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a b s t r a c t

Long short-term memory (LSTM) neural networks and state-space models (SSMs) are
effective tools for time series forecasting. Coupling these methods to exploit their
advantages is not a trivial task because their respective inference procedures rely on
different mechanisms. In this paper, we present formulations that allow for analytically
tractable inference in Bayesian LSTMs and the probabilistic coupling between Bayesian
LSTMs and SSMs. This is enabled by using analytical Gaussian inference as a single
mechanism for inferring both the LSTM’s parameters as well as the posterior for the
SSM’s hidden states. We show through several experimental comparisons that the
resulting hybrid model retains the interpretability feature of SSMs, while exploiting the
ability of LSTMs to learn complex seasonal patterns with minimal manual setups.

© 2024 The Author(s). Published by Elsevier B.V. on behalf of International Institute of
Forecasters. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Time series forecasting plays a key role in various
ndustries such as finance, transportation, energy, infras-
ructure and healthcare. Recurrent neural networks
RNNs) (Rumelhart et al., 1986) and especially the long
hort-term memory (LSTM) architecture (Hochreiter &
chmidhuber, 1997) have been shown to be effective tools
or time series forecasting problems (Hewamalage et al.,
021). The main strength of neural networks (NNs) is
heir ability to automatically identify complex patterns
hile requiring minimal manual setups (Januschowski
t al., 2020). Nevertheless, without making assumptions
bout the data, the results from NNs are typically difficult
o interpret (Rangapuram et al., 2018). By contrast, state-
pace models (SSMs) (Durbin & Koopman, 2001) provide a
robabilistic framework for decomposing time series into
nterpretable patterns such as level, trend and seasonality.

In this paper, we propose a new method that allows
oupling Bayesian LSTMs with SSMs to obtain a hybrid
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model that retains the interpretability feature of SSMs,
while exploiting the ability of LSTMs to learn complex
patterns automatically. Coupling these methods is not
a trivial task because their respective inference proce-
dures rely on different mechanisms. SSMs are probabilis-
tic models which rely on Bayesian inference, whereas
LSTMs typically optimize their parameters using back-
propagation (Rumelhart et al., 1986) and gradient de-
scent (GD). As a result, one needs to choose between
the two mechanisms when coupling these models. Typ-
ically, existing hybrid models including those proposed
by Smyl (2020) and Rangapuram et al. (2018) have relied
on backpropagation and GD. In this paper, we explore the
probabilistic coupling between LSTMs and SSMs, while
using Bayesian inference for inferring both the LSTM’s
parameters as well as the posterior for SSM’s hidden
states.

Recently, the Tractable Approximate Gaussian Infer-
ence (TAGI) method (Goulet et al., 2021) has allowed
analytical Bayesian inference in neural networks. The per-
Mneural networks and state-spacemodels throughanalytically tractable
ijforecast.2024.04.002.

formance of TAGI has been demonstrated on feedforward
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neural networks (FNNs) (Goulet et al., 2021), convolu-
tional neural networks (CNNs), generative adversarial net-
works (GANs) (Nguyen & Goulet, 2021), and reinforce-
ment learning (RL) (Nguyen & Goulet, 2022), yet it has
never been tested for RNNs due to the lack of a mathe-
matical framework to do so. In this paper, we present the
mathematical formulations which enable using the TAGI
method with the LSTM architecture for obtaining analyti-
cally the posterior mean vectors and diagonal covariance
matrices for the latent variables and model parameters.
Because all variables in this TAGI-LSTM are now Gaus-
sians, this new framework can thus be directly coupled
with SSMs.

The paper is organized as follows: Section 2 reviews
ayesian RNNs along with hybrid models which couple
NNs with SSMs. Section 3 reviews the TAGI method
long with the LSTM architecture which are the founda-
ions for this work. Section 4 first presents the mathemat-
cal formulations that have been developed to apply TAGI
o the LSTM architecture, and then introduces the prob-
bilistic coupling between TAGI-LSTM and SSMs. Finally,
ection 5 compares our methods with other benchmark
odels on both simulated and real datasets.
The following notation is used throughout the manus-

ript; x: lowercases denote variables; x: bold lowercases
enote vectors; X: italic uppercases denote random vari-
bles; X : bold italic uppercases denote vectors or matrices
f random variables; X: bold upright uppercases denote
eterministic matrices; y1:t : denote observations from 1

to t; µ and E[·]: mean vectors; Σ : covariance matrices;
t|t−1 ∼ N (xt; µX

t|t−1,Σ
X
t|t−1) ≡ N (µX

t|t−1,Σ
X
t|t−1): prior

probability density functions (PDFs) for the random vari-
ables X t given data y1:t−1 with µX

t|t−1 ≡ E[X t |y1:t−1]

and ΣX
t|t−1 ≡ cov(X t |y1:t−1); X t|t ∼ N (xt; µX

t|t ,Σ
X
t|t ):

posterior PDFs for the random variables X t given data y1:t ;
and X t|T ∼ N (xt; µX

t|T,Σ
X
t|T): smoothed estimates for the

random variables X t given data y1:T where T is the last
training time step.

2. Related works

In this section, we review Bayesian recurrent neural
networks (RNNs) along with hybrid models combining
RNNs with state-space models (SSMs).

2.1. Bayesian recurrent neural networks

Bayesian NNs place a prior distribution over the pa-
rameters f (θ), and the goal is to find the posterior dis-
tribution f (θ|x, y), where x are the input covariates and
y are the observed responses. This posterior is widely
acknowledged as being intractable for NNs (Goodfellow
et al., 2016), thus methods such as the Laplace approx-
imation (MacKay, 1992) and variational inference (VI)
(Hernandez-Lobato & Adams, 2015; Sun et al., 2017; Wu
et al., 2019) have been proposed to approximate it. Chien
and Ku (2016) developed an approximation for the Hes-
sian matrix in order to use the Laplace approximation in
Bayesian RNNs. Fortunato et al. (2019) applied the vari-
ational scheme Bayes by Backprop (Blundell et al., 2015)
2

to RNNs for estimating the parameters’ posterior distri-
bution. In a general context, VI has been shown to have a
limited scalability to large datasets (Hernandez-Lobato &
Adams, 2015). A part of the reason for it is that multiple
passes through data are required for optimization, and
there are typically more parameters in the VI-based RNNs
than the deterministic ones sharing the same architecture.

Gal and Ghahramani (2016a) have approached Bayesian
RNNs in a different way. They showed that performing
Monte Carlo dropout (MC-dropout) and weight decay in
a deterministic RNN trained with backpropagation and
GD enables providing accurate predictive uncertainties.
Creating Bayesian RNNs by applying MC-dropout to a
deterministic RNN is straightforward, yet it cannot quan-
tify the posterior for the parameters. In this approach,
dropout can either be applied to only the non-recurrent
connections (Pham et al., 2014; Zaremba et al., 2014),
to the LSTM cell states (Moon et al., 2015), or to all
of the input, output and recurrent connections (Gal &
Ghahramani, 2016a).

