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Abstract

Structural Health Monitoring has the potential to enhance the safety and serviceabil-
ity of our aging infrastructures by detecting anomalies at an early stage. Bayesian
Dynamic Linear Models (BDLM) have been shown to be effective at detecting
anomalies by extracting structural patterns and latent variables from complex and
noisy time series. However, the autoregressive component modelling the stationary
prediction errors in most BDLM has a tendency to wrongfully capture patterns
that should be attributed to anomalies, and thus hinders their detectability. This
paper proposes a new bounded autoregressive (BAR) component, which imposes
constraints on the autoregressive latent process with a new mixture Rectified Linear
activation Unit. The BAR component is probabilistically verified on synthetic data
using a new F1t metric, and is validated using real observations collected on a
bridge and on a dam located in Canada. The experimental results demonstrate that
the BAR model surpasses the performance of the existing autoregressive component
with (1) an improved accuracy at estimating hidden states, (2) an early detection of
anomalies, (3) a capacity to detect smaller anomaly magnitudes, and (4) the ability
to control the tradeoff between the anomaly detectability and the false alarm rate.

1 Introduction

Structural Health Monitoring (SHM) plays a key role in ensuring the safety and serviceability for
a growing number of aging infrastructures [1, 2]. Two primary methodologies, physics-based and
data-driven, are typically used in SHM. The physics-based approaches rely on the prediction from
a numerical model (e.g., Finite Element) calibrated by measurements obtained on scaled [3] or
real [4] structures. Data-driven methods leverage statistical or machine learning methods [5, 6]
to analyze the data from simulations [7], visual inspections [8] or using sensors [9, 10], without
requiring a physics-based model of the structure’s behaviour. Data-driven approaches are typically
more scalable [11], and they are capable of handling complex relations between structural responses
and environmental conditions [12]. A main challenge is their limited interpretability as they rely on
patterns and correlations, without explicitly incorporating physical principles.
Early anomaly detection and the prevention of deterioration are the backbone of SHM owing to their
potential benefits in enhancing both the safety and economic viability through predictive maintenance.
In data science, an anomaly is defined as unexpected data, which could be a single observation
or a complex pattern, significantly different from the majority of instances [13]. In the case of
SHM, anomalies are constrained by the physics of the deterioration processes, where they usually
develop gradually over time such that it is difficult to identify them visually. Anomaly detection has
been the focus of recent SHM research which has explored a range of machine learning algorithms
[14]. Among them, Principal Component Analysis (PCA) [15, 16], Autoencoder [17, 18], Kalman
Filter (KF) [10], Long-Short-Term Memory (LSTM) Network [19, 20], Generative Adversarial
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Networks (GAN) [18], attention mechanism [21], reinforcement learning [22, 23], etc., have been
used for applications on laboratory-scale and real-life case studies. However, a common factor is
that these studies mainly focus on time series with large anomalies showing obvious pattern changes,
whereas their performance is evaluated in a deterministic setup. The probabilistic evaluation of the
anomaly detectability and the false alarm rate of a model under different types of anomalies is key for
scaling anomaly detection approaches to a large number of applications, yet it is seldom investigated.
Khazaeli et al. [22] have already started exploring these aspects by trading off the detectability of
anomalies with the false alarm rate by using different reward functions in a reinforcement learning
framework.
Anomaly detection involves epistemic and aleatory uncertainties, which may originate from the
model structure selection, parameters estimation, missing dependencies between observations, model
prediction errors, etc. Bayesian Dynamic Linear Models (BDLM) consider both types of uncertainties
while using the Switching Kalman Filter (SKF) to probabilistically detect anomalies in time series
[24, 25, 26] and it can analytically infer interpretable hidden states in a Bayesian and online way.
In the BDLM-SKF approach proposed by Nguyen and Goulet [10], the probability of occurrence
of an anomaly is represented by a posterior predictive probability for different regimes based on
a Gaussian mixture reduction approach [27]. This model incorporates a stationary autoregressive
(AR) model to capture residuals that cannot be explained by the irreversible baseline components
and the reversible periodic ones [28]. It has been observed that when the autoregressive coefficient
approaches one, the AR component becomes increasingly prone to capturing trends that should be
attributed to the baseline or periodic components. This thus hinders the regime switching capacity
because the pattern from a non-stationary regime may be hidden under the AR component due to its
undesired trend-capturing property.
In this paper, we propose a new bounded autoregressive (BAR) component, which imposes constraints
on the estimation of an AR hidden state while remaining compatible with the BDLM framework
(BDLM-BAR). For that purpose, a mixture Rectified Linear activation Unit (mReLU) is developed
to approximate the distribution of the BAR hidden state, and a modified F1 score is put forward for
the probabilistic evaluation of the new BAR component. In general, the existing BDLM-SKF method
and our current extension are intended to allow infrastructure owners to monitor their structures’
health conditions using data measured by large-scale sensors without human interventions. The BAR
component proposed in this article can further improves the hidden states’ accuracy, reduces the false
alarm rate, detects smaller anomalies and detect them earlier as demonstrated by our experiments,
where the BDLM-BAR is verified on synthetic data, as well as validated using real observations
collected on a bridge and on a dam located in Canada.
This paper is structured as follow. Section 2 discusses the characteristics of time series anomaly
detection in terms of anomaly type and evaluation metric. Section 3 presents the existing BDLM
framework with emphasis on its residual components. Section 4 proposes the formulation for the
mReLU method and the BAR component, followed by three sets of experimental results on synthetic
data, as well as data measured on a bridge and on a dam in Section 5. Finally, conclusions on the
performance of the newly devised BAR component are drawn in Section 6.

2 Time series anomaly detection in SHM

This section presents six common types of anomalies in time series including shifts in local accel-
eration, trend or level for describing the deterioration processes in infrastructure. The criteria for
detecting these anomalies is a confusion matrix adapted to the context of SHM and a new metric
named F1t , which expands on the existing F1 score by considering the delay in the detection time.

2.1 Anomaly types

Anomalies in time series are typically categorized into point-based and sequence-based [29]. Point-
based anomalies refer to a single data point that strongly deviates from a sequence within a time
series. It can be further divided into a point anomaly which is an outlier compared to the complete
time series, and a contextual anomaly as an outlier with respect to a subset of data within a time
series. Unlike the point-based anomalies, sequence-based anomalies are defined as a sequence of
data that do not follow a typical pattern from the past. Goswami [30] et al. categorized some of the
sequence-based anomalies including noise anomalies where the noise pattern changes.
In SHM, the deterioration processes taking place on structures, such as corrosion, crack opening,
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foundation settlements, etc, typically span over long periods from months to years so that point-based
anomalies are not representative of their timescale. Furthermore, the point-based and noise anomalies
are often associated with sensor malfunction or external environment changes, instead of a structural
deterioration. To detect a state change in slow-deteriorating structures, this study focuses on the
anomalies involving changes of time-series baselines [10] such as (1) a local acceleration (LA)
anomaly changes time series from a constant speed regime to a constant acceleration one; (2) a local
trend (LT) anomaly shifts the time series from a constant speed to a new speed; and (3) a local level
(LL) anomaly corresponds to a jump from one local level to another. Note that these three anomalies
suppose that the normal regime is having either a constant or zero speed. The early detection of
these irreversible baseline changes could enable triggering alarms signalling the process of structural
deteriorations before they can be visually observed. Figure 1 shows a visual representation of the
above-mentioned anomalies.

Anomalies associated with structural deteriorations

point anomaly contextual anomaly noise anomaly

LA anomaly LT anomaly LL anomaly

Sequence-basedPoint-based

Figure 1: Visual representation for six types of anomalies in time series. The point, contextual, and
noise anomalies are summarized in the literatures [29, 30]. Baseline-related anomalies including LA,
LT, LL are the focus of our research as they are associated with potential structural deteriorations
progressively developing over months or even years.

