Utility & Loss Functions

Decision Theory

(CIV6540 - Probabilistic Machine Learning for Civil Engineers)

Professor: James-A. Goulet

Chapter 14 – Goulet (2020) Probabilistic Machine Learning for Civil Engineers MIT Press Chapter 16 – Russell, S. and Norvig, P. (1995) Artificial Intelligence, A modern approach Prentice-Hall

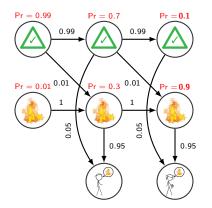
Professor: J-A. Goulet

Intro •00000 Context Utility theory

Utility & Loss Functions

Making rational decisions - Fire alarm

 $t-1\min t t+1\min$



Professor: J-A. Goulet

Intro 00000 Context Making rational decisions - Soil contamination ▲:\$0 P1 0.9 We have 1 m^3 of soil from an industrial site What should we do? Pr = 0.9 $\mathbb{E}[\$] = -\1000 0\$ Pr. 0.1 CALN CARR $(]{} := \$10K$ Pr = 0.1A:-\$100-1009P1=0.9 $\mathbb{E}[\$| = (0\$ \times 0.9) + (-10K\$ \times 0.1) = -1K\$$ $\mathbb{E}[\$|_{\circ}] = -\100 $\mathbb{E}[\$|] = (-100\$ \times 0.9) + (-100\$ \times 0.1) = -100\$$ Pr 0.1 Optimal action: 🗳 (:=\$100)

Professor: J-A. Goulet

Decision Theory | V2.3 | Probabilistic Machine Learning for Civil Engineers

000000 Nomenclature

Nomenclature

Intro

$\mathcal{A} = \{a_1, a_2, \cdots, a_A\}$	A set of possible actions
$x\in\mathbb{Z}$ or $\in\mathbb{R}$	An outcome in a set of possible states
Pr(x)	Probability of a state x
$\mathbb{U}(a,x)$	Utility given a state x and an action a
$\mathbb{L}(a,x)\equiv -\mathbb{U}(a,x)$	Loss given a state x and an action a

Utility 000

Intro 000000 Nomenclature tility theory

Utility & Loss Functions

Value of Information

Soil contamination example

$$a_i \in \{\blacksquare, \heartsuit\} \equiv \{0, 1\}$$

 $x \in \{\triangle, \blacktriangle\} \equiv \{0, 1\}$
 $\Pr(x) = \{0.9, 0.1\}$

$$\mathbb{U}(a, x) = \mathbb{U} \begin{bmatrix} \blacksquare, \triangle & \blacksquare, \triangle \\ \heartsuit, \triangle & \heartsuit, \triangle \end{bmatrix} \equiv \begin{bmatrix} 0\$ & -10K\$ \\ -100\$ & -100\$ \end{bmatrix}$$
$$\mathbb{L}(a, x) = \mathbb{L} \begin{bmatrix} \blacksquare, \triangle & \blacksquare, \triangle \\ \heartsuit, \triangle & \heartsuit, \triangle \end{bmatrix} \equiv \begin{bmatrix} 0\$ & 10K\$ \\ 100\$ & 100\$ \end{bmatrix}$$

Professor: J-A. Goulet

Polytechnique Montréal

Intro 000000 Rational decisions Jtility theory

Utility & Loss Functions

Value of Information

Summary O

Rational decisions \rightarrow Expected utility maximization

The perceived benefit of an outcome x_i given an action a_i is measured by the **expected utility** or **expected loss**

$$\overline{\mathbb{U}}(a) \equiv \mathbb{E}[\mathbb{U}(a, X)] = \sum_{i=1}^{X} \mathbb{U}(a, x_i) \cdot \Pr(x_i)$$
$$\overline{\mathbb{L}}(a) \equiv \mathbb{E}[\mathbb{L}(a, X)] = \sum_{i=1}^{X} \mathbb{L}(a, x_i) \cdot \Pr(x_i)$$

The optimal action a^* is the one that maximizes the expected utility or minimizes the expected loss

$$a^* = rgmax_a \mathbb{E}[\mathbb{U}(a,X)] = rgmax_a \min_a \mathbb{E}[\mathbb{L}(a,X)]$$

Professor: J-A. Goulet

Intro 000000 Utility theory

Utility & Loss Functions

\mathfrak{W} Module #9 Outline

Intro

Utility theory Utility & Loss Functions Value of Information

Topics organization 1 Revision probability & linear algebra 2 Probability distributions Background 0 Introduction Machine 3 Bayesian Estimation $p(A|B) = \frac{p(B|A)p(A)}{p(B)}$ 4 MCMC sampling & Newton Learning Basics Regression 📐 Supervised 6 Classification 🚟 🐜 7 LSTM networks for time series 🕮 learning Unsupervised 🔽 State-space model for time-series learning 🛿 8 Decision Theory 😽 Decision 9 AI & Sequential decision problems 🏺 Making & RL

