	Chargement combiné	

Module #9

Contenants sous pression et contraintes dues à la combinaison de chargements

(CIV1150 - Résistance des matériaux)

Enseignant: James-A. Goulet

Sections 9.1-9.4 – R. Craig (2011) Mechanics of Materials, 3rd Edition John Wiley & Sons. P. Léger (2006) Notes de cours: Chapitre 9, §9.1–9.4 Polytechnique Montréal.

Enseignant: J-A. Goulet

Polytechnique Montréal

Distribution σ 00000 Chargement combine

Résumé 00

Mise en contexte - chargement combiné

Contrainte maximale?

Génie civil?

[Hibbler, 2005]

Enseignant: J-A. Goulet

Polytechnique Montréal

Enseignant: J-A. Goulet

Distribution σ 00000 Chargement combine

Résumé 00

Cuves sous pression - Réacteurs nucléaires

[France metallurgie, Kolumbus]

Polytechnique Montréal

Mise en contexte - chargement combiné

Intro

Cuves sous pression – Essai destructifs

[Sandia]

Enseignant: J-A. Goulet

Polytechnique Montréal

IntroPression $\rightarrow \sigma \& e$ 0000000000000

Distribution σ

Chargement combine

Résumé 00

Mise en contexte – chargement combiné

Structures gonflables 😤

[Wikipedia, Pedretti (2004,2005), Google images]

Enseignant: J-A. Goulet

Polytechnique Montréal

Distribution σ

Chargement combine

Barrages

Enseignant: J-A. Goulet

Polytechnique Montréal

Pression $\rightarrow \sigma \& \epsilon$ _____ Distribution σ

Chargement combin

Résumé 00

Cylindres ouverts sous pression

Cylindres ouverts sous pression – contraintes surface

Contrainte circonférentielle:

$$\sigma_{\theta} = \frac{F_{\theta}}{bt} = \frac{pr}{t}$$

 $F_r = p \, \widetilde{b(rd\theta)}$

Composante verticale:

 $F_y(\theta) = F_r \cdot \sin \theta$

Force circonférentielle:

$$F_{\theta} = \frac{1}{2} \int_{0}^{\pi} F_{y}(\theta) d\theta$$

$$= \frac{1}{2} [-bpr \cos \theta]_{0}^{\pi}$$

$$= -\frac{1}{2} bpr [\cos \pi - \cos 0]$$

$$= \boxed{bpr}$$

[Bazergui]

Polytechnique Montréal

Enseignant: J-A. Goulet

Intro

Pression $\rightarrow \sigma \& \epsilon$

Distribution σ 00000 Chargement combin

Résumé 00

Cylindres ouverts sous pression

Cylindres ouverts sous pression – déformations Allongement (rappel):

$$\sigma_{\theta} = \frac{pr}{t}$$
$$L = 2\pi r$$

 $\delta = \frac{FL}{EA}$

Allongement circonférentiel:

$$\delta_{\theta} = \frac{\sigma_{\theta} A L}{E A} \frac{\sigma_{\theta} A L}{E A}$$
$$= \frac{pr}{t} \cdot \frac{2\pi r}{E} = \boxed{\frac{2\pi p r^2}{E t}}$$

Changement de rayon:

$$\delta_r = \frac{\delta_\theta}{2\pi} = \boxed{\frac{pr^2}{Et}}$$

[Bazergui]

Polytechnique Montréal

Enseignant: J-A. Goulet

Pression $\rightarrow \sigma \& \epsilon$

Distribution σ

Chargement combine

Résumé 00

Cylindres ouverts sous pression

Cylindres ouverts sous pression – exemple 📣

Calculer $\sigma_{\theta,\max}$ et $\delta_{\theta\max}$

[Bazergui]

Enseignant: J-A. Goulet

Polytechnique Montréal

Pression $\rightarrow \sigma \& \epsilon$

Cylindres fermés sous pression – contraintes Contrainte circonférentielle:

Enseignant: J-A. Goulet

Chargement combine

Résumé 00

$$\sigma_{\theta} = \frac{\mu}{t}$$

Force sur le bouchon:

$$F_x = \pi r^2 p$$

Contrainte axiale:

$$\sigma_x = \frac{F_x}{A_x} = \frac{\pi r^2 p}{2\pi r t} = \frac{pr}{2t}$$

État de contraintes bi-axiales, $\sigma_{\theta} = 2\sigma_x$

[Bazergui]

Polytechnique Montréal

IntroPression $\rightarrow \sigma \& \epsilon$ Distribution σ Chargement combinéRésumé0000000000000000000Cylindres fermés sous pression00000000

Cylindres fermés sous pression - Mohr

$$\tau_{max}| = \frac{\sigma_1 - \sigma_3}{2} = \frac{1}{2} \left(\frac{2pr}{2t}\right) = \boxed{\frac{pr}{2t}} = \sigma_x$$

[Bazergui]

Polytechnique Montréal

Enseignant: J-A. Goulet

	Pression $ ightarrow \sigma$ & ϵ	Chargement combiné	
	000000000		
Sabàras			

Sphères sous pression – Contraintes

(a) A spherical pressure vessel with diametral cutting plane.

Force dans le liquide/gaz

$$F_p = p \cdot \pi r^2$$

Force dans la paroi

 $F_s = \sigma \cdot A = \sigma \cdot 2\pi rt$

Équilibre des forces

 $F_s\equiv F_p$

Contrainte

$$\sigma_{s} = \frac{pr}{2t} = \sigma_{x}$$

Enseignant: J-A. Goulet

9-Contenants sous pression et combinaison de chargements | V1.1 | CIV1150- Résistance des matériaux

Polytechnique Montréal

14/33

	Pression $\rightarrow \sigma \& \epsilon$ 00000000	Chargement combiné 0000000	
Sphères			

Comparaison sphères v.s. cylindres

A = axial directionH = hoop direction $P_3 \equiv R$ $P_2 \equiv A$ $P_1 \equiv H$ R = radial direction- σ $P_3 \equiv R$ τ_{abs} $P_1 = P_2$ $p_1 p_2$ (in-plane) max τ_{abs} Mohr's circle max $p_1 p_3$ (out-of-plane) Mohr's circle $\frac{pr}{2t}$ $\frac{pr}{2t}$ τ (a) Mohr's circles for a cylinder. (b) Mohr's circles for a sphere. $| au_{\text{max}, sphere}| = \frac{\sigma_1 - \sigma_3}{2} = \frac{pr}{4t} = \frac{1}{2} | au_{\text{max}, cylindre}|$

Enseignant: J-A. Goulet

Polytechnique Montréal

	Pression $\rightarrow \sigma \& \epsilon$	Chargement combiné 0000000	
Sphères			

Cylindre fermé sous pression – exemple 📣

- ▶ *D_i* = 1 200 *mm*
- ▶ *p* = 2 *MPa*
- ▶ σ_{adm.} = 100 MPa
- $\tau_{adm.} = 40 MPa$

Calculer l'épaisseur minimale du réservoir

Enseignant: J-A. Goulet

Polytechnique Montréal

	Pression $ ightarrow \sigma$ & ϵ	Chargement combiné
	00000 000	
Sphères		

Cylindre fermé sous pression – Défaillance 🏶

Enseignant: J-A. Goulet

Polytechnique Montréal

Distribution σ 00000 Distribution des contraintes dans les poutres

Distribution des contraintes dans les poutres

9-Contenants sous pression et combinaison de chargements | V1.1 | CIV1150- Résistance des matériaux

19/33

Pression $\rightarrow \sigma \& \epsilon$

Distribution σ

Chargement combine

Résumé 00

Distribution des contraintes dans les poutres

Champ de contraintes dans les poutres

Enseignant: J-A. Goulet

Polytechnique Montréal

Pression $\rightarrow \sigma \&$

Distribution σ

Chargement combine

Résumé 00

Exemples – Distribution des contraintes

Exemple MDS 9.2 💻 💷 🍥

Question:

- a) Calculer V et M à la section a-a
- b) Calculer σ_x et τ_y au point H
- c) Calculer σ_1 et $|\tau_{\max}|$ au point H

Enseignant: J-A. Goulet

Polytechnique Montréal

Pression $ightarrow \sigma \& \epsilon$

Exemples – Distribution des contraintes

 $I_z = 1\,335\,000\,mm^4$

Question:

Pour la section M-M et pour le point H

- a) Calculer V et M
- b) Calculer σ_x et τ_{xy}
- c) Calculer σ_1 et $|\tau_{\max}|$

Enseignant: J-A. Goulet

Polytechnique Montréal

Exemple MDS 9.4 💻

Enseignant: J-A. Goulet

Polytechnique Montréal

Pression $\rightarrow \sigma \& e$

Distribution σ 00000 Chargement combiné

Résumé 00

Rappel - calcul des contraintes

Formules pour le calcul des contraintes

Effort	Symbole	Formule	[Craig.]
Force normale	F	$\sigma = \frac{F}{A}$	§2.2, 3.2
Moment de torsion	Т	$ au = \frac{T ho}{I_p}$	§4.3
Moment de flexion	М	$\sigma = -\frac{My}{I}$	§ 6 .3
Force de cisaillement	V	$\tau = \frac{VQ}{It}$	§ 6 .8

Enseignant: J-A. Goulet

Polytechnique Montréal

Exemple d'application: cadres rigides

[Engineering Wiki]

Polvtechnique Montréal

Enseignant: J-A. Goulet

Pression $\rightarrow \sigma \& e$

Distribution σ 00000 Chargement combiné

Résumé 00

Hypothèses pour combinaison des chargements

Hypothèses pour combinaison des chargements

- 1. Matériau linéaire et élastique
- 2. Petites déformations et petits déplacements
- 3. Section et structure stables (\triangle flambement, \triangle voilement, \triangle déversement, $\triangle p - \Delta$)

Enseignant: J-A. Goulet

Polytechnique Montréal

IntroPression $\rightarrow \sigma \& \epsilon$ 00000000000000

Distribution σ

Chargement combiné

Résumé 00

Combinaison de flexion et de charge axiale

Flexion et chargement axial

σ –	F	$M_y z$	M _z y
$v_x =$	\overline{A}^+	I_y	I_z

Enseignant: J-A. Goulet

Polytechnique Montréal

Distribution σ 00000 Chargement combiné

Résumé 00

Combinaison de flexion et de charge axiale

Exemple: flexion et chargement axial

(a) Stress distribution due to F.

(b) Stress distribution due to M_{γ}

(c) Stress distribution due to M_{τ}

Polytechnique Montréal

$$F = -P$$

$$M_y = -Pe_z$$

$$M_z = Pe_y$$

$$\sigma_{x} = \frac{F}{A} + \frac{M_{y}z}{l_{y}} - \frac{M_{z}y}{l_{z}}$$

Enseignant: J-A. Goulet

Chargement combiné 0000000

Combinaison de flexion et de charge axiale

Exemple MDS 9.5 🔌 💻

Question:

Calculer σ_x et τ_{xy} au point H situé au droit de la coupe a-a

Enseignant: J-A. Goulet

Polvtechnique Montréal

	Chargement combiné	
	000000	

Courbes d'interaction F-M

Domaine élastique

Enseignant: J-A. Goulet

Polytechnique Montréal

Combinaison de chargement en flexion et axial

M₁ D D Z

$$\sigma_x = \frac{F}{A} + \frac{M_y z}{I_y} - \frac{M_z y}{I_z}$$

Enseignant: J-A. Goulet

Polytechnique Montréal

Enseignant: J-A. Goulet

Polytechnique Montréal