2.2 Evaluation metrics

Detecting anomalies on time series is analogous to a classification problem as both tasks consist
in predicting the correct label for a given observation. Metrics commonly used for evaluating
classification models, such as the confusion matrix and the F1 score [31], can be adapted to the
anomaly detection task.
A typical confusion matrix adapted to the context of SHM is presented in Table 1. Given an
observation, when the model prediction matches the ground truth, the corresponding prediction is
evaluated as either a true positive (TP ) or true negative (TN ) depending on whether an anomaly is
present or not. Conversely, if the model prediction is incorrect, this prediction is labeled as either a
false negative (FN ) or false positive (FP ). To evaluate the overall accuracy while considering the
TP , FP and FN , we can rely on the F1 score that is defined following

F1 =
2TP

2TP + FP + FN
.

Table 1: A confusion matrix in classification problems and its analogue in anomaly detection. True
positives (TP ) are the instance that alarm is triggered with the presence of abnormal data. False
positives (FP ) are the false alarms in anomaly detection. False negatives (FN ) correspond to the
missed alarms. True negatives (TN ) indicate that no alarm is triggered given that there is no anomaly.

ground truth
+ (abnormal) − (normal)

model prediction + (alarm) TP FP
− (no alarm) FN TN
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In the context of time series anomaly detection, it is not feasible to evaluate the anomaly detectability
pointwise because it would be biased by the length of anomalies, where models gain more reward for
detecting long anomalies rather than short ones [32]. Take the baseline-related anomalies in Figure 1
as an example, after an anomaly is introduced in a time series where hidden states are shifted, all the
following observations are labeled as abnormal. A model could then go through more TP instances
when applied to a longer abnormal segment and thus wrongfully achieve a higher F1 score. As a
result, by using the existing F1 definition, the performance of the anomaly detection model is not
only a function of its detectability, but it is also biased by the length of abnormal segment.
Instead of updating the confusion matrix for each observation, we propose to assess it on a time-
series-wise basis, whose concept is demonstrated in Figure 2. Given a time series with an anomaly,
e.g., a LA anomaly, if a model triggers an alarm before the anomaly starts, its prediction will be
labeled as a FP and the FP count is incremented by 1. On the other hand, if an alarm is correctly
triggered within the abnormal region without any false alarm prior to it, the TP count is incremented
by 1. Yet, if no alarm is triggered throughout an entire time series subjected to an anomaly, or if an
alarm is triggered after a pre-defined detection window, the model performance will be assessed as a
missed alarm with 1 added to the FN count. The evaluation on a time series is terminated as soon as
any of the FP , TP or FN count is updated.

FP+ = 1

(a) False alarm

TP+ = 1

(b) True alarm

... ...
FN+ = 1

(c) Missed alarm

Figure 2: Time-series-wise TP , FP and FN definition. FP is incremented by 1 when an alarm is
triggered before the occurrence of anomalies. TP is incremented by 1 when an alarm is correctly
triggered in the abnormal segment. FN is increased by 1 if an alarm is missed within the detection
window. When any of these three scenarios happens, analysis on this time series terminates and
confusion matrix is updated.

With such an evaluation process, the model’s performance is independent from the length of abnormal
time series because each one only has a maximum increment of 1 in either TP , FP , or FN .
Nonetheless, that determination of TP counts ignores the time delay in detecting anomalies because
alarms triggered at any time within the anomaly region have the same increment in TP . To factorize
the detection time in the anomaly detectability, we propose to use a decay ratio λ that linearly
penalizes the F1 score with an increase in the detection time ∆t. This new metric is called the F1
temporal (F1t) score, such that F1t = λF1 .
Figure 3 shows the relation between λ and ∆t, which is the average detection time for all the time
series. λ is one if a model triggers an alarm before or at the moment when the anomaly starts, while
it linearly decreases to zero as the required detection time reaches the end of a pre-defined detection
window ldw. This approach is aware that a detection time smaller than zero corresponds to a false
alarm. Since false alarms are penalized through the FP in the calculation of F1 , λ remains one for
∆t < 0 to avoid a double penalization. A model can achieve a maximum F1t score of 1 if it detects
all the anomalies at their exact starting time without triggering any false alarms. On the other hand,
any delay in detection, false alarms or missing alarms will lead to a reduction in the F1t score.

0 ldw

0

0.5

1

∆t

λ

Figure 3: Decreasing λ with longer detection time. ldw is the length of target detection window. λ
drops to zero if the required time to detect an anomaly is longer than ldw.
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3 Bayesian Dynamic Linear Models (BDLM)

Bayesian Dynamic Linear Models (BDLM) have been shown to be effective for extracting structural
patterns and latent variables from complex and noisy time series in SHM [12, 33]. This section
focuses on one specific BDLM structure [34], under whose framework the BAR model is developed in
Section 4.

3.1 Mathematical formulation of BDLM

The general formulation of BDLM involves a prediction and an update step [28], which are summa-
rized by the Equations (1–4) with a focus on a pair of consecutive time steps t− 1 and t under the
Markov assumption. The prediction step includes a transition model that transfers the knowledge
about the hidden states x from t − 1 to t and an observation model that indicates which one is
observable. The transition model is defined by

xt = Axt−1 +wt,W ∼ N (0,Q), (1)

where A is a transition matrix, wt is a transition error that is a realization for a Gaussian distribution
with mean zero and covariance Q. This transition model is used to compute our prior about xt

using all the past data up to t− 1 such that f(xt|y1:t−1) = N (µX
t|t−1,Σ

X
t|t−1), where y1:t−1 are the

observations from time 1 up to t− 1. The observation model is described by

yt = Fxt + vt,V ∼ N (0,R), (2)

where F is an observation matrix and vt is an observation error that is a realization for a zero mean
Gaussian distribution with covariance R. Again, this observation model is used to compute our prior
about yt using all the data up to t− 1 such that f(yt|y1:t−1) = N (µY

t|t−1,Σ
Y
t|t−1).

The update step computes the posterior knowledge of hidden states at time t conditional on all
observations y1, y2, ..., yt following

µX
t|t = µX

t|t−1 +ΣXY
t|t−1(Σ

Y
t|t−1)

−1(yt − µY
t|t−1), (3)

ΣX
t|t = ΣX

t|t−1 −ΣXY
t|t−1(Σ

Y
t|t−1)

−1ΣY X
t|t−1, (4)

where the subscript t|t denotes the updated estimation at time t using all the observations until time t,
and where the covariance matrix ΣXY

t|t−1 = ΣX
t|t−1F

⊺.

3.2 Residual components in BDLM

BDLM are built using various generic components which can be categorized into (a) baseline
components that describe the local level (LL), trend (LT), and acceleration (LA) of time series; (b)
periodic components that capture the harmonic periodic (PD) or non-harmonic kernel regressive (KR)
pattern, and (c) a residual component which represents the model error that cannot fit in any other
explainable components. Residual components are key to ensuring the estimation accuracy of other
hidden states [28]. A common residual component is the first order autoregressive model, denoted
simply as AR. This model will be reviewed next.

3.2.1 Formulation of the autoregressive (AR) component

The matrices defining the transition and observation models of the AR component are

AAR = ϕAR,FAR = 1,QAR = (σAR)2.