Intro 000000 Utility theory ●○○ Utility & Loss Functions

Value of Information

Summary 0

Utility theory

- 2.1 Lotteries
- 2.2 Axioms of utility theory

Professor: J-A. Goulet Decision Theory | V2.3 | Probabilistic Machine Learning for Civil Engineers Intro 000000 Lotteries Utility theory $\circ \circ \circ$

Utility & Loss Functions

Value of Information

Summary O

Nomenclature for ordering preferences

A lottery:
$$L_i = [\{p_1, x_1\}; \{p_2, x_2\}; \dots; \{p_X, x_X\}]$$

$$L_{\bigcirc} = [\{1.0, (\bigcirc, \triangle)\}; \{0.0, (\bigcirc, \triangle)\}]$$

$$L_{\blacksquare} = [\{0.9, (\blacksquare, \triangle)\}; \{0.1, (\blacksquare, \triangle)\}]$$

A decision maker

- $L_i \succ L_j$ prefers L_i over L_j
- $L_i \sim L_j$ is indifferent between L_i and L_j
- $L_i \succeq L_j$ prefers L_i over L_j or is indifferent

 Intro
 Utility theory
 Utility & Loss Functions
 Value of Information
 Sumi

 000000
 000
 00000000
 0

 Axioms of utility theory
 00000000
 0

Axioms of utility theory

What is defining a **rational behaviour**?

Orderability: Exactly one of $(L_i \succ L_j)$, $(L_j \succ L_i)$, $(L_i \sim L_j)$ holds **Transitivity**: if $(L_i \succ L_j)$ and $(L_j \succ L_k)$, then $(L_i \succ L_k)$

Continuity: if $(L_i \succ L_j \succ L_k)$, then $\exists p : [\{p, L_i\}; \{1 - p, L_k\}] \sim L_j$

Substitutability: if $(L_i \sim L_j)$, then $[\{p, L_i\}; \{1 - p, L_k\}] \sim [\{p, L_j\}; \{1 - p, L_k\}]$

Monotonicity:

 $\text{if } L_i \succ L_j, \text{ then } (p \ge q \Leftrightarrow [\{p, L_i\}; \{1 - p, L_j\}] \succ [\{q, L_i\}; \{1 - q, L_j\}])$

Decomposability: ... no fun in gambling

Intro 000000 Jtility theory

Utility & Loss Functions

Value of Information

Utility & Loss Functions

- 3.1 Utility
- 3.2 Non-linear utility functions
- 3.3 Utility and Loss functions $\mathbb{U}(v)$ & $\mathbb{L}(v)$
- 3.4 $\mathbb{E}[\mathbb{U}(v(a_i, X))]$ and risk aversion

 Intro
 Utility theory
 Utility & Loss Functions

 000000
 000
 00000000

 Utility
 Utility

--

 $\mathsf{Axioms} \to \mathsf{utility}$

Existence of a utility function:

$$\mathbb{U}(L_i) > \mathbb{U}(L_j) \Leftrightarrow L_i \succ L_j \\ \mathbb{U}(L_i) = \mathbb{U}(L_j) \Leftrightarrow L_i \sim L_j$$

Expected utility of a lottery:

$$\mathbb{E}[\mathbb{U}([\{p_1, x_1\}, \{p_2, x_2\}, \cdots, \{p_X, x_X\}])] = \sum_{i=1}^{K} p_i \mathbb{U}(x_i)$$

Invariance to linear transformation:

$$\mathbb{U}^{\mathrm{tr}}(x) = w\mathbb{U}(x) + b, \quad w > 0$$

$$\mathbb{L}(a,x) \equiv -\mathbb{U}(a,x) \begin{cases} a^* = \arg \max_{a} \mathbb{E}[\mathbb{U}(a,X)] \\ = \arg \min_{a} \mathbb{E}[\mathbb{L}(a,X)] \end{cases}$$

Professor: J-A. Goulet

Polytechnique Montréal

 Intro
 Utility theory
 Utility & Loss Functions
 Value of Information
 Summar

 000000
 000
 0000000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Do you want to take the lottery? [VouTube]

$$\begin{array}{rcl} L_{\textcircled{O}} & = & [\{\frac{1}{2}, + & & & & \\ L_{\textcircled{O}} & = & [\{1, +0\}\}] \end{array}$$

Which lottery do you choose? Why?

$$\mathbb{E}[\{(L_{\odot})\}] = \frac{1}{2} \times +200 + \frac{1}{2} \times -100 = +50$$

$$\mathbb{E}[\{(L_{\odot})\}] = 0$$

Are you being irrational? For individuals $\mathbb{U}(\$)$ and $\mathbb{L}(\$)$ are non-linear...