The abovementioned Bayesian RNN methods rely on
backpropagation and GD to optimize their parameters. In
this paper, we provide a mathematical framework that
allows applying the TAGI method to the LSTM architec-
ture for quantifying the parameters’ posterior distribution
analytically using Bayesian inference.

2.2. Hybrid models

Some studies have established hybrid models com-
bining RNNs and SSMs by using the former ones to ei-
ther model nonlinear SSM’s transition and/or observation
equations, or define the SSM’s parameters. Krishnan et al.
(2017), Zheng et al. (2017) and Zaheer et al. (2017) have
used RNNs to model the nonlinear transition of the hidden
states, allowing their models to be non-Markovian. How-
ever, the common limitation among methods using NNs
to parametrize the SSM’s nonlinear dynamic models is
that the marginal log-likelihood function is intractable so
that they rely on either Monte Carlo (MC) methods (Zheng
et al., 2017) or variational inference (Fraccaro et al., 2016;
Krishnan et al., 2017) to approximate this function in
order to update their neural network parameters. Frac-
caro et al. (2016) and Rangapuram et al. (2018) have
kept the SSM’s transition and observation models linear
which allows performing exact inference. The DeepState
method (Rangapuram et al., 2018) uses a global LSTM
to learn from the whole dataset and a local linear SSM
for each time series. The global LSTM outputs the SSM’s
time-varying parameters defining the model matrices for
each local SSM. In a different approach, Smyl (2020) used
the deterministic exponential smoothing equations as a
data processing tool for a LSTM. The level and seasonal-
ity components are estimated for each time series, and
are used to normalize and deseasonalize data on-the-fly.
However, the use of the deterministic form of exponential
smoothing leads to point estimates for the baseline level
and trend components.

The existing methods mentioned above have already
attempted to couple SSMs with the deterministic RNNs.
In this paper, we explore another direction by providing a
probabilistic coupling between Bayesian LSTMs and SSMs.
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Fig. 1. Graphical representation of a feedforward neural network. Black arrows represent the network forward connections; red and cyan arrows
represent the inference directions for the hidden states and for the parameters, respectively.
3. Background

In this section, we review the theoretical basics of
he LSTM architecture and the fundamentals of the TAGI
ethod.

.1. Long short-term memory neural network

In the context of univariate time series, dependencies
re the relations between the current observation and
he past ones. RNNs typically experience vanishing and
xploding gradients which limit their capacity to learn
ong-term dependencies (Goodfellow et al., 2016). The
ong short-term memory (LSTM) network (Hochreiter &
chmidhuber, 1997) is a special type of RNN designed to
ddress this problem. LSTMs use gating mechanisms to
utomatically select and store the dependency informa-
ion in their memory. There are two kinds of memory
n a LSTM cell, the hidden states h encode the short-
term dependency information, whereas the cell states c
store the long-term one. A LSTM cell consists in four gates
including the forget, input, output and candidate gates,
{f , i, o, c̃} ∈ RN, the cell states c ∈ RN, and the hidden
states h ∈ RN, where N is the number of hidden units.
ll operations in a LSTM cell can be summarized by the
ollowing LSTM recursive equations

f t = σ (W f xt + U f ht−1 + bf ), (1a)

it = σ (W ixt + U iht−1 + bi), (1b)

ot = σ (W oxt + U oht−1 + bo), (1c)

c̃ t = tanh(W cxt + U cht−1 + bc), (1d)

c t = f t ⊙ c t−1 + it ⊙ c̃ t , (1e)

ht = ot ⊙ tanh(c t ), (1f)

where xt ∈ RM is the input vector, {W f ,W i,W o,W c
} ∈

RM×N are the weight matrices for the input, {U f ,U i,U o,
U c

} ∈ RN×N are the weight matrices for the hidden states,
{bf , bi, bo, bc

} ∈ RN are the bias vectors, with M being the
input vector’s length, σ (·) is the logistic sigmoid function
and tanh(·) is the hyperbolic tangent function, and ⊙

denotes the element-wise multiplication operation.
A LSTM cell takes the input xt and the hidden states

ht−1 from the previous time step as inputs (Eqs. (1a)–
(1d)), and outputs the hidden states ht (Eq. (1f)) which
are then used to make final predictions. The cell and the
hidden states, c t and ht , are updated at every time step
in order to retain relevant information which is useful for
current and future predictions. The updating process for
the cell states c t consists of two steps, and is done using
Eq. (1e). The first step is to discard irrelevant information
from the previous cell states c t−1, by performing the
element-wise product f t ⊙ c t−1. The second step consists
in including the new information into the cell states c t by
adding the element-wise product it ⊙ c̃ t . After updating
the cell states c t , the hidden states ht are updated using
Eq. (1f).
3

3.2. Tractable approximate Gaussian inference

Tractable Approximate Gaussian Inference (TAGI)
(Goulet et al., 2021) is an analytically tractable frame-
work for Bayesian neural networks consisting in two
main steps: forward and backward. The forward step
propagates the uncertainties from the input layer and the
network parameters up to the output layer. The backward
step employs a layer-wise recursive procedure to infer
analytically the parameters θ and the hidden states Z
from the observations y.

Fig. 1 presents a compact graphical representation for
a feedforward neural network where x is the input vector;
z (j) and θ(j)

= {W (j),B(j)
}, ∀j = 1 : L, are the hidden states

and parameters of the jth hidden layer; z (O) is the output
vector; y are the observations; and L is the number of
hidden layers. TAGI considers the network’s input, output,
hidden states as well as parameters as Gaussian random
variables such that X ∼ N (µX ,ΣX ), Z ∼ N (µZ ,Σ Z ), and
θ ∼ N (µθ,Σ θ).

The jth hidden layer contains the hidden units z (j) and
their activation units a(j) such that a(j)

= φ(z (j)), where
φ(·) is the activation function. The forward step starts
by passing information from the input layer to the first
hidden layer using

Z (1)
= W (⊘)X + B(⊘), (2)

A(1)
= φ(Z (1)). (3)

Eq. (2) involves two types of operations including addi-
tions and multiplications of Gaussian random variables.
Because TAGI assumes that the hidden states Z (1) are
Gaussians, these two operations must also result in Gaus-
sian random variables, even if the multiplication opera-
tion does not lead to exact results. In order to overcome
this problem, TAGI relies on the Gaussian multiplication
approximation (GMA) to model the product of two Gaus-
sian random variables by a Gaussian distribution whose
exact mean and variance are calculated analytically as
presented in Appendix A. In addition, the output moments
for the nonlinear activation function φ(·) in Eq. (3) cannot
be evaluated analytically; TAGI uses the local linearization
of activation functions φ̃(·) to obtain the output moments
as detailed in Appendix B. Using these approximations
allows calculating analytically the mean vectors and co-
variance matrices defining the PDFs for the hidden and
activation units. Similarly, going from a jth layer to the
subsequent j + 1th is done using the same Eqs. (2) and
(3), while replacing the input X by the activation units
A(j)

∼ N (µ(j)
A ,Σ (j)