The transition matrix AAR is defined by the autoregression coefficient ϕAR, which represents the linear
dependency between successive time steps and allows the AR model to predict the current hidden
state from the past step. FAR is set to 1, indicating that xAR is directly observable. σAR is the standard
deviation of process error, and the stationary standard deviation, σAR,0, measures the dispersion of the
stationary AR process and is defined following

(σAR,0)2 =
(σAR)2

1− (ϕAR)2
, (5)

where ϕAR is constrained in [0, 1] in order to model stationary process errors.
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3.2.2 Motivation for constraining the AR component

In BDLM, when there is a small progressive anomaly, or when ϕAR is optimized to a value close to 1,
the AR component has a tendency to capture patterns that should not belong to the residual term. A
drifting AR could delay the detection of anomalies through regime switches and hinder the hidden
states’ interpretability. A value of ϕAR approaching 1 can be attributed to

(a) modelling errors: When the baseline or periodic components are not correctly defined, the
patterns of these components may be partially attributed to the AR component and eventually lead
to a ϕAR value close to 1 to enable capturing the strong dependencies between residual values;

(b) small time steps (δt): When the time-step length is short, e.g., 1 hour, consecutive model
predictions are likely to be similar. The model errors describing the discrepancy between the
model predictions and the structural states are thus highly correlated. In order to capture such a
high correlation, ϕAR typically approaches 1. On the other hand, with long time-step lengths, e.g.,
1 month, the model errors become mostly independent from each other and ϕAR tends to be close
to zero.

We will see in the next section how the shortcomings of the AR component can be overcome using
constraints without negatively impacting the estimation of other components and while maintaining
the analytical tractability of the BDLM-SKF approach.

4 Bounded autoregressive (BAR) component

This section introduces the bounded autoregressive (BAR) component for modelling constrained error
processes in the BDLM framework. The moments of the BAR hidden states as well as its covariance
with respect to other hidden states are approximated using a new probabilistic activation function
called the Mixture Rectified Linear Unit (mReLU). The mReLU function is developed in Section
4.2 based on the existing ReLU activation function and the theory of Gaussian mixture reduction in
Section 4.1. The formulations for the BDLM-BAR are presented in Section 4.3.

4.1 Lower- and upper-bounded ReLU and Gaussian mixture reduction

The rectified Linear Unit (ReLU) is one of the most popular activation functions in deep learning
models [35, 36]. A ReLU function bounds its input values to the positive range by assigning zero
to all negative input values, i.e., ϕr(x) = max(0, x). With the superposition of a minimum and
a maximum function, one can obtain an activation function that bounds input values to a closed
interval. Similar to a RuLU6 [37] that bounds the input in [0, 6], a general formulation of a lower-
and upper-bounded ReLU that symmetrically constrains input values between −b and b is given by

ϕ±
r (x) = min (max (−b, x) , b) .

A Gaussian mixture combines multiple Gaussian distributions, each represented by
{
πi, µi, σ

2
i

}
,

where πi is the probability of each distribution, and µi and σ2
i denote the mean and variance. This

approach enables calculating the exact moments for the combined distribution following

µ̃ =

n∑
i=1

πiµi, (6)

σ̃2 =

n∑
i=1

πi

(
σ2
i + (µi − µ̃)

2
)
. (7)

The Gaussian mixture reduction [27] approximates this combined distribution by a Gaussian distri-
bution using the moments defined by eq. (6) and eq. (7). Figure 4 presents examples of Gaussian
mixture reduction for two and three components.

4.2 Mixture Rectified Linear activation Unit (mReLU)

The BAR component relies on a Gaussian mixture reduction between a truncated Gaussian and two
real values obtained from a lower- and upper-bounded ReLU function. Figure 5 illustrates an example
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Figure 4: Four Gaussian mixture reduction examples. The first and the second plots exhibit
the mixture Ñ for two Gaussian components, which are N1 =

{
π1 = 0.9, µ1 = 1, σ2

1 = 12
}

,
N2 =

{
π2 = 0.1, µ2 = 3, σ2

2 = 12
}

for the first plot, and N1 =
{
π1 = 0.3, µ1 = 1, σ2

1 = 12
}

,
N2 =

{
π2 = 0.7, µ2 = 3, σ2

2 = 12
}

for the second plot. The third and the fourth plots show
the mixtures Ñ for three Gaussian components, which are N1 =

{
π1 = 0.2, µ1 = 1, σ2

1 = 12
}

,
N2 =

{
π2 = 0.5, µ2 = 3, σ2

2 = 12
}

, and N3 =
{
π3 = 0.3, µ3 = 4, σ2

3 = 12
}

for the third
plot, and N1 =

{
π1 = 0.2, µ1 = 1, σ2

1 = 12
}

, N2 =
{
π2 = 0.5, µ2 = 3, σ2

2 = 12
}

, and N3 ={
π3 = 0.3, µ3 = 7, σ2

3 = 12
}

for the fourth plot.

of the mReLU transformation, where the input is a Gaussian distribution f(xAR) and the output is
approximated by another Gaussian distribution f(xBAR) given XBAR = ϕ±

r (X
AR). Starting from the

plot on the second row, f(xAR) is truncated into three segments by two boundary values −b and b.
By passing the truncated segments through a ReLU function, the intervals [−∞, −b] and [b, +∞]
are collapsed to −b and b, as shown in the second plot on the first row. These can be regraded as
two Gaussian components with variances equal to zero, {π1 = FXAR(−b), µ1 = −b, σ2

1 = 0} and
{π2 = FXAR(b), µ2 = b, σ2

2 = 0}, following the same notation for the Gaussian mixture reduction
mentioned in Section 4.1. The probability density function (PDF) for the middle interval f(x̃AR)
remains unchanged by the ReLU and is approximated by matching its moments to a Gaussian
PDF illustrated by a solid line in the third plot on the first row, which acts as the third component
{π3 = FXAR(b)− FXAR(−b), µ3, σ

2
3}. The Gaussian mixture reduction represents the distribution of

the BAR hidden state f(xBAR) as shown in the rightmost plot.

−b

b

x
B
A
R
=

ϕ
± r
(x

A
R
)

ReLU

−b 0 b

xAR

f
(x

A
R
)

f(x̃AR)p(xAR > b)
p(xAR < −b)

f(xBAR)

Figure 5: A mReLU transformation example in the context of BAR. The input distribution f(xAR)
has a mean value that is close to -b within the boundary and a variance that extends beyond the ±b.

The calculations of the moments µ3, σ3, µBAR, and σBAR, as well as the covariance between XBAR and
other hidden states are carried in the mReLU function which can be summarized as{

µBAR, σBAR, cov
(
XBAR, X ·)} = mReLU

(
µAR, σAR, cov(XAR, X ·), γ

)
, (8)

where cov (XBAR, X ·) is the covariance between BAR and other hidden states, cov(XAR, X ·) is the
covariance between AR and other hidden states, and γ is a hyper-parameter that defines the boundaries
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according to the autoregressive process’s stationary standard deviation σAR,0 as defined by eq. (5), so
that the boundary value is

b = γσAR,0 = γ

√
σ2
W

1− (ϕAR)2
. (9)

When the constant γ = 2, the bounded area corresponds to a 95% coverage region for the autoregres-
sive process’s stationary distribution.

The truncated Gaussian between −b and b is approximated by a Gaussian PDF whose moments match
those of a truncated Gaussian, for which the expected value is

αL = − b+µAR

σAR ,

αU =
b−µAR

σAR ,

ω = Φ(αU)− Φ(αL) = Pr(−b < XAR < b),

β = ϕ(αU)−ϕ(αL)
ω ,

µ̃AR = µAR − βσAR,

the variance is

κ = 1− αUϕ(αU)−αLϕ(αL)
ω − β2,

(σ̃AR)2 = κ(σAR)2,

and the covariance between X̃AR and another variable X · is

cov(X̃AR, X ·) = κ1/2cov(XAR, X ·).