Professor: J-A. Goulet

Polytechnique Montréal

Utility & Loss Functions

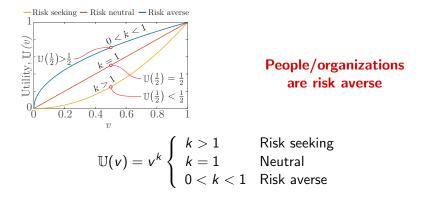
Value of Information

Summary 0

Risk aversion and utility functions $\mathbb{U}(v)$

 $\mathbb{U}(v)$: An utility function weight monetary value (v) as a function of risk aversion/propension

 $(\pm$ 1\$ not the same effet if you have 1\$ or 1M\$)

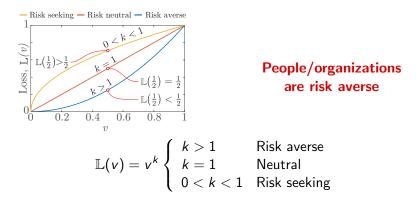


Professor: J-A. Goulet

Utility & Loss Functions

Risk aversion and loss functions $\mathbb{L}(v)$

 $\mathbb{L}(v)$: A loss function weight monetary value (v) as a function of risk aversion/propension



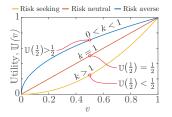
Professor: J-A. Goulet

IntroUtility theory00000000Utility and Loss functions $\mathbb{U}(v)$ & $\mathbb{L}(v)$

Utility & Loss Functions

Value of Information

Attitude toward risks



$$\mathbb{U}(\mathbf{v}) = \mathbf{v}^k \left\{ egin{array}{cc} k > 1 & ext{Risk seeking} \ k = 1 & ext{Neutral} \ 0 < k < 1 & ext{Risk averse} \end{array}
ight.$$

A neutral attitude toward risks maximizes/minimizes the expected value/cost over a multiple decisions

- Insurance compagnies: neutral attitude toward risks
- Insured people: risk averse; they pay a premium not to be in a risk neutral position
 - (i.e. expected costs are higher over multiple decisions)

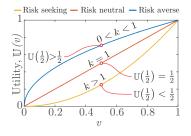
Professor: J-A. Goulet

IntroUtility theory00000000Utility and Loss functions $\mathbb{U}(v)$ & $\mathbb{L}(v)$

Utility & Loss Functions

Value of Information

Expected Utility



Value \rightarrow Utility:

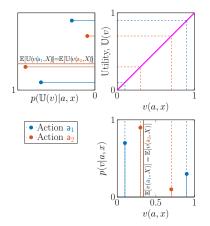
Value	$x = \Delta$	$x = \blacktriangle$		Utility	$x = \triangle$	$x = \blacktriangle$	$\mathbb{E}[\mathbb{U}(v(a,X))]$
a = 🗅	v(≎, ∆)	v(≎, ≜)	\rightarrow	a = ٥	$\mathbb{U}(v(\circ, \triangle))$	$\mathbb{U}(v(\circ, \mathbb{A}))$	$\mathbb{E}[\mathbb{U}(v(0, X))]$
a = 🛯	v(∎, ∆)	v(∎, ▲)		a = 🛯	$\mathbb{U}(v(\mathbf{I}, \triangle))$	U(v(∎, △))	$\mathbb{E}[\mathbb{U}(v(\mathbf{I},X))]$

Professor: J-A. Goulet

Polytechnique Montréal

Value of Information

$\mathbb{E}[\mathbb{U}(v(a_i, X))]$ and risk aversion (ex. discrete) [*]



Risk perception \neg **neutral:** $\mathbb{E}[\mathbb{U}(v(a_1, X))] \neq \mathbb{E}[\mathbb{U}(v(a_2, X))]$

[CIV_ML/Decision/PCgA_discrete.m]

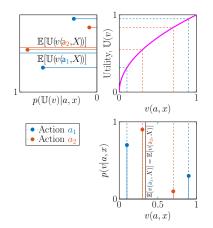
Professor: J-A. Goulet

Polytechnique Montréal

Value of Information

Summary 0

 $\mathbb{E}[\mathbb{U}(v(a_i, X))]$ and risk aversion (ex. discrete) [*]