A ), and θ(⊘) by the parameters θ(j)
∼

N (µ(j)
θ ,Σ (j)

θ ) of the jth layer. This allows propagating the
uncertainties from the input X and the parameters θ

through the network up to the output layer Z (O).
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The relation between the output layer z (O) and the
observations y is defined by the observation equation
as

y = z (O) + v, v : V ∼ N (0,ΣV ), (4)

where v denotes the observation error. The moments
of the predictive distribution Y ∼ N (µY ,ΣY ) can be
obtained following µY = µ

(O)
Z , ΣY = Σ (O)

Z + ΣV .
In the context of TAGI, inferring the hidden states and

parameters means estimating the conditional probabil-
ity distributions f (z|y) = N (µZ |y,Σ Z |y) and f (θ|y) =

N (µθ|y,Σ θ|y). The backward step first computes the pos-
terior for the output Z (O) using the Gaussian conditional
equations

f (z (O) | y) = N (µZ (O)|y,Σ Z (O)|y),

µZ (O)|y = µZ (O) + Σ ⊺

YZ (O)Σ
−1
Y (y − µY ),

Σ Z (O)|y = Σ Z (O) − Σ ⊺

YZ (O)Σ
−1
Y ΣYZ (O) ,

(5)

where ΣYZ (O) = Σ Z (O) . This is depicted by the red arrow
rom y to z (O) in Fig. 1. The layer-wise recursive inference
rocedure is then recursively applied to infer the hidden
tates and parameters of each layer from the last to the
irst layer as presented by the red and cyan arrows in
ig. 1. For maintaining the linear complexity with respect
o the number of parameters in the network, TAGI as-
umes diagonal covariance matrices for the hidden states
nd the parameters, and relies on the conditional inde-
endence assumptions of hidden units between layers,
.e., Z (j−1)

|H Z (j+1)
|z (j). The posterior distribution for the

hidden states of each layer Z (j) is estimated analytically
using

f (z (j)|y) = N (µ(j)
Z |y,Σ

(j)
Z |y),

µ
(j)
Z |y = µ

(j)
Z + JZ (µ

(j+1)
Z |y − µ

(j+1)
Z ),

Σ (j)
Z |y = Σ (j)

Z + JZ (Σ
(j+1)
Z |y − Σ (j+1)

Z )J⊺Z ,

JZ = cov(Z (j), Z (j+1))(Σ (j+1)
Z )−1,

(6)

where cov(Z (j), Z (j+1)) is the covariance between the hid-
den states of the jth and j + 1th layers. In parallel, the
parameters θ(j) can be inferred using the same Eq. (6)
where the variable Z (j) is replaced by θ(j). The calcula-
tions for obtaining the covariances cov(Z (j), Z (j+1)) and
cov(θ(j), Z (j+1)), as well as other quantities in Eq. (6) have
been detailed by Goulet et al. (2021).

A weakly informative prior is employed when ini-
tializing the hyper-parameters {µ

(⊘)
θ ,Σ (⊘)

θ }. In order to
earn the parameters efficiently, TAGI repeats the infer-
nce over multiple epochs, analogously to the empirical
ayes approach (Efron, 2010). This means that the pos-
erior hyper-parameters {µ

(i)
θ|y,Σ

(i)
θ|y} at the ith epoch are

sed as the prior hyper-parameters for the next i + 1th

poch.
TAGI can theoretically be used with any existing NN

rchitecture to create the corresponding Bayesian neural
etwork. However, this has never been done for RNNs. In
his paper, we provide the mathematical formulations to
se TAGI with the LSTM architecture.
 a

4

4. Methods

In this section, we first present the analytically tractable
TAGI-LSTM neural network, then introduce the proba-
bilistic coupling between it and SSMs to create TAGI-
LSTM/SSM hybrid models.

4.1. TAGI-LSTM

This section introduces the mathematical formulations
for the TAGI-LSTM model where the LSTM’s parameters
and hidden states presented in Section 3.1 are inferred an-
alytically using the TAGI method presented in Section 3.2.
In order to apply the TAGI method to LSTM, we employ
the same architecture formulations presented in Eq. (1)
to calculate the gates {f , i, c̃, o}, the cell states c , and the
hidden states h, and we consider them, along with the
network parameters θ, as Gaussian random variables. In
order to maintain the linear computational complexity
of the TAGI method, we need to rely on the same inde-
pendence assumption employed by Goulet et al. (2021),
that is considering a diagonal covariance structure for all
LSTM’s gates, hidden states, cell states, and parameters.
Fig. 2a shows a graphical representation of a LSTM cell,
whereas Fig. 2b presents the graph for an example of
stacked TAGI-LSTM network having an input layer con-
taining the covariates x, two LSTM layers, and a fully
connected output layer. The observations y are related to
the outputs z (O) through Eq. (4).

.1.1. Forward step
At a time step t , we denote the marginal prior knowl-

dge for the hidden states of a LSTM layer given the past
ata y1:t−1 by the Gaussian PDF H t|t−1 ∼ N (µH

t|t−1,Σ
H
t|t−1)

here µH
t|t−1 ≡ E[H t |y1:t−1], and ΣH

t|t−1 ≡ cov(H t |y1:t−1).
In the forward step, we want to pass information from
the input covariates X t through the LSTM layers, up to
the output layer. This corresponds to estimating the prior
knowledge for the hidden and cell states of each LSTM
layer, H (j)

t|t−1 and C (j)
t|t−1, as well as the prior Z (O)

t|t−1 ∼

(µZ (O)

t|t−1,Σ
Z (O)

t|t−1) for the hidden states of the output layer.
In order to pass information through a LSTM layer, we

irst need to obtain the prior knowledge for the four LSTM
ates. In the probabilistic context where all quantities are
odelled by Gaussian random variables, we define the
idden states for the forget gate as

Z f
t = W f

tX t + U f
tH t−1 + Bf

t .

Each hidden state Z f
i,t (at time step t , and cell i) for the

orget gate can be obtained as

Z f
i,t = W f

i,tX t + U f
i,tH t−1 + Bf

i,t , (7)

here i = 1 : N, W f
i,t ∈ R1×M, U f

i,t ∈ R1×N are row
eight matrices, N being the LSTM cell’s size, and M is the

nput’s size. We employ diagonal covariance structures
or the PDFs of the input covariates X t and the hidden
tates H t−1. Under this assumption, Z f

i,t is the sum of
+ N independent products and a bias term as shown

n Eq. (7). Goulet et al. (2021) have shown that when

dding a large number of independent product terms, the
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Fig. 2. (a) Graphical representation of a LSTM cell. Red arrows represent the inference procedure to update the j−1th LSTM layer from the subsequent
th LSTM layer. (b) Graphical representation of a stacked TAGI-LSTM network. Black arrows represent the network’s forward connections, red arrows
epresent the layer-wise inference paths, and double arrows represent the recurrent connections.
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orrelation between the resulting pairs of output hidden
tates tends to zero such that assuming Z f

i,t |H Z
f
j,t is valid.

herefore, the hidden states for the forget gate Z f
t are

modelled by a Gaussian PDF having a diagonal covari-
ance matrix, and the first two moments for its units are
computed from