A Gaussian mixture reduction is performed on the three Gaussian components, {π1 =
FXAR(−b), µ1 = −b, σ2

1 = 0}, {π2 = FXAR(b), µ2 = b, σ2
2 = 0} and {π3 = FXAR(b) −

FXAR(−b), µ3 = µ̃AR, σ2
3 = (σ̃AR)2}, to obtain the output of BAR hidden state

XBAR = −bΦ(αL) + ωX̃AR + b(1− Φ(αU)).

Following eq. (6), the expected value of XBAR is a mixture of the expected values of the three Gaussian
components according to their probabilities so that

µBAR = −bΦ(αL) + ωµ̃AR + b(1− Φ(αU)).

By setting σ1 = 0 and σ2 = 0 in eq. (7), the variance of XBAR is given by

(σBAR)2 = ω(σ̃AR)2 + ω(µ̃AR − µBAR)2 +Φ(αL)(b+ µBAR)2 + (1− Φ(αU))(b− µBAR)2,

and the covariance between XBAR and other hidden states X · are

λ = (ωκ)1/2,

cov(XBAR, X ·) = λcov(X̃AR, X ·).

4.3 BDLM-BAR formulation

This section outlines the integration of the BAR component within the BDLM framework. The model
matrices for the BAR component are

xt =

[
xAR

xBAR

]
,A =

[
ϕAR 0
0 0

]
,F =

[
0

1

]⊺
,Q =

[
(σAR

W )2 0
0 0

]
,R = σ2

V .

The BAR approach only changes the transition model in the prediction step presented in Section 3.1
by bounding its autoregressive output using mReLU and by incorporating the bounded values to the
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predicted hidden states. Following eq. (1), the moments for the output of the transition model can be
calculated as

µ̃X
t|t−1 = AµX

t−1 =

[
ϕAR 0
0 0

] [
µAR
t−1

µBAR
t−1

]
=

[
ϕARµAR

t−1

0

]
, (10)

Σ̃
X

t|t−1 = AΣX
t−1A

⊺ +Q

=

[
ϕAR 0
0 0

] [
(σAR

t−1)
2 cov(XAR

t−1, X
BAR
t−1)

cov(XAR
t−1, X

BAR
t−1) (σBAR

t−1)
2

] [
ϕAR 0
0 0

]
+

[
(σAR

W )2 0
0 0

]
=

[
(ϕAR)2(σAR

t−1)
2 + (σAR

W )2 0
0 0

]
.

(11)

Note that XBAR is not involved in the transition model as indicated by the components of the
A matrix that are all 0 except in the AR position [A]1,1. On the other hand, XBAR is the only
observable hidden state. This is because the BAR method constrains a variable that is analogous to the
autoregressive component without modifying the original variable, whose entire distribution remains
and is transferred through time steps. Without this procedure, the approximation errors caused by
the truncation would accumulate at each time step, leading to a monotonically increasing bias and
monotonically decreasing variance [38].

The moments of XBAR
t as well as its covariance with respect to XAR

t are computed by bounding the
AR hidden state using the mReLU function defined in eq. (8). They are then added to eq. (10) and
eq. (11) to obtain the predicted hidden states with constrained residuals, whose moments conditional
on all the observations up to t− 1 are defined by

µX
t|t−1 = µ̃X

t|t−1 +

[
0

µBAR
t|t−1

]
=

[
ϕARµAR

t−1

µBAR
t|t−1

]
,

ΣX
t|t−1 = Σ̃

X

t|t−1 +

[
0 cov(XBAR

t , XAR
t )

cov(XBAR
t , XAR

t ) (σBAR
t|t−1)

2

]
=

[
(ϕAR)2(σAR

t−1)
2 + (σAR

W )2 cov(XBAR
t , XAR

t )
cov(XBAR

t , XAR
t ) (σBAR

t|t−1)
2

]
,

and which are then passed to the observation model described by eq. (2), and finally to the update
step following eq. (3) and eq. (4) as presented in Section 3.1. The process of integrating the BAR
component in the BDLM framework is illustrated by the flowchart in Figure 6 with the modified
steps highlighted by dashed lines.

X ·
t−1

XAR
t−1

XBAR
t−1

Transition model
X ·

t|t−1

XAR
t|t−1

X ·
t|t

XAR
t|t

XBAR
t|t

yt

Yt|t−1

mReLU

t = t+ 1

Compare

X ·
t|t−1

XAR
t|t−1

XBAR
t|t−1

eq.(1)

Observation model

eq.(2)

Update

eq.(3) and eq.(4)

Figure 6: Integration process of the BAR component in the BDLM framework. The modifications
made by the BAR method are highlighted by dashed lines.

5 Experiments

The BDLM-BAR coupled with a Switching Kalman Filter (SKF) [39] is tested in comparison with
the existing BDLM-AR framework on three distinct case studies: (1) a synthetic time series with a
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fixed anomaly in Section 5.1, (2) a real time series measured on a bridge with synthetic anomalies
having three different magnitudes in Section 5.2, and (3) in Section 5.3 eight independent time series
recorded on a dam with synthetic anomalies having varying magnitudes, shapes and locations.

5.1 Synthetic data

A synthetic time series is generated using a BDLM comprising a local level (LL) and an autoregressive
(AR) component, covering the period from 2020/01/01 to 2021/01/01 with a daily time-step length.
The model matrices for this experiment can be found in Appendix A.2.1. A constant-speed anomaly
is introduced starting at the midpoint (2020/07/01) of the time series as depicted in Figure 7.

20-01 20-04 20-07 20-10 21-01
9

11

13

Time [YY-MM]

O
b
s
.
[U

ni
t]

Figure 7: A one-year synthetic time series with daily time-step length generated with LL and AR
components. A constant-speed anomaly starts at the midpoint 2020/07/01.

A SKF involving a stationary and a trend-stationary regime is used to detect the simulated anomaly.
The stationary regime is modelled using LL+ AR/BAR components, while the trend-stationary regime
is modelled by a local trend (LT) instead of a local level component. The parameter γ in the BAR
component is set to 2. The model matrices for these regimes are summarized in Appendix A.2.2 and
A.2.3. The probability of detecting the synthetic anomaly, denoted as Pr(anm.), is represented by the
probability of the trend-stationary regime.
Figure 8 compares the estimations for the BDLM-AR and the BDLM-BAR with the true values. In
the first plot from Figure 8a, the estimations of the AR hidden state gradually drift away from the true
values after the introduction of the anomaly, implying that the changes in the trend caused by the
anomaly are wrongfully captured by the residual component, which was initially intended to only
model a stationary error-process. This drift results in delays in the anomaly detection quantified by
Pr(anm.), as well as inaccuracies in the hidden state estimation for the LL and LT components.
On the other hand, the BAR approach in Figure 8b prevents the drift and is capable to quickly catch
up with the changes in the LL and LT hidden states. Additionally, its predicted responses y after the
anomaly is introduced exhibit a smaller variance compared to those from the BDLM-AR model. As a
result, the BDLM-BAR model detects the anomaly with Pr(anm.) ≥ 0.5 almost two months earlier
than the BDLM-AR. This delay in the detection time can be further reduced for the BDLM-BAR
model by imposing a smaller γ parameter to further constrain the AR hidden state, which will be
discussed in Section 5.3.