Risk perception \neg **neutral:** $\mathbb{E}[\mathbb{U}(v(a_1, X))] \neq \mathbb{E}[\mathbb{U}(v(a_2, X))]$

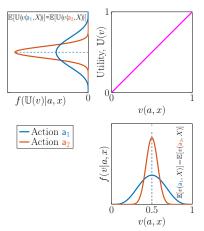
[CIV_ML/Decision/PCgA_discrete.m]

Professor: J-A. Goulet

Polytechnique Montréal

IntroUtility theoryUtility & Loss FunctionsValue of Information0000000000000000000000000 $\mathbb{E}[\mathbb{U}(v(a_i, X))]$ and risk aversion

 $\mathbb{E}[\mathbb{U}(v(a_i, X))]$ and risk aversion (ex. continuous) [*]



Risk perception \neg **neutral:** $\mathbb{E}[\mathbb{U}(v(a_1, X))] \neq \mathbb{E}[\mathbb{U}(v(a_2, X))]$

[CIV_ML/Decision/PCgA_continuous.m]

Professor: J-A. Goulet

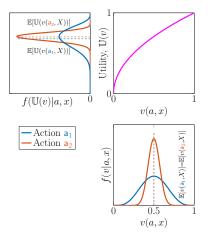
Polytechnique Montréal

 Intro
 Utility theory
 Utility & Loss Functions
 Value of Information

 000000 000 0000000 00000000

 $\mathbb{E}[\mathbb{U}(v(a; X))]$ and risk aversion
 $\mathbb{E}[\mathbb{U}(v(a; X))]$ $\mathbb{E}[\mathbb{U}(v(a; X))]$

 $\mathbb{E}[\mathbb{U}(v(a_i, X))]$ and risk aversion (ex. continuous) [*]



Risk perception \neg **neutral:** $\mathbb{E}[\mathbb{U}(v(a_1, X))] \neq \mathbb{E}[\mathbb{U}(v(a_2, X))]$

[CIV_ML/Decision/PCgA_continuous.m]

Professor: J-A. Goulet

Polytechnique Montréal

Intro 000000 Jtility theory

Utility & Loss Functions

Value of Information

- 4.1 Value of perfect information
- 4.2 Value of imperfect information
- 4.3 Exemple

Intro Utility th 000000 000 Value of perfect information Utility & Loss Functions

Value of Information

Summary O

Expected utility of collecting information

In cases where the value of a state x is imperfectly known, one possible action is to collect information about X

$$\overline{\mathbb{U}}(a^*) \equiv \mathbb{E}[\mathbb{U}(a^*, X)] = \max_{a} \sum_{i=1}^{X} \mathbb{U}(a, x_i) \cdot \Pr(x_i)$$
$$\mathbb{U}(a^*, x = y) = \max_{a} \mathbb{U}(a, x = y)$$

Because *y* has not been observed yet, we must consider all possibilities $Y = X_i$ according to their probability

$$\overline{\mathbb{U}}(\tilde{a}^*) \equiv \mathbb{E}[\mathbb{U}(\tilde{a}^*, X)] = \sum_{i=1}^{X} \max_{a} [\mathbb{U}(a, x_i)] \cdot \Pr(x_i)$$

Value of perfect information

$$VPI(y) = \mathbb{E}[\mathbb{U}(\tilde{a}^*, X)] - \mathbb{E}[\mathbb{U}(a^*, X)] \ge 0$$

Professor: J-A. Goulet

Polytechnique Montréal

Intro 000000		Value of Information ○○●○○○○○
Value of perfec	t information	

$$U(a, x)$$
 $x = \triangle$ $x = \triangle$ $a = \bigcirc$ -100 -100 $a = \blacksquare$ 0 $-10K$

Current expected utility conditional on actions

 $\mathbb{E}[\mathbb{U}(\blacksquare, X)] = (0\$ \times 0.9) + (-10K\$ \times 0.1) = -1K\$$

 $\mathbb{E}[\mathbb{U}(\circlearrowright, X)] = (-100\$ \times 0.9) + (-100\$ \times 0.1) = -100\$ - 100\$ = \mathbb{E}[\mathbb{U}(z)] = \mathbb{E}[\mathbb{U}($

Expected utility conditional on perfect information

$$\mathbb{E}[\mathbb{U}(\tilde{a}^*, X)] = \sum_{i=1}^{X} \min_{a}(\mathbb{U}(a, x_i)) \cdot \Pr(x_i)$$
$$= \underbrace{0 \\ y = x = \triangle} + \underbrace{-100 \\ y = x = \triangle} = \boxed{-10$$