E[Z f
i,t|t−1] = E[W f

i,t|t−1X t|t−1]

+E[U f
i,t|t−1H t−1|t−1] + E[Bf

i,t|t−1],

var(Z f
i,t|t−1) = var(W f

i,t|t−1X t|t−1)

+var(U f
i,t|t−1H t−1|t−1) + var(Bf

i,t|t−1),

where the means and variances of the product terms
W f

i,t|t−1X t|t−1 and U f
i,t|t−1H t−1|t−1 are calculated exactly

using the GMA equations given in Appendix A.
From Eq. (1a), we apply the locally linearized sigmoid

activation function σ̃ (·) to the hidden states of the forget
gate to estimate its output values F t = σ̃ (Z f

t ). As a result,
the forget gate F t also has a diagonal covariance matrix
such that Fi,t |H Fj,t . The equations for obtaining its mean
ector and covariance matrix are presented in Appendix
. Similarly, the prior knowledge for the other LSTM gates
an be estimated using the same procedure. Because the
quations used to calculate other gates {I, C̃ ,O} involve
he same operations, i.e., the sum of several indepen-
ent product terms, we can extend the independence
ssumption not only to these gates but also between
ll LSTM gates such that Ii,t |H Ij,t , C̃i,t |H C̃j,t , Oi,t |H Oj,t ,
nd F t |H I t |H C̃ t |H Ot . As presented in Eq. (1e), the cal-
ulations of the cell states only involve element-wise
perations from independent components. Therefore, all
he cell states Ci,t can be considered as independent and
re obtained by

Ci,t = Fi,tCi,t−1 + Ii,t C̃i,t .

Because Eqs. (1a)–(1d) which are used to estimate the
˜
STM gates {F t , I t , C t ,Ot} do not involve the cell states

5

t−1, there is no direct information path between these
ates and the cell states C t−1 other than through the
idden states H t−1. Therefore, the LSTM gates at time
tep t and the cell states at time step t − 1 are condi-
ionally independent given the hidden states ht−1, that
s, F t |H I t |H C̃ t |H Ot |H C t−1|ht−1. Under this conditional
independence assumption, we can apply the GMA equa-
tions to obtain the mean and variance for each cell state
following

E[Ci,t|t−1] = E[Fi,t|t−1] · E[Ci,t−1|t−1]

+E[Ii,t|t−1] · E[C̃i,t|t−1],

var(Ci,t|t−1) = var(Fi,t|t−1) · var(Ci,t−1|t−1)
+var(Fi,t|t−1) · E[Ci,t−1|t−1]

2

+var(Ci,t−1|t−1) · E[Fi,t|t−1]
2

+var(Ii,t|t−1) · var(C̃i,t|t−1)

+var(Ii,t|t−1) · E[C̃i,t|t−1]
2

+var(C̃i,t|t−1) · E[Ii,t|t−1]
2.

From Eq. (1f), the LSTM hidden states are obtained
rom Hi,t = Oi,t · ˜tanh(Ci,t ), where ˜tanh(·) is the locally
linearized hyperbolic tangent activation function. Follow-
ing the same reasoning used for the cell states, the hidden
states Hi,t are also considered as independent. Their mean
and variance are estimated by

E[Hi,t|t−1] = E[Oi,t|t−1] · E[ ˜tanh(Ci,t|t−1)],

var(Hi,t|t−1) = var(Oi,t|t−1) · var( ˜tanh(Ci,t|t−1))

+var(Oi,t|t−1) · E[ ˜tanh(Ci,t|t−1)]2

+var( ˜tanh(Ci,t|t−1)) · E[Oi,t|t−1]
2.

The hidden states for the fully-connected output layer
re obtained from the hidden states of the last (Lth) LSTM
ayer using

(O) (L) (L) (L)
Zi,t = W i,t H t + Bi,t . (8)
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Under the independence assumption, the mean and vari-
ance of each hidden state are given by

E[Z (O)
i,t|t−1] = E[W (L)

i,t|t−1H
(L)
t|t−1] + E[B(L)

i,t|t−1],

var(Z (O)
i,t|t−1) = var(W (L)

i,t|t−1H
(L)
t|t−1) + var(B(L)

i,t|t−1).

4.1.2. Backward step
The forward step presented in Section 4.1.1 can be

regarded as sending information from the input layer to
the output layer. In the backward step, we want to send
the information in the opposite direction, from the output
layer back to the input layer, in order to update the prior
knowledge that has been obtained during the forward
pass. Therefore, the objective of this step is to estimate
the posterior PDFs for the hidden states and parameters
of each layer in the network. For that, we rely on the con-
ditional independence assumption between the hidden
states of different layers in order to apply the layer-wise
inference procedure, allowing to update the hidden states
and parameters simultaneously within a same layer. This
is essential for maintaining the computational tractability
of the TAGI method. The different steps of the inference
are depicted by the red arrows in Fig. 2b.

For the output layer, we compute the posterior Z (O)
t|t ∼

N (µZ (O)
t|t ,Σ Z (O)

t|t ) using the Gaussian conditional equations
given in Eq. (5). This is analogous to updating the output
Z (O) of a TAGI-FNN as presented in Section 3.2. For the
jth LSTM layer, the posterior H (j)

t|t ∼ N (µH (j)
t|t ,ΣH (j)

t|t ) for its
hidden states is estimated following

f (h(j)
t|t ) = N (µH (j)

t|t ,ΣH (j)

t|t ),

µH (j)

t|t = µH (j)

t|t−1 + JH (µH (j+1)

t|t − µH (j+1)

t|t−1 ),

ΣH (j)

t|t = ΣH (j)

t|t−1 + JH (ΣH (j+1)

t|t − ΣH (j+1)

t|t−1 )J⊺H ,

JH = cov(H (j)
t|t−1,H

(j+1)
t|t−1)(Σ

H (j+1)

t|t−1 )−1,

(9)

where cov(H (j)
t|t−1,H

(j+1)
t|t−1) is the covariance between the

hidden states of the jth layer and the j + 1th. Note that
H (j)

t is indirectly related to H (j+1)
t through the LSTM gates

{F (j+1)
t , I (j+1)

t , C̃
(j+1)
t ,O(j+1)

t } as presented in Eqs. (1a)–(1d).
To obtain H (j)

t|t , we directly calculate the covariance matrix
cov(H (j)

t|t−1,H
(j+1)
t|t−1), bypassing the LSTM gates as shown by

the red arrow from h(j)
t to h(j−1)

t shown in Fig. 2a. The
posterior θ

(j)
t|t ∼ N (µθ(j)

t|t ,Σ θ(j)

t|t ) for the parameters can
be estimated using the same Eq. (9), while replacing the
variable H (j) by θ(j). Note that the last LSTM layer (Lth) is
connected with the output layer so that when applying
Eq. (9) for inferring its hidden states and parameters,
we need to calculate the covariances cov(H (L)

t|t−1, Z
(O)
t|t−1)

and cov(θ(L)
t|t−1, Z

(O)
t|t−1). The detailed formulations for the

covariances cov(H (j)
t|t−1,H

(j+1)
t|t−1) and cov(θ(j)

t|t−1,H
(j+1)
t|t−1) are

given in Appendix C, whereas the ones for cov(H (L)
t|t−1,

Z (O)
t|t−1) and cov(θ(L)

t|t−1, Z
(O)
t|t−1) have been detailed by Goulet

et al. (2021).
When performing inference for a LSTM layer, we need

to update the cell states in addition to updating the hid-
den states and parameters. To this end, we estimate the