5.2 Bridge data

The time series studied in this section comprise measurements of elongation (E) and air temperature
(T) obtained from a bridge. Both raw time series have a time-step length of 10 minutes, which is
aggregated during pre-processing to 3.5 days as demonstrated in Figure 9. Elongation measure-
ments exhibit a dependency on the air temperature, which can be accounted for in the observation
model described in Section 3.1. The two time series, covering the period between 2019/08/16 and
2021/11/16, are considered to be stationary, given that no structural interventions or anomalies were
recorded during this period, and the temperature remained stable. Three constant-speed anomalies
with magnitude of −0.5, −0.1 and −0.025 mm/yr are introduced on the elongation measurements
starting at the timestamp 2021/01/22 as depicted by the true values for the xLT hidden state in
Figure 10.

The BDLM components for the temperature measurement are {LLT + PDT + ART} for both the
stationary and trend-stationary regimes because there is no regime switch in the temperature. A
local level component (LLT) is used to describe the constant level of the temperature, a periodic
component (PDT) is used for modelling its yearly periodic pattern, and an autoregressive component
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Figure 8: Hidden states estimation on the synthetic data with the standard AR and BAR in comparing
with the true values.
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Figure 9: Elongation and temperature measurement on a bridge, where time steps are aggregated
from 10 minutes to 3.5 days.
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Figure 10: Comparison of hidden states between BDLM-AR and BDLM-BAR under different
anomaly magnitudes in a time series measured on a bridge. Large anomaly indicates an LT anomaly
of −0.5 mm/year; the medium is −0.1 mm/year; and the small is −0.025 mm/year. The residual
components (res.) include the AR and the BAR components.

(AR) is used to describe the model’s errors. For the elongation measurement, {LLE + AR/BAR
E} and

{LTE + AR/BAR
E} components are employed for the stationary and trend-stationary regimes without

using a periodic component, which is accounted for through the dependency upon the temperature
measurements. The constant level of the elongation for the stationary regime is described by a local
level component (LLE), while its constant speed for the trend-stationary regime is modelled by a local
trend component (LTE) with the model errors captured by either an AR or a BAR component. The
parameter γ in the BAR component is set to 2. All model matrices are listed in Appendix A.3.
Figure 10 compares the results for the BDLM-BAR and the BDLM-AR models on the elongation time
series with synthetic anomalies. When the anomaly is large enough to be seen visually as shown in
Figure 10a, both models yield similar estimations with a slight delay in the anomaly detection. Yet, the
BDLM-BAR outperforms the BDLM-AR in capturing the shift in trend xLT without overestimation
at the beginning when there is a regime switch. As the anomaly magnitude decreases, it becomes
almost impossible to identify it visually as shown in Figure 10b-c, and it takes a longer time for both
models to detect it. BDLM-AR detects the second anomaly of −0.1 mm/yr after a delay of more than
five months (on 2021/07/09), while BDLM-BAR detects it after only two (on 2021/03/23). For this
anomaly, the BDLM-AR model displays a constant trend in the estimations of the residual component
(res.) and fails to quickly capture the changes in xLL and xLT after the anomaly develops, which is
consistent with the findings from Section 5.1. The smallest anomaly magnitude that BDLM-BAR can
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detect is −0.025 mm/yr, as shown in Figure 10c, where the BDLM-BAR model correctly estimates
the xLT hidden state after detecting the anomaly while maintaining a stationary residual process. In
contrast, for the third case, the BDLM-AR is unable to detect or identify the changes in the hidden
states.

5.3 Dam data

This section presents a probabilistic study of the BAR’s performance under different γ values (BAR-γ)
on eight time series measured on a dam. When γ is too small, false alarms may occur due to the strict
constraint, when it is too large, BAR is similar to AR and is capable to capture trends. To estimate
BAR’s performance, not only we must consider the anomaly detectability but also the false alarm rate.
However, the ground truth of whether anomalies are present is typically unknown for real time series,
making it impossible to categorize an alarm as true or false. To overcome this issue, we generate
synthetic time series using BDLM in Section 5.3.1, on which synthetic LA, LT and LL anomalies are
overlaid. In Section 5.3.2, the performance of BAR-γ is verified on these synthetic time series with
simulated anomalies and validated on the real time series in Section 5.3.3.

5.3.1 Overview of datasets and synthetic time series

The datasets used in this study consist of eight time series, each representing either automatic or
manual measurements of crack openings or displacements on a dam. The first time series A01C
spanning from 1998-01 to 2005-12 with a daily time interval measures the cracking openings on a
dam. It demonstrates an increasing trend and yearly periodicity. The second time series namely A16D
measures the displacements, and spans from 2011-11 to 2022-12 with a half-day time interval. It
shows a decreasing trend and yearly periodicity. The M08C time series measuring the crack openings
has a time interval of 91 days. It shows a decreasing trend between 2013-12 and 2022-12. The crack
openings, measured in M09C time series with a 49-day time interval, increase between 1996-04 and
2007-03. The displacements, measured in M11D time series with a 28-day time interval, increase
between 2007-02 and 2022-12. The M12D displacement time series has a 63-day time interval and
a decreasing trend from 2011-11 to 2022-12. The M13D displacement time series decreases from
2009-01 to 2020-07, having a 35-day time interval. The M14D displacement time series is measured
every 41 days, and increases between 1991-06 and 1999-08. Yearly periodicity and missing data are
observed throughout all the time series as depicted in Appendix B. Table 2 provides a summary of
the measurement type, start and end times, acquisition period, number of observations, and BDLM
model components employed for each time series. Among them, results for M08C are showcased in
the following sections, while those for the other time series are documented in Appendices C, D,
and E.

Table 2: Summary of eight time series (TS) measured on a dam with respect to time-series name,
measurement type, start & end time, acquisition period, number of observation and BDLM model
components. Crack openings and displacement are notated as C.O. and Disp. Stationary/ non-
stationary regimes are referred to as S./ N.S. The abbreviation of res. includes AR or BAR residual
component. The emphasized row is the TS example showcased in the following sections.

Name Type Start time End time Period [day] #obs. Components (S./ N.S.)

A01C C.O. 1998-01-29 2005-12-29 1 2789 LT/LA+ KR (10)+ res.
A16D Disp. 2011-11-17 2022-12-07 0.5 8154 LT/LA+ KR (10)+ res.
M08C C.O. 2013-12-09 2022-12-06 91 39 LT/LA+ PD+ res.
M09C C.O. 1996-04-11 2007-03-06 49 56 LT/LA+ PD+ res.
M11D Disp. 2007-02-14 2022-12-06 28 149 LT/LA+ PD+ res.
M12D Disp. 2011-11-17 2022-12-07 63 95 LT/LA+ PD+ res.
M13D Disp. 2009-01-14 2020-07-28 35 122 LT/LA+ PD+ res.
M14D Disp. 1991-06-10 1999-08-17 41 74 LT/LA+ PD+ res.

Figure 11 illustrates the time series M08C in black, along with 100 similar synthetic time series in
colours. The real observations range between −3.4 mm and −2.2 mm exhibiting an annual periodic
pattern and a decreasing trend. The synthetic time series are generated using a BDLM with optimized
parameters, whose matrices are listed in Appendix A.4. In Section 5.3.2 where we use the synthetic
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time series to verify the performance of BAR-γ, we use a unified time span of 10 years instead of the
original ones.
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Figure 11: 100 synthetic time series (coloured) similar to a real time series (black) measured on a
dam.