Value of perfect information

$$VPI(y) = \mathbb{E}[\mathbb{U}(\widetilde{a}^*, X)] - \mathbb{E}[\mathbb{U}(a^*, X)] = 90$$

Professor: J-A. Goulet

Polytechnique Montréal

Value of Information 00000000 Value of perfect information <u>∧</u>:\$0 VPI – Decision Tree Representation U = [\$0]A:=\$10K y = hA:−\$100 = 0.9G $\mathbb{U}(a,x) \mid x = \triangle \quad x = \triangle$ <u>}:_\$100</u> a = 3 -100\$ -100\$ $y = \{ \triangle, \triangle \} \overline{\mathbb{U}} = -\10 18:€ 0\$ -10K\$ a = 🕌 Pr = 0. U = -\$10K

y =

Polytechnique Montréal

Decision Theory | V2.3 | Probabilistic Machine Learning for Civil Engineers

Professor: J-A. Goulet

Value of perfect information

Value of information

The **value of information** represents how much you are willing to pay for an information.

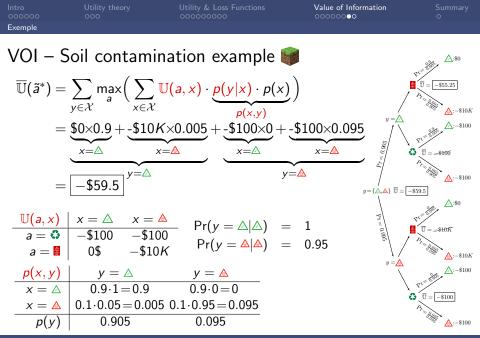
What if the information is not perfect?

Intro Utility the 000000 000 Value of imperfect information Utility & Loss Functions

Value of Information

Value of imperfect information

$$\overline{\mathbb{U}}(\tilde{a}^*) \equiv \mathbb{E}[\mathbb{U}(\tilde{a}^*, X)] = \sum_{y \in \mathcal{X}} \max_{a} \left(\sum_{x \in \mathcal{X}} \mathbb{U}(a, x) \cdot \underbrace{p(y|x) \cdot p(x)}_{p(y, x)} \right)$$



Professor: J-A. Goulet

Decision Theory | V2.3 | Probabilistic Machine Learning for Civil Engineers

Polytechnique Montréal

Exemple

Value of Information 0000000

VOI – Soil contamination example (cont.) 🏼

Expected utility for the optimal action

$$\overline{\mathbb{U}}(a^*)\equiv\mathbb{E}[\mathbb{U}(a^*,X)]=-100$$
\$

Expected utility conditional on imperfect information

$$\overline{\mathbb{U}}(\widetilde{a}^*) = -\$59.5$$

Value of imperfect information

$$VOI(y) = \overline{\mathbb{U}}(\widetilde{a}^*) - \overline{\mathbb{U}}(a^*) = 40.5$$

Professor: J-A. Goulet

Polvtechnique Montréal

Utility & Loss Functions

Summary

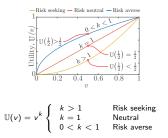
Rational Decision:

Choose the action a_i^* which minimize the expected loss $\mathbb{L}(a, x)$ or maximizes the expected utility $\mathbb{U}(a, x)$

$$a^* = \arg\min_{a} \mathbb{E}[\mathbb{L}(a, X)] = \arg\max_{a} \mathbb{E}[\mathbb{U}(a, X)]$$

 $\mathbb{L}(v(a,x))$ & $\mathbb{U}(v(a,x)):$ Subjective weight on value as a function of the attitude toward risks

 $(\pm$ 1\$ not the same effect if you have 1\$ or 1M\$)



Value of information:

Value you should be willing to pay for information

$$VOI(y) = \mathbb{E}[\mathbb{U}(\tilde{a}^*, X)] - \mathbb{E}[\mathbb{U}(a^*, X)] \ge 0$$

Value of perfect information:

$$\overline{\mathbb{U}}(\tilde{a}^*) \equiv \mathbb{E}[\mathbb{U}(\tilde{a}^*, X)] = \sum_{x \in \mathcal{X}} \max_{a} [\mathbb{U}(a, x)] \cdot \Pr(x)$$

Value of imperfect information:

$$\overline{\mathbb{U}}(\tilde{a}^*) \equiv \mathbb{E}[\mathbb{U}(\tilde{a}^*, X)] = \sum_{y \in \mathcal{X}} \max_{a} \left(\sum_{x \in \mathcal{X}} \mathbb{U}(a, x) \cdot \underbrace{p(y|x) \cdot p(x)}_{p(y, x)} \right)$$

Professor: J-A. Goulet