(j) C (j) C (j)

posterior C t|t ∼ N (µt|t ,Σ t|t ) for the cell states based

6

on the knowledge from the hidden states of a same LSTM
layer using the same Rauch-Tung-Striebel (RTS) proce-
dure (Rauch et al., 1965) used in Eq. (9) where the variable
H (j) is replaced by C (j), and H (j+1) is replaced by H (j).
This step is depicted by the red arrow from h(j)

t to c (j)t
shown in Fig. 2a. The diagonal cross-covariance matrix
cov(C (j)

t|t−1,H
(j)
t|t−1) between the cell and hidden states of

the same LSTM layer that is required for estimating C (j)
t|t is

obtained following

cov(C (j)
i,t|t−1,H

(j)
i,t|t−1) = var(C (j)

i,t|t−1) · ∇C ˜tanh(E[C (j)
i,t|t−1])

·E[O(j)
i,t|t−1],

where ∇C ˜tanh(E[C (j)
i,t|t−1]) is the gradient of the function

˜tanh(C) with respect to C evaluated at the mean E[C (j)
i,t|t−1]

for the jth layer, cell i, at time t .

4.1.3. Smoothing for TAGI-LSTM
In SSMs, the transition model, z t = f(z t−1) + wt ,

describes the relationship between the hidden variables z
at two consecutive time steps where f(·) is the transition
function and wt is a realization from the independent er-
ror process W t ∼ N (0,Q). In other words, there is a flow
of information through time from the first time step t = 0
to the last time step t = T. The Kalman smoother (Rauch
et al., 1965) leverages this connection in order to send
information backward, and update the knowledge for past
hidden variables from future information. Analogously,
LSTM also has through-time connections as shown in
Eqs. (1a)–(1e) where the hidden and cell states at time
step t − 1 are connected to those at t such that

c t = g(ht−1, c t−1, xt , θ),
ht = k(ht−1, c t−1, xt , θ),

where the functions g(·) and k(·) are defined by Eqs. (1a)–
(1e). Therefore, we can leverage these connections in
order to perform smoothing for TAGI-LSTM. The backward
step in Section 4.1.2 uses the smoothing equations at a
single time step in order to update the parameters and
hidden states through the architecture; we now use the
same approach to update backward through time fol-
lowing the inference path depicted by the red arrows in
Fig. 3.

The posterior knowledge H (j)
t|t for the hidden states of

the jth LSTM layer obtained from the backward step only
contains the past and present information, i.e., y1:t . With
the smoothing procedure, we want to estimate H (j)

t|T ∼

N (µH (j)
t|T ,ΣH (j)

t|T ) containing both past and future informa-
tion, i.e., the whole sequence of observations y1:T. For each
LSTM layer, we go backward from the last to the first time
step, and apply the RTS smoother procedure recursively
following

µH (j)

t|T = µH (j)

t|t + JH (µH (j)

t+1|T − µH (j)

t+1|t ),

ΣH (j)

t|T = ΣH (j)

t|t + JH (ΣH (j)

t+1|T − ΣH (j)

t+1|t )J
⊺
H ,

JH = cov(H (j)
t|t ,H

(j)
t+1|t )(Σ

H (j)

t+1|t )
−1,

(10)

where cov(H (j)
t|t ,H

(j)
t+1|t ) is the covariance between the hid-
th
den states of the j LSTM layer at time t and t + 1. We
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an also use Eq. (10) to obtain the smoothed estimates
(j)
t|T for the cell states, and Z (O)

t|T for the hidden states of
the output layer, by replacing the hidden states H by
the relevant variable. Appendix D presents the derivations
of the covariances cov(H (j)

t|t ,H
(j)
t+1|t ), cov(C

(j)
t|t , C

(j)
t+1|t ), and

cov(Z (O)
t|t , Z

(O)
t+1|t ) which are required to estimate H (j)

t|T, C
(j)
t|T

and Z (O)
t|T. Note that because the network parameters θ are

assumed to be constant through time, the smoother has
no effect on them.

With the smoothing procedure, we start from the last
time step T and either stop the procedure at t = ⊘ to infer
the initial hidden and cell states, H⊘|T and C⊘|T, or we can
even go back K time steps before the first training time
step for obtaining the smoothed estimates for the hidden
and cell states as presented in Fig. 3. We then can use
them to estimate the unobserved past observations y⊘−K:⊘.
his means that we can use a single TAGI-LSTM model to
stimate both future observations after the last training
ime and past observations before the first training time.

.2. Coupling TAGI-LSTM and SSMs

In this section, we present the methodology to couple
robabilistically the TAGI-LSTM presented in Section 4.1
ith SSMs to create the TAGI-LSTM/SSM hybrid model.
e consider a structured state-space model with additive

rrors where the hidden state vector z consists in two sets
f hidden states zB and z(O), z = [zB z(O)]⊺. The baseline

hidden state vector zB models the time series’ baseline
patterns such as level and trend, and is associated with
the linear dynamical system

zBt = A zBt−1 + wt , (11)

where A is the transition matrix for the baseline hidden
states, wt is a realization from the independent error

(O)
process wt : W ∼ N (0,Q). The hidden state z is y

7

employed to model the repeated patterns such as sea-
sonalities that are present in the data. Contrarily to the
baseline hidden states which follow the transition model
described in Eq. (11), the pattern hidden state is predicted
using the output node of a TAGI-LSTM network

z(O)t = TAGI-LSTM(xt , ht−1, c t−1, θ), (12)

where xt is a vector of input covariates, ht−1 are the TAGI-
LSTM hidden states at the previous time step, and θ are
the neural network parameters. Note that similarly to the
baseline hidden states ZB, the output Z (O) is also Gaussian.

