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Polytechnique Montréal
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Context

Making rational decisions - Fire alarm
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Context

Making rational decisions - Soil contamination
We have 1 m3 of soil from an industrial site
What should we do?
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Nomenclature

Nomenclature

A = {a1, a2, · · · , aA} A set of possible actions

x ∈ Z or ∈ R An outcome in a set of possible states

Pr(x) Probability of a state x

U(a, x) Utility given a state x and an action a

L(a, x) ≡ −U(a, x) Loss given a state x and an action a
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Nomenclature

Soil contamination example

ai ∈ { , } ≡ {0, 1}

x ∈ { , } ≡ {0, 1}

Pr(x) = {0.9, 0.1}

U(a, x) = U
[

, ,
, ,

]
≡
[

0$ −10K$
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]

L(a, x) = L
[

, ,
, ,

]
≡
[

0$ 10K$
100$ 100$

]
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Rational decisions

Rational decisions → Expected utility maximization

The perceived benefit of an outcome xi given an action ai is
measured by the expected utility or expected loss

U(a) ≡ E[U(a,X )] =
∑X

i=1 U(a, xi ) · Pr(xi )

L(a) ≡ E[L(a,X )] =
∑X

i=1 L(a, xi ) · Pr(xi )

The optimal action a∗ is the one that maximizes the expected
utility or minimizes the expected loss

a∗ = arg max
a

E[U(a,X )] = arg min
a

E[L(a,X )]
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Module #9 Outline
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Section Outline

Utility theory
2.1 Lotteries
2.2 Axioms of utility theory
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Lotteries

Nomenclature for ordering preferences

A lottery: Li = [{p1, x1}; {p2, x2}; · · · ; {pX, xX}]

L = [{1.0, ( , )}; {0.0, ( , )}]
L = [{0.9, ( , )}; {0.1, ( , )}]

A decision maker

Li � Lj prefers Li over Lj

Li ∼ Lj is indifferent between Li and Lj

Li � Lj prefers Li over Lj or is indifferent
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Axioms of utility theory

Axioms of utility theory

What is defining a rational behaviour?

Orderability: Exactly one of (Li � Lj), (Lj � Li ), (Li ∼ Lj) holds

Transitivity: if (Li � Lj) and (Lj � Lk), then (Li � Lk)

Continuity: if (Li � Lj � Lk), then ∃p : [{p, Li}; {1− p, Lk}] ∼ Lj

Substitutability:
if (Li ∼ Lj), then [{p, Li}; {1− p, Lk}] ∼ [{p, Lj}; {1− p, Lk}]

Monotonicity:
if Li � Lj , then (p ≥ q ⇔ [{p, Li}; {1− p, Lj}] � [{q, Li}; {1− q, Lj}])

Decomposability: ...no fun in gambling
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Section Outline

Utility & Loss Functions
3.1 Utility
3.2 Non-linear utility functions
3.3 Utility and Loss functions U(v) & L(v)
3.4 E[U(v(ai ,X ))] and risk aversion
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Utility

Axioms → utility
Existence of a utility function:

U(Li ) > U(Lj) ⇔ Li � Lj

U(Li ) = U(Lj) ⇔ Li ∼ Lj

Expected utility of a lottery:

E[U([{p1, x1}, {p2, x2}, · · · , {pX, xX}])] =
X∑

i=1

piU(xi )

Invariance to linear transformation:

Utr(x) = wU(x) + b, w > 0

L(a, x) ≡ −U(a, x)

 a∗ = arg max
a

E[U(a,X )]

= arg min
a

E[L(a,X )]
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Non-linear utility functions

Do you want to take the lottery? [ ]

L = [{1
2 , + }, {1

2 , - }]
L = [{1,+0$}]

Which lottery do you choose? Why?

E[$(L )] = 1
2 ×+200$ + 1

2 ×−100$ = +50$

E[$(L )] = 0$

Are you being irrational?
For individuals U($) and L($) are non-linear...
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Utility and Loss functions U(v) & L(v)

Risk aversion and utility functions U(v)
U(v): An utility function weight monetary value (v) as a function
of risk aversion/propension
(± 1$ not the same effet if you have 1$ or 1M$)
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Utility and Loss functions U(v) & L(v)

Risk aversion and loss functions L(v)
L(v): A loss function weight monetary value (v) as a function of
risk aversion/propension
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Utility and Loss functions U(v) & L(v)

Attitude toward risks

0 0.2 0.4 0.6 0.8 1
v

0

1

U
til

ity
,  

 (
v)

Risk averseRisk neutralRisk seeking

U(v) = vk

 k > 1 Risk seeking
k = 1 Neutral
0 < k < 1 Risk averse

A neutral attitude toward risks maximizes/minimizes the
expected value/cost over a multiple decisions

I Insurance compagnies: neutral attitude toward risks
I Insured people: risk averse; they pay a premium not to be in

a risk neutral position
(i.e. expected costs are higher over multiple decisions)
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Decision Theory | V2.3 | Probabilistic Machine Learning for Civil Engineers 16 / 28