5.3.2 Verification of BAR-γ performance

The detection time of anomalies may vary according to their starting times, even when they have
identical magnitudes. To account for this factor, for each anomaly magnitude and γ value, the BAR-γ
model is run on 100 synthetic time series with anomalies introduced at random timestamps within
the first five years. An anomaly is considered as detected when the probability of the non-stationary
regime is higher than 0.5 within a detection window ldw = 5 years, so that even if an anomaly is
imposed at the end of the first five years, there is enough time to detect it in the second half. An
alarm triggered on a time series where there is no simulated anomaly is considered as a false alarm.
Whenever a false alarm is triggered, the analysis on this time series is terminated so that the maximum
number of false alarms for each time series is one.
Figure 12 evaluates BAR-γ and AR using four metrics: (1) the average detection time ∆t over the 100
synthetic time series; (2) the detection probability (Pr) which quantifies, out of the 100 synthetic
time series, how many have correctly triggered alarms; (3) the number of false alarms per 10 years;
(4) the F1t metric which aggregates the anomaly detectability, detection time, as well as false alarm
rate as described in Section 2.2. In Figure 12, the BAR and AR methods are verified on the LA, LT, and
LL anomalies presented in Section 2.1. The optimal parameter γ∗ for detecting the LA anomalies
using BAR is found to be 0.3 according to its highest F1t score of 0.742, where the expected number
of false alarms is 3.5 in every ten years. Compared to AR, BAR-0.3 exhibits a better performance with
a shorter detection time and higher detection probability, as shown in the first and the second rows of
plots by dark blue and yellow colours, respectively. The white regions in the ∆t subfigures indicate
non-detectable anomalies and the dark red regions mark the negative detection time caused by false
alarms (FA). By increasing γ, i.e., relaxing the constraints imposed on the AR hidden state, the BAR
eventually converges to an AR component with both methods having a similar performance in the
four tested metrics.
Similar convergences are observed in the detection of LT and LL anomalies, where BAR-0.4 and
BAR-0.5 perform best with expected F1t scores of 0.796 and 0.927, respectively. When a LL anomaly
occurs, both BDLM-BAR and BDLM-AR models either detect it with little delay or fail to trigger
an alarm altogether. This is because LL anomalies only shift the hidden state xLL at one timestamp
after which they switch back to the stationary regime, in contrast to the accumulated changes with
the LT or LA anomalies. The additional verification on the other seven time series are provided in
Appendix C.

The expected values and standard deviations of the F1t scores for BAR-γ∗ and AR verified on the
synthetic datasets with LA anomalies are summarized in Figure 13 for the eight real time series.
Similar plots for LT and LL anomalies are included in Appendix D. The F1t scores for the three types
of anomalies, as well as the optimal parameter γ∗ and the false alarm rate under each γ∗, are listed
in Table 3. Throughout a better tuning of the γ parameter, BAR significantly outperforms AR with
higher expected F1t scores and lower standard deviations. F1t scores of BAR that are 80% higher
than those of AR are highlighted in Table 3.
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Figure 12: Performance of the BAR method under different γ on synthetic time series with three
types of anomalies in comparison with the AR. Evaluation metrics are detection time (∆t), detection
probability (Pr), false alarm number (#FA) per ten years and F1t score. The white regions on the
top three subfigures indicate the undetectable anomalies and their dark red regions represent all the
negative detection time caused by the false alarms (FA). False alarm rate is drawn in logarithmic
scale. A higher value of F1t indicates better performance. Repetition N = 100.
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Figure 13: The F1t scores for BAR-γ∗ and AR verified on the synthetic datasets similar to the eight
real time series measured on a dam. LA anomalies are overlaid on the synthetic time series. Additional
F1t scores with respect to the LT and LL anomalies are shown in Appendix D.
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Table 3: Summary of AR v.s. BAR-γ∗ performance. γ∗ is the optimal parameter corresponding to the
highest F1t in the BAR method. Bolded numbers indicate the F1t scores improved by more than
80% in BAR compared to AR.

AR BAR-γ∗ (ours)
Anm. TS E(F1t) σ(F1t) E(F1t) σ(F1t) γ∗ #FA/10 yrs

LA A01C 0.513 0.219 0.711 0.073 2.0 1.533
A16D 0.031 0.026 0.700 0.029 1.2 6.749
M08C 0.352 0.154 0.742 0.045 0.3 3.466
M09C 0.334 0.173 0.701 0.048 0.4 3.009
M11D 0.165 0.119 0.623 0.071 0.5 1.853
M12D 0.208 0.130 0.659 0.062 0.4 1.865
M13D 0.315 0.178 0.660 0.040 0.4 5.635
M14D 0.385 0.184 0.655 0.103 0.5 1.032

LT A01C 0.302 0.211 0.659 0.140 2.2 0.661
A16D N/A N/A 0.686 0.044 1.2 6.083
M08C 0.409 0.220 0.796 0.122 0.4 1.207
M09C 0.194 0.137 0.643 0.038 0.4 3.739
M11D 0.380 0.202 0.740 0.102 0.5 1.782
M12D 0.429 0.224 0.771 0.076 0.4 1.585
M13D 0.443 0.255 0.772 0.108 0.5 1.382
M14D 0.402 0.244 0.712 0.127 0.5 1.376

LL A01C 0.466 0.291 0.536 0.226 2.4 0.250
A16D 0.901 0.213 0.898 0.214 4.0 0.000
M08C 0.750 0.312 0.927 0.055 0.5 0.298
M09C 0.792 0.304 0.886 0.137 0.5 0.801
M11D 0.692 0.358 0.932 0.103 0.8 0.038
M12D 0.795 0.299 0.897 0.137 0.5 0.494
M13D 0.791 0.318 0.862 0.075 0.5 1.403
M14D 0.694 0.355 0.859 0.063 0.5 1.226

5.3.3 Validation on real data with synthetic anomalies

This section presents a validation experiment on the real time series M08C with LA synthetic anomalies
to confirm the verification results obtained in Section 5.3.2. Additional validation results for other
time series and anomaly types are included in Appendix E. The detection window is set to be half
the number of data points. LA anomalies of magnitudes varying between 10−5 and 10−3 mm/yr2 are
randomly added on the first half of the time series, while the second half is reserved as the detection
window. In order to validate the entire time series, the same process is also repeated on a copy of the
time series for which the time direction is flipped. Here, γ is set to 0.4 instead of the optimal value of
0.3 as suggested by the highest F1t score in order to reduce the false alarm rate to the target value of
one per ten years.
Figure 14 shows the anomaly detection time and the probability of regime switch achieved by the
BAR-0.4 model in comparison with the AR model. In the second plot from Figure 14, the faded
circles provide an overview of the anomaly detection time for each real time series with anomalies
introduced at a random location, while the solid lines and and the shaded regions represent their
means and standard deviations for each anomaly magnitude. The BAR-0.4 consistently exhibits a
higher detection probability than the AR until they both converge to one, at which point it has the
potential to detect anomalies twice as fast as the AR. The smallest detectable anomaly magnitude of
BAR-0.4 is around 2× 10−5 mm/yr2 compared to 7× 10−5 for the AR. These results are consistent
with those in Figure 12. Take the range of anomaly magnitude between 2× 10−4 and 4× 10−4 as
an example, the results in Figure 12 indicate that the detection time of BAR-0.4 lies in the interval
between 1 and 2 years with a probability close to one, while the AR has a detection time ranging from
2 to 3.5 years with a probability between 0.6 and 0.8. Similar ranges are observed in Figure 14 as
well, indicating that the model evaluation on the synthetic time series in Section 5.3.2 is an effective
representation of the models’ performance on the real time series.
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Figure 14: Validation results with regard to the anomaly detection probability (Pr) and time (∆t)
on the real time series M08C with LA anomalies of different magnitudes by using BAR-0.4 and AR
components. 0.4 is the selected value for the hyper-parameter γ in BAR. Additional validation results
for other time series and anomaly types are reported in Appendix E.

