiro and Campillo, 2004

High-Resolution Surface-Wave Tomography from Ambient Seismic Noise

thebridge.agu.org/

EARTH SCIENCE

A boom in boomless seismology

Densely packed sensors eavesdrop on Earth's hum

Long Beach array, Science, 2014

Robert Clayton with sensor.

Imaging

3D velocity model of the Earth's crust

Time (s)

Gaudot et al., 2016, in prep.

Zigone et al. , 2015

Monitoring (Earth's) structures (4D imaging, temporal variations)

From Brenguier et al., 2008

Time (year)

The Green's function

© GUICHARD

San Andreas fault, California, USA

From Brenguier et al., 2008
Monitoring

Japan crust monitoring after the Tohuku-Oki earthquake, 2011

Coseismic velocity reductions highlight pressurized **volcanic fluids** in the upper crust

Monitoring

Valhall oil field , North sea, Norway

Monitoring

Valhall oil field , North sea, Norway

Velocity increase associated with compaction and subsidence as a result of reservoir production

cracking of the lunar surface material due to high temperature during the day = seismic noise !!

Listen to Mars' hum (?) may help if « marsquake » are not frequent

Others application

- acoustic waves in ocean
- structural engineering (concrete, etc...)
- human body
- helioseismology
- Etc ...

Applications exist in a wide range of environments and frequency bandwidths because the physics driving **cross-correlation process of « diffuse wavefield »** remains similar.

Conclusion

Listening to continuous complex wavefields provide a new way to image and monitor structures in a wide range of applications

Listen to the Earth's hum for imaging and monitoring

Ianis Gaudot

LPG, Université de Nantes

ianis.gaudot@gmail.com