Intro Utility theory Utility & Loss Functions Value of Information Summary

Utility and Loss functions U(v) & L(v)

Expected Utility
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E[U(v(ai , X ))] and risk aversion

E[U(v(ai ,X ))] and risk aversion (ex. discrete) [ ]
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E[U(v(ai , X ))] and risk aversion

E[U(v(ai ,X ))] and risk aversion (ex. discrete) [ ]
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E[U(v(ai , X ))] and risk aversion

E[U(v(ai ,X ))] and risk aversion (ex. continuous) [ ]
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E[U(v(ai , X ))] and risk aversion

E[U(v(ai ,X ))] and risk aversion (ex. continuous) [ ]
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Section Outline

Value of Information
4.1 Value of perfect information
4.2 Value of imperfect information
4.3 Exemple
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Value of perfect information

Expected utility of collecting information
In cases where the value of a state x is imperfectly known, one
possible action is to collect information about X

U(a∗) ≡ E[U(a∗,X )] = max
a

X∑
i=1

U(a, xi ) · Pr(xi )

U(a∗, x = y) = max
a

U(a, x = y)

Because y has not been observed yet, we must consider all
possibilities Y = Xi according to their probability

U(ã∗) ≡ E[U(ã∗,X )] =
X∑

i=1

max
a

[U(a, xi )] · Pr(xi )

Value of perfect information

VPI (y) = E[U(ã∗,X )]− E[U(a∗,X )] ≥ 0

Professor: J-A. Goulet Polytechnique Montréal
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Value of perfect information

Soil contamination example
U(a, x) x = x =

a = −100$ −100$
a = 0$ −10K$

Current expected utility conditional on actions

E[U( ,X )] = (0$× 0.9) + (−10K$× 0.1) = −1K$

E[U( ,X )] = (−100$× 0.9) + (−100$× 0.1) = −100$ −100$ = E[U(a∗,X )]

Expected utility conditional on perfect information

E[U(ã∗,X )] =
∑X

i=1 min
a

(U(a, xi )) · Pr(xi )

= 0$× 0.9︸ ︷︷ ︸
y=x=

+−100$× 0.1︸ ︷︷ ︸
y=x=

= −10$

Value of perfect information

VPI (y) = E[U(ã∗,X )]− E[U(a∗,X )] = 90$
Professor: J-A. Goulet Polytechnique Montréal
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Value of perfect information

VPI – Decision Tree Representation
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Value of perfect information

Value of information

The value of information represents how much you are willing to
pay for an information.

What if the information is not perfect?

Professor: J-A. Goulet Polytechnique Montréal
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Value of imperfect information

Value of imperfect information

U(ã∗) ≡ E[U(ã∗,X )] =
∑
y∈X

max
a

(∑
x∈X

U(a, x) · p(y |x) · p(x)︸ ︷︷ ︸
p(y ,x)

)
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Exemple

VOI – Soil contamination example

U(ã∗) =
∑
y∈X

max
a

(∑
x∈X

U(a, x) · p(y |x) · p(x)︸ ︷︷ ︸
p(x ,y)

)
= $0×0.9︸ ︷︷ ︸

x=

+ -$10K×0.005︸ ︷︷ ︸
x=︸ ︷︷ ︸

y=

+ -$100×0︸ ︷︷ ︸
x=

+ -$100×0.095︸ ︷︷ ︸
x=︸ ︷︷ ︸

y=

= −$59.5
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a = −$100 −$100
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Exemple

VOI – Soil contamination example (cont.)

Expected utility for the optimal action

U(a∗) ≡ E[U(a∗,X )] = −100$

Expected utility conditional on imperfect information

U(ã∗) = −$59.5

Value of imperfect information

VOI (y) = U(ã∗)− U(a∗) = 40.5$

Professor: J-A. Goulet Polytechnique Montréal
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Summary
Rational Decision:

Choose the action a∗i which minimize the expected loss
L(a, x) or maximizes the expected utility U(a, x)

a∗ = arg min
a

E[L(a, X )] = arg max
a

E[U(a, X )]

L(v(a, x)) & U(v(a, x)): Subjective weight on value as a
function of the attitude toward risks
(± 1$ not the same effect if you have 1$ or 1M$)
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 (
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Risk averseRisk neutralRisk seeking

U(v) = vk

 k > 1 Risk seeking
k = 1 Neutral
0 < k < 1 Risk averse

Value of information:

Value you should be willing to pay for information

VOI (y) = E[U(ã∗, X )]− E[U(a∗, X )] ≥ 0

Value of perfect information:

U(ã∗) ≡ E[U(ã∗, X )] =
∑
x∈X

max
a

[U(a, x)] · Pr(x)

Value of imperfect information:

U(ã∗) ≡ E[U(ã∗, X )] =
∑
y∈X

max
a

(∑
x∈X

U(a, x)·p(y|x) · p(x)︸ ︷︷ ︸
p(y,x)

)
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