6 Conclusions

This study presents a new approach within the existing BDLM framework for improving anomaly
detection for SHM time series. The method proposes a novel residual component consisting of a
constrained autoregressive hidden state. The performance of this new approach is evaluated using
synthetic as well as bridge and dam datasets which consider a stochastic performance evaluation
scheme involving three common types of anomalies encountered in infrastructure measurements. The
experimental results demonstrate that the bounded autoregressive model surpasses the performance
of the existing autoregressive model with (1) an improved accuracy at estimating hidden states, (2)
an early detection of anomalies, (3) a capacity to detect smaller anomaly magnitudes, and (4) the
ability to control the tradeoff between the anomaly detectability and the false alarm rate. The anomaly
detectability, the detection time, and the false alarm rate are all integrated into an F1t evaluation
metric proposed in this paper. Overall, these findings highlight the effectiveness of the proposed
method in enhancing the detection of anomalies in infrastructure.
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A Appendix: BDLM matrices and parameters

This appendix provides all the model matrices and their parameters used in the three experiments
shown in Section 5.

A.1 Component matrices and parameters overview

The baseline components in BDLM are LL, LT and LA. The matrices for LL component are

ALL = 1,FLL = 1,QLL =
(
σLL
w

)2
.

The matrices for LT are

ALT =

[
1 ∆t
0 1

]
,FLT =

[
1
0

]⊺
,QLT =

(
σLT
w

)2 [∆t3

3
∆t2

2
∆t2

2 ∆t

]
.

The matrices for LA are

ALA =

1 ∆t ∆t2

2
0 1 ∆t
0 0 1

 ,FLA =

[
1
0
0

]⊺

,QLA =
(
σLA
w

)2 ∆t2

20
∆t4

8
∆t3

6
∆t4

8
∆t3

3
∆t2

2
∆t3

6
∆t2

2 ∆t

 .

The periodic components in BDLM are harmonic periodic component (PD) and kernel regressive
component (KR). The matrices for the PD component are

APD =

[
cosω sinω
sinω cosω

]
,FPD =

[
1
0

]⊺
,QPD =

(
σPD
w

)2 [1 0
0 1

]
,

where ω = 2π·∆t
p and p is the period.

The matrices for the KR component with 10 control points are

AKR =

[
0 k̃

KR

t
0 I10×10

]
,FKR =

[
1

010×1

]⊺
,QKR =

[(
σKR
w,0

)2
0

0
(
σKR
w,1

)2 · I10×10

]
,

where k̃
KR

t =
[
k̃KRt,1, k̃

KR
t,2, ..., k̃

KR
t,10

]
is the normalized kernel depending on the time t.

The matrices for the residual components, AR and BAR, are presented in Section 3.2.1 and 4.3,
respectively.

The matrices of baseline components are adapted in SKF. The A and F matrices for the the stationary
model need to be compatible with the non-stationary model matrices by having the same size. The Q
matrix in SKF incorporates the uncertainty of regimes switching. From the stationary regime to the
trend-stationary regime, the compatible matrices, A and F, for stationary regime are

ALcT =

[
1 0
0 0

]
,FLcT =

[
1
0

]⊺
.

The Q matrices differ in each regime switch so that

QLL(LL) =

[
(σLL

w )
2

0
0 0

]
, QLT(LT) = QLT,

QLL(LT) =

[
(σLT

w )
2 ∆t3

3 0

0 (σLTT
w )

2
∆t

]
, QLT(LL) =

[
(σLL

w )
2

0
0 0

]
.

From the LT stationary regime to the LA non-stationary regime, the compatible matrices for LT
stationary regime are

ATcA =

[
1 ∆t 0
0 1 0
0 0 0

]
,FTcA =

[
1
0
0

]⊺

.
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The Q matrices for regime switching are

QLT(LT) =

∆t3

3
∆t2

2 0
∆t2

2 ∆t 0
0 0 0

 , QLA(LA) = QLA,

QLT(LA) =

(σLA
w )

2 ∆t2

20 0 0

0 (σLA
w )

2 ∆t3

3 0

0 0 (σLTT
w )

2
∆t

 , QLA(LT) =

(σLT
w )

2 ∆t3

3 0 0

0 (σLA
w )

2
∆t 0

0 0 0

 .

For all the experiments in this paper, σLL
w , σLT

w and σLA
w are set to be 0. The process error’s standard

deviations for the periodic components, σPD
w and σKR

w , are set to 0 and their periods p are 365.24. The
uncertainties in regime switching, (σLTT

w )
2
∆t, is fixed to 10−6. The remaining model parameters are

kernel width ℓKR for kernel regressive component, ϕAR and σAR for residual components, observation
error σv, z11 and z22 for SKF transition matrix. Among them, ℓKR, ϕAR and σAR are optimized by
Newton-Raphson gradient descend. Other parameters are decided based on engineering heuristics.

A.2 Synthetic data

This appendix provides a summary of the model matrices and parameters used in the synthetic time
series generation and the SKF analysis.

A.2.1 Synthetic data generation

In the toy problem, the synthetic data generation employs LL and AR components. After the synthetic
time series are generated, a LT anomaly is applied on top of it. Model matrices to generate synthetic
data (GS) are

AGS = blockdiag
(
ALL,AAR

)
FGS =

[
FLL,FAR

]
QGS = blockdiag

(
QLL,QAR

)
.

Parameters values for synthetic data generation are

PGS = {ϕAR, σAR, σv} = {0.9, 0.2, 0.001}.

A.2.2 Stationary model matrices in SKF

The stationary model matrices for the synthetic time series, referred to as SS, are

ASS = blockdiag
(
ALcT,AAR/BAR

)
FSS =

[
FLcT,FAR/BAR

]
QSS,LL(LL) = blockdiag

(
QLL(LL),QAR/BAR

)
QSS,LT(LL) = blockdiag

(
QLT(LL),QAR/BAR

)
.

A.2.3 Non-stationary model matrices in SKF

The non-stationary model matrices for the synthetic time series, referred to as NS, are

ANS = blockdiag
(
ALT,AAR/BAR

)
FNS =

[
FLT,FAR/BAR

]
QNS,LT(LT) = blockdiag

(
QLT(LT),QAR/BAR

)
QNS,LL(LT) = blockdiag

(
QLL(LT),QAR/BAR

)
.

Parameters values for both regimes in SKF on synthetic time series are

PS = {ϕAR, σAR, σv, z
11, z22} = {0.9, 0.2, 0.001, 0.999999, 0.999999}.

21



Xin, Z., and Goulet, J-A. (Preprint 2024). Enhancing Structural Anomaly Detection Using a
Bounded Autoregressive Component. Mechanical Systems and Signal Processing.

A.3 Bridge data

This appendix presents the model matrices and their parameters used in the SKF analysis for the
bridge dataset including measurements of air temperature (T) and elongation (E).

A.3.1 Stationary model matrices in SKF

The stationary model matrices for the bridge time series, referred to as SB, are

ASB = blockdiag

 Temperature︷ ︸︸ ︷
ALL,T,APD,TAAR,T,

Elongation︷ ︸︸ ︷
ALcT,E,AAR/BAR,E


QSB,LL(LL) = blockdiag

 Temperature︷ ︸︸ ︷
QLL,T,QPD,TQAR,T,

Elongation︷ ︸︸ ︷
QLL(LL),E,QAR/BAR,E


QSB,LT(LL) = blockdiag

 Temperature︷ ︸︸ ︷
QLL,T,QPD,TQAR,T,

Elongation︷ ︸︸ ︷
QLT(LL),E,QAR/BAR,E

 .

The observation matrix F models the dependency between temperature and elongation. For the
standard AR model, the observation matrix is

FSB,AR =

 LL,T︷︸︸︷
1

PD,T︷ ︸︸ ︷
1 0

AR,T︷︸︸︷
1

LcT,E︷︸︸︷
0 0

AR,E︷︸︸︷
0

0 βPD,E|T 0 βAR,E|T 1 0 1

 .