At a time t , the joint prior knowledge for the baseline
hidden states given all the past data y1:t−1 is described
by a Gaussian random vector ZB

t|t−1 ∼ N (µB
t|t−1,Σ

B
t|t−1)

which is obtained by propagating the uncertainty asso-
ciated with the posterior at t − 1, i.e., ZB

t−1|t−1 through
the transition model described in Eq. (11). The marginal
prior at t for the pattern hidden state is a Gaussian ran-
dom variable Z (O)

t|t−1 ∼ N (µZ (O)
t|t−1, σ

Z (O)
t|t−1) obtained using

he TAGI-LSTM one-step-ahead prediction presented in
ection 4.1. In order to obtain the joint prior knowledge at
for both the baseline and the pattern hidden states, we
eed their cross-covariance cov(ZB

t|t−1, Z
(O)
t|t−1) for which

o exact closed-form analytical expression is available. In
ractice, these covariance terms are non-zero, yet they
re typically small such that the correlation coefficients
etween hidden states ρ < 0.01. Therefore, we rely
n the simplifying hypothesis that ZB

t|t−1 and Z (O)
t|t−1 are

ndependent so that cov(ZB
t|t−1, Z

(O)
t|t−1) = 0. The validity

f that hypothesis is investigated through experiments
rovided in Appendix E.
We can form the joint prior knowledge between the

idden states Z t|t−1 = [ZB
t|t−1 Z (O)

t|t−1]
⊺ and the observation

t using the linear observation model
t = C z t + vt , (13)
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t

where vt is a realization from the independent and iden-
ically distributed (i.i.d.) error vt : V ∼ N (0, σ 2

V ). In the
observation model presented in Eq. (13), the observation
vector indicates which hidden state is observable such
that C = [cB c(O)], where c(O) = 1 and the composition
of cB depends on the dynamic system chosen for the
baseline. With that joint prior information, we can use
the Gaussian conditional equations in order to obtain the
joint posterior Z t|t which can be broken down into the
posteriors ZB

t|t and Z (O)
t|t . The later is then used by the TAGI-

LSTMmethod in order to infer both the Gaussian posterior
for their model parameters θ ∼ N (µθ

t|t , Iσ
θ
t|t ) and their

hidden states H t ∼ N (µH
t|t , Iσ

H
t|t ).

The covariance cov(Z t|t , Z t+1|t ) between the hidden
states at two consecutive time steps is calculated by

cov(Z t|t , Z t+1|t ) =

[
Σ B

t|tA⊺ 0

0 cov(Z (O)
t|t , Z (O)

t+1|t )

]
,

where cov(Z (O)
t|t , Z (O)

t+1|t ) is calculated using the smoothing
procedure presented in Section 4.1.3. Given this covari-
ance, the Kalman smoother can be performed analytically
for the TAGI-LSTM/SSM model. As it is the case for the
TAGI model presented in Section 3.2, we train the model
and learn the network parameters θ over multiple epochs.
For each epoch, we perform a forward pass over time and
a backward one using the Kalman smoother.

4.2.1. Exponential smoothing component
Using the local linear trend component (Durbin &

Koopman, 2001) for the baseline hidden states zB, the
TAGI-LSTM/SSM model presented in Section 4.2 can only
model data which contains a linear trend. In this section,
we formulate a parameter-free exponential smoothing
component which can be used with the TAGI-LSTM/SSM
to automatically detrend data containing complex long-
term patterns.

Recall the state-space form of a simple exponential
smoothing model (Hyndman & Athanasopoulos, 2018),
but now we consider the smoothing parameter zα and
the observation error zV as hidden states. The model is
defined by the following equations

Observation equation: yt = zEt + zVt , (14)
Transition equations: zEt = zEt−1 + z̄α

t−1z
V
t−1,

zα
t = zα

t−1,

zVt = vt , (15)

where zEt is the exponential smoothing hidden state, vt
is a realization from the i.i.d. error vt : V ∼ N (0, σ 2

V ),
and yt is the observation. Because the smoothing pa-
rameter takes a value between zero and one, we apply
the locally linearized sigmoid function that is already
used for TAGI in Section 3.2 to the hidden state zα

t . The
transformed variable z̄α

t = σ̃ (zα
t ) is assumed to fol-

low a Gaussian PDF where its moments are obtained
by applying the equations presented in Appendix B. The
product z̄α

t−1z
V
t−1 uses the previous step’s error zVt−1 to

adjust the predicted exponential smoothing hidden state
zEt . We rely on the covariance cov(Z̄α

t−1|t−1Z
V
t−1|t−1, Z

α
t|t−1)

α
in order to update the hidden state zt . Note that if instead
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we would use the product z̄α
t−1z

V
t to adjust zEt , the covari-

ance cov(Z̄α
t−1|t−1Z

V
t|t−1, Z

α
t|t−1) would be zero, and thus we

could not update zα
t .

The transition model as given in Eq. (15) is nonlinear,
however, Deka et al. (2022) showed that this nonlinear
model can be reformulated as a linear dynamic model
by creating a new hidden state zNt = z̄α

t−1z
V
t−1 which is

assumed to follow a Gaussian PDF where its moments
are calculated exactly using the GMA equations given
in Appendix A. The baseline hidden state vector zB =

[zE zα zV]⊺ at time t − 1 is thus assumed to be Gaussian.
The augmented baseline hidden state vector z̃B = [zB zN]⊺
is defined by

Z̃
B
t−1|t−1 ∼ N (µ̃B

t−1|t−1, Σ̃
B
t−1|t−1),

where the components of µ̃B
t−1|t−1 and Σ̃

B
t−1|t−1 are pre-

sented in Appendix F.
The nonlinear Eq. (15) now can be written in a linear

form as

z̃Bt = A z̃Bt−1 + wt , wt : W ∼ N (0,Q), (16)

where A is the transition matrix and Q is the covariance
matrix. The prior for the augmented baseline hidden state
vector is given by

Z̃
B
t|t−1 ∼ N (µ̃B

t|t−1, Σ̃
B
t|t−1), (17)

where µ̃B
t|t−1 = Aµ̃B

t−1|t−1 and Σ̃
B
t|t−1 = AΣ̃

B
t−1|t−1A⊺

+Q.
The observation model given in Eq. (14) is written in a
matrix form as

yt = C z̃Bt , (18)

where C is the observation matrix. The model matrices
A,Q and C are given in Appendix F. Using Eqs. (16)–(18),
we can now apply the Kalman filter to have a parameter-
free component that can capture complex long-term pat-
terns in data. When we couple this new exponential
smoothing component with TAGI-LSTM, it enables to au-
tomatically detrend the data as shown by the experiments
in the next section.

5. Experiments

In this section, we first conduct a qualitative experi-
ment using synthetic time series to verify the TAGI-LSTM
model’s capability to accurately retrieve the ground truth.
Next, a quantitative analysis is conducted to compare
the performance of the same LSTM architecture trained
with either TAGI or gradient-based approaches. The Elec-
tricity and Traffic datasets (Yu et al., 2016) datasets are
chosen for this comparison because they are station-
ary, i.e., each time series displays a constant baseline
so that the LSTM models can analyze them directly
without requiring data preprocessing to remove trends.
Finally, after verifying TAGI-LSTM’s capabilities on sim-
ulated and stationary datasets, we compare the perfor-
mance of the TAGI-LSTM/SSM hybrid model with other
benchmark methods on the non-stationary Tourism (mo-
nthly and quarterly) and M4 (hourly) datasets, displaying

either linear or complex nonlinear trends. These datasets
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Fig. 4. Test predictions from TAGI-LSTM models for synthetic data generated using (a) Eq. (19a), and (b) Eq. (19b). The grey shaded area presents
the forecast period, red line presents the ground truth, blue line presents test predictions along with ±σ confidence intervals (shade), black dots
present training data.
w

are intended to demonstrate that the hybrid TAGI-LSTM/
SSM model is well-suited to handle trended data without
the need for preprocessing. Note that one cannot use plain
LSTMs on these benchmarks without preprocessing the
data beforehand to remove trends.

5.1. Verification of TAGI-LSTM on synthetic data

For the verification experiment, we generate ten years
of weekly data (520 data points) from the following func-
tions

yat = sin(
2π t

365.22
) + 0.5sin(

2π t
365.22/4

) + vt , (19a)

b
t = exp

[
sin(

2π t
365.22

)
]

+

[
0.5sin(

2π t
365.22/4

)
]2

+ vt ,

(19b)

s depicted in Fig. 4, where vt : V ∼ N (0, 0.22) and t is
the timestamp. We train TAGI-LSTMmodels using the first
9 years of data, and make mutli-step-ahead predictions
for the last year. Fig. 4 presents the ground truth which
does not contain the error term vt , the training data, as
well as the test predictions and their ±σ uncertainties
from our models. The test set’s predictions show that the
TAGI-LSTM can accurately retrieve the ground truth for
these synthetic data.

5.2. Comparison of TAGI-LSTM with gradient-based LSTM
networks on stationary data

In this section, we perform a quantitative experiment
to compare the predictive performance of the TAGI-LSTM
in comparison to two gradient-based LSTMs, i.e., deter-
ministic and variational ones (Gal & Ghahramani, 2016b),
on the same network architecture. We perform the com-
parison on the Electricity dataset (Yu et al., 2016) con-
taining 370 hourly time series of electricity consump-
tion, and the Traffic one (Yu et al., 2016) including 963
hourly time series of occupancy rate for different car
lanes in the San Francisco bay area. These datasets are
specifically selected because they are stationary which
allows the LSTM models to analyze them directly after

standardization without requiring ad-hoc procedures to a
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remove trends. As these datasets experience hourly and
daily seasonal patterns, we include hour-of-the-day and
day-of-the-week as time features in the covariate vector
xt . We apply the moving window approach proposed
by Bandara et al. (2020) so that the input covariate vec-
tor includes a lookback window of posterior values for
z (O)t−W:t−1 where W is the window’s length. Detailed expla-
nation for this approach can be found in Hewamalage
et al. (2021). The task consists in providing predictions for
seven consecutive days using the rolling window opera-
tion described in Yu et al. (2016). Using this operation,
the model makes multi-step-ahead predictions for a 24-
hour-window. Then, the observations for this window are
made available so that they can be used to predict the
next one. There are seven windows required to cover the
test period. In order to make multi-step-ahead predic-
tions, we apply the single-output forecasting procedure
and recursively make one-step-ahead predictions.

The data is divided into training and test sets using
three different splits (Oreshkin et al., 2020) as detailed
in Appendix G. A window of data points at the end of
the training data is reserved for validation, and it is not
used for training. We train our models with 50 epochs,
then identify the optimal epoch which maximizes the log-
likelihood for the validation set, and obtain the network
parameters at this optimal epoch. We build a separate
LSTM model for each time series where all of the models
use the same network architecture as used by Salinas
et al. (2020). The standard deviation for the error σV is
a hyper-parameter in our TAGI-LSTM model that is com-
mon to all time series. For variational LSTM, we perform
50 dropout passes and calculate the predictive mean and
variance. The architecture and hyper-parameters used in
this experiment are given in Appendix H.

The ρ-quantile loss, ρ ∈ (0, 1), measures the accuracy
of the predictive distribution at a specific quantile (Ran-
gapuram et al., 2018), and is defined by

QLρ (y, ŷρ )

= 2

∑
i,t [ρ · max(yi,t − ŷρ

i,t , 0) + (1 − ρ) · max(ŷρ

i,t − yi,t , 0)]∑
i,t |yi,t |

,

here yi,t is the observation at time t of the ith time series
nd ŷρ is the corresponding predicted ρ-quantile. Note
i,t
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Table 1
Comparison between TAGI-LSTM, deterministic and variational LSTMs on Electricity and Traffic datasets. p50 and p90-loss metrics for
test sets are calculated using the rolling window operation. Results are obtained by averaging the forecasts over five independent
runs. Deterministic LSTM provides only point forecasts so that we report only the p50-loss. Three train/test splits are used following
Oreshkin et al. (2020). Bold fonts indicate the best results.

Electricity Traffic

Split 2014-03-31 2014-09-01 last 7 days 2008-01-14 2008-06-15 last 7 days

p50 p90 p50 p90 p50 p90 p50 p90 p50 p90 p50 p90

TAGI-LSTM 0.080 0.058 0.066 0.053 0.152 0.095 0.337 0.276 0.169 0.158 0.102 0.130
LSTM 0.086 – 0.077 – 0.159 – 0.319 – 0.158 – 0.098 –
Variational LSTM 0.080 0.056 0.064 0.052 0.160 0.100 0.323 0.261 0.162 0.154 0.123 0.133
o
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that the p50-loss is equal to the Normalized deviation
(ND) metric reported in Oreshkin et al. (2020), Salinas
et al. (2020), Wang et al. (2019), Yu et al. (2016), and the
ND metric was original used to compare these datasets
by Yu et al. (2016). The results reported in Table 1 are ob-
tained by averaging the predictions from five independent
runs with different initial seeds. Both TAGI-LSTM and vari-
ational LSTM provide predictions along with the associ-
ated uncertainties. Therefore, we report the p50 and p90-
losses for these methods. The deterministic LSTM pro-
vides point estimates so that we report only the p50-loss.
The results from Table 1 show that our method matches
the performance of the two LSTMs trained with gradient-
based optimization. The deterministic LSTM provides the
best p50-loss for the Traffic dataset on all splits which
means that it provides the most accurate point forecasts.
However, unlike TAGI-LSTM and variational LSTM, this
method cannot provide predictive uncertainties. The vari-
ational LSTM provides slightly better p90-losses compared
to TAGI-LSTM in four out of six scenarios. However, the
result of this method varies with respect to the number of
dropout passes during test time. By contrast, TAGI-LSTM
can analytically estimate both the predictions and the
associated uncertainties without repeatedly performing
dropout.

Robustness verifications for the TAGI-LSTM method
are presented in Appendix I, where we compare the pre-
dictive performances of four different TAGI-LSTM models,
each with a different number of hidden layers, ranging
from one to four. The root mean square error (RMSE)
and mean absolute scaled error (MASE) metrics for this
experiment are presented in Appendix J.

5.3. Comparison of TAGI-LSTM/SSM with state-of-the-art
methods on non-stationary data

After verifying TAGI-LSTM’s capabilities on simulated
and stationary datasets, this section validates the capacity
of the hybrid TAGI-LSTM/SSM model to match the perfor-
mance of state-of-the-art methods on the non-stationary
Tourism (monthly and quarterly) (Athanasopoulos et al.,
2011) and M4 (hourly) (Makridakis et al., 2018) datasets,
containing either linear or complex nonlinear trends. We
excluded the plain LSTM models from this experiment
because they would have required further ad-hoc prepro-
cessing in order to remove the trends from data before an-

alyzing. The monthly Tourism dataset contains 366 time
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series, the quarterly Tourism dataset contains 427 time
series, and the hourly M4 dataset has 414 time series.