For BAR, the observation matrix is

FSB,BAR =

 LL,T︷︸︸︷
1

PD,T︷ ︸︸ ︷
1 0

AR,T︷︸︸︷
1

LcT,E︷︸︸︷
0 0

BAR,E︷︸︸︷
0 0

0 βPD,E|T 0 βAR,E|T 1 0 0 1

 ,

where the first row corresponds to the temperature observation and the second corresponds to the
elongation. β is the dependency ratio between the elongation hidden states and the temperature
hidden states.

A.3.2 Non-stationary model matrices in SKF

The non-stationary model matrices for the bridge time series, referred to as NB, are

ANB = blockdiag

 Temperature︷ ︸︸ ︷
ALL,T,APD,TAAR,T,

Elongation︷ ︸︸ ︷
ALT,E,AAR/BAR,E


QNB,LT(LT) = blockdiag

 Temperature︷ ︸︸ ︷
QLL,T,QPD,TQAR,T,

Elongation︷ ︸︸ ︷
QLT(LT),E,QAR/BAR,E


QNB,LL(LT) = blockdiag

 Temperature︷ ︸︸ ︷
QLL,T,QPD,TQAR,T,

Elongation︷ ︸︸ ︷
QLL(LT),E,QAR/BAR,E

 .

The observation matrix FNB is identical as FSB for both methods.
Parameters values for both regimes in SKF on bridge time series are

PB =


Temperature︷ ︸︸ ︷

ϕAR,T, σAR,T, σT
v ,

Elongation︷ ︸︸ ︷
ϕAR,E, σAR,E, σE

v , β
PD,E|T, βAR,E|T, z11, z22


= {0.36981, 3.3065, 0.1, 0.74033, 0.0040317, 0.001, 0.019987,

0.019689, 0.999999999, 0.999999999}.
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A.4 Dam data

This appendix presents the model matrices and their parameters used in the SKF analysis for the dam
dataset consisting of eight time series.

A.4.1 Stationary model matrices in SKF

For automatically collected dam time series, the stationary model matrices, referred to as SDA, are

ASDA = blockdiag
(
ATcA,AKR,AAR/BAR

)
FSDA =

[
FTcA,FKR,FAR/BAR

]
QSDA,LT(LT) = blockdiag

(
QLT(LT),QKR,QAR/BAR

)
QSDA,LA(LT) = blockdiag

(
QLA(LT),QKR,QAR/BAR

)
.

For manually collected dam time series, the stationary model matrices, referred to as SDM, are

ASDM = blockdiag
(
ATcA,APD,AAR/BAR

)
FSDM =

[
FTcA,FPD,FAR/BAR

]
QSDM,LT(LT) = blockdiag

(
QLT(LT),QPD,QAR/BAR

)
QSDM,LA(LT) = blockdiag

(
QLA(LT),QPD,QAR/BAR

)
.

A.4.2 Non-stationary model matrices in SKF

For automatically collected dam time series, the non-stationary model matrices, referred to as NDA,
are

ANDA = blockdiag
(
ALA,AKR,AAR/BAR

)
FNDA =

[
FLA,FKR,FAR/BAR

]
QNDA,LA(LA) = blockdiag

(
QLA(LA),QKR,QAR/BAR

)
QNDA,LT(LA) = blockdiag

(
QLT(LA),QKR,QAR/BAR

)
.

For manually collected dam time series, the non-stationary model matrices (NDM) are

ANDM = blockdiag
(
ALA,APD,AAR/BAR

)
FNDM =

[
FLA,FPD,FAR/BAR

]
QNDM,LA(LA) = blockdiag

(
QLA(LA),QPD,QAR/BAR

)
QNDM,LT(LA) = blockdiag

(
QLT(LA),QPD,QAR/BAR

)
.

Parameters values for both regimes in SKF on dam time series series are

PA01C = {ℓKR, ϕAR, σAR, σv, z
11, z22} = {0.98461, 0.91225, 0.0060635, 0.001, 0.99999, 0.99999}

PA16D = {ℓKR, ϕAR, σAR, σv, z
11, z22} = {0.85519, 0.99412, 0.033654, 0.001, 0.999999, 0.999999}

PM08C = {ϕAR, σAR, σv, z
11, z22} = {0.34319, 0.036042, 0.001, 0.99999, 0.99999}

PM09C = {ϕAR, σAR, σv, z
11, z22} = {0.088333, 0.091778, 0.001, 0.99999, 0.99999}

PM11D = {ϕAR, σAR, σv, z
11, z22} = {0.39252, 0.23484, 0.001, 0.999999, 0.999999}

PM12D = {ϕAR, σAR, σv, z
11, z22} = {0.084549, 0.4741, 0.001, 0.999999, 0.999999}

PM13D = {ϕAR, σAR, σv, z
11, z22} = {0.32141, 0.39865, 0.001, 0.99999, 0.99999}

PM14D = {ϕAR, σAR, σv, z
11, z22} = {0.16912, 0.34072, 0.001, 0.99999, 0.99999}.
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B Appendix: BDLM matrices and parameters

This appendix provides the plots of the eight dam datasets used in the experiments.
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Figure 15: Eight time series measuring the cracking opening (C.O.) and displacement (Disp.) on a
dam. They present missing data, different data acquisition frequencies, trends and periodic patterns.
All the time series are assumed to be anomaly-free given that no structural deterioration was observed
during these periods.
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C Appendix: BAR-γ performance on synthetic time series in dam dataset

This appendix presents the BAR and the AR performance under different γ values evaluated on the
synthetic datasets that are similar to seven time series measured on a dam. Three types of anomalies
are introduced in the synthetic time series.
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Figure 16: BAR-γ and AR performance on synthetic time series A01C. Repetition N = 50
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Figure 17: BAR-γ and AR performance on synthetic time series A16D. Repetition N = 50
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Figure 18: BAR-γ and AR performance on synthetic time series M09C. Repetition N = 100
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Figure 19: BAR-γ and AR performance on synthetic time series M11D. Repetition N = 100
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Figure 20: BAR-γ and AR performance on synthetic time series M12D. Repetition N = 100
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Figure 21: BAR-γ and AR performance on synthetic time series M13D. Repetition N = 100
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Figure 22: BAR-γ and AR performance onsynthetic time series M14D. Repetition N = 100.
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D Appendix: F1t score summary on 8 dam time series

This appendix presents the F1t scores for BAR and AR verified on the synthetic time series involving
LT and LL anomalies.
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Figure 23: F1t scores for BAR and AR verified on the synthetic datasets similar to eight real time
series. LT anomalies are overlaid on the synthetic time series.
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Figure 24: F1t scores for BAR and AR verified on the synthetic datasets similar to eight real time
series. LL anomalies are overlaid on the synthetic time series.

E Appendix: BAR-γ performance on real dam dataset

This appendix presents the BAR performance with selected γ on the eight real time series measured on
a dam involving three types of anomalies. For the plots of Pr, the higher the curve, the better, while
for the plots of ∆t, the lower and the more to the left, the better. Repetition is 30 for the automatically
collected time series and 100 for the manually collected ones.
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Figure 25: From top to bottom, each row shows the performance of BAR-γ and AR on eight real time
series of A01C (γ = 2.8), A16D (γ = 2.0), M08C (γ = 0.4), M09C (γ = 0.4), M11D (γ = 0.6),
M12D (γ = 0.7), M13D (γ = 0.9) and M14D (γ = 0.5) involving three types of anomalies.
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