The baseline hidden state vector contains a level (L), a
trend (T), and an exponential smoothing component, zB =

[zL zT zE zα zV]⊺, and the pattern hidden state z(O) models
the seasonality. The model matrices are given in Appendix
K. For the time features included in the covariate vector
xt , we include hour-of-the-day and day-of-the-week for
the hourly dataset, month-of-the-year for the monthly
dataset, and quarter-of-the-year for the quarterly dataset.
We build a separate model for each time series where
all models share the same network architecture which is
detailed in Appendix H. The standard deviation for the
noise σV is learnt using the AGVI method (Deka, 2022;
Deka & Goulet, 2023). We train our models on multiple
epochs where the initial hidden states µ

(i+1)
⊘ and Σ (i+1)

⊘ at
the i+1th epoch are the smoothed estimates µ

(i)
⊘|T andΣ (i)

⊘|T
at the ith epoch with T being the last training time.

We compare our method with the statistical meth-
ds ARIMA (Box et al., 1994) and ETS (Hyndman et al.,
008); the hybrid methods DeepState (Rangapuram et al.,
018) and ES-RNN (Smyl, 2020); and the pure neural net-
orks DeepAR (Salinas et al., 2020) and N-Beats (Oreshkin
t al., 2020). The two hybrid methods are similar to our
odel since all of them combine SSMs or exponential
moothing and LSTMs, and ES-RNN is the state-of-the-
rt hybrid method for the M4 dataset (Makridakis et al.,
020). DeepAR is a pure LSTM-based method, whereas N-
eats is the state-of-the-art neural network method for
hese datasets. Among them, ARIMA, ETS and our method
dopt a local setup such that a separate model is built
or each time series, and there is no information shared
etween models; DeepAR and N-Beats adopt a global
etup, fitting a single model for multiple time series;
hereas DeepState and ES-RNN use a mixed setup, using
global LSTM to learn across multiple time series and
local SSM or exponential smoothing model for each

ime series. Table 2 reports the p50 and p90 metrics for
our TAGI-LSTM/SSM along with benchmark models. For a
fair comparison, we report the values from the original
papers (Oreshkin et al., 2020; Rangapuram et al., 2018;
Skepetari, 2020). The results show that our method ex-
ceeds the performance of the ARIMA, ETS, DeepAR, and
DeepState in both p50 and p90 metrics for all datasets
except for the p50 loss of the monthly Tourism one.
This shows the data-efficiency of our method such that
we can adopt a local setup, that is building a separate
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Table 2
p50 and p90-loss performances on the Tourism (monthly and quarterly) and M4 (hourly) test sets. The
results for N-Beats are obtained from Oreshkin et al. (2020), the one for ES-RNN is calculated by us
from the submission downloaded from the M4 GitHub repository (Skepetari, 2020), and the results for
other baseline methods are obtained from Rangapuram et al. (2018). The results for TAGI-LSTM/SSM are
obtained by averaging the forecasts over three independent runs with different initial seeds. N-Beats
provides point forecasts so that only the p50-loss is reported. Bold fonts indicate the best results.

Tourism (Monthly) Tourism (Quaterly) M4 (Hourly)

p50 p90 p50 p90 p50 p90

ARIMA 0.100 0.058 0.124 0.062 0.052 0.035
ETS 0.093 0.054 0.105 0.055 0.054 0.027
DeepState 0.138 0.067 0.098 0.047 0.044 0.027
ES-RNN – – – – 0.039 –
DeepAR 0.107 0.059 0.110 0.062 0.090 0.030
N-Beats 0.097 – 0.077 – 0.023 –
TAGI-LSTM/SSM 0.102 0.053 0.073 0.041 0.042 0.021
model for each time series, and provide better results
than other models using local, global and mixed setups.
N-Beats provides point forecasts so that we report only
the p50-loss. The ES-RNN and N-Beats methods provide
uperior point forecasts compared to our method. Note
hat these methods use more advanced neural network
rchitecture such as dilated LSTMs with attention mech-
nism and residual connections. In addition, unlike our
ethod, ES-RNN and N-Beats can provide interpretable
omponents such as level, trend and seasonality, but are
nable to provide their associated uncertainties.
In order to extend the comparisons, we re-obtained the

esults for the DeepState, DeepAR and N-Beats methods
sing the gluonTS library (Alex et al., 2020), for ARIMA

and ETS models using the forecast library (Hyndman &
Khandakar, 2008), and for the ES-RNN method using the
ESRNN one (Gutierrez et al., 2021). Appendix L presents
the comparisons on RMSE and MASE metrics, as well as
the multiple comparisons with the best (MCB) test (Kon-
ing et al., 2005). These additional results further confirm
that the TAGI-LSTM/SSM method proposed has a per-
formance that is competitive with other state-of-the-art
methods.

Fig. 5 shows an example of predictions on the test set,
the hidden states, as well as their associated uncertainties
for the time series #30 of the Tourism (monthly) dataset.
These results confirm that our model can separate the
long-term linear pattern which is captured by the level
hidden state zL, the long-term nonlinear pattern which
is captured by the exponential smoothing hidden state
zE, and the seasonality modelled by the TAGI-LSTM. Ad-
ditional examples for other time series are presented in
Appendix M.

6. Conclusion

The new mathematical formulations proposed in this
paper enable using the Tractable Approximate Gaussian
Inference (TAGI) method with the LSTM neural network
architecture. The approach allows estimating analytically
the posterior mean vectors and diagonal covariance ma-
trices for the hidden states and model parameters using
approximate Bayesian inference. The experiments per-

formed showed that for the same network architecture,
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our TAGI-LSTM models provide on-par performance com-
pared to the deterministic and variational LSTMs trained
with backpropagation and gradient descent. With the
method presented in this paper, one can now couple LSTM
neural networks with the existing components borrowed
from SSMs. We have demonstrated, for example, how we
can couple TAGI-LSTM with the existing SSM’s level and
trend components, as well as the parameter-free expo-
nential smoothing one in order to automatically detrend
time series while providing interpretable results. The ex-
perimental results on the quarterly and monthly Tourism,
and hourly M4 datasets have shown that our hybrid
model is competitive with state-of-the-art methods.
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Fig. 5. An example of interpretable results provided by TAGI-LSTM/SSM using the proposed exponential smoothing component for the time series
#30 of the Tourism (monthly) dataset. Values are presented in standardized space. Red line presents observations, blue line presents test predictions,
black lines present components along with 68% confidence intervals (shade). The grey shaded areas present the forecast period. (a) Predictions on
test set (b) level, (c) trend, (d) exponential smoothing, (e) seasonality modelled by TAGI-LSTM, and (f) error hidden state. The results show that the
model can separate the linear long-term pattern which is captured by the level hidden state and the nonlinear long-term one which is captured by
the exponential smoothing component.
H
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