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Abstract

This paper proposes an extension to Gaussian Process Regression (GPR) for datasets composed of

only few replicated specimens and displaying a heteroscedastic behaviour. As there are several factors

that are out of the control of experimenters, it is often impossible to reproduce identical specimens

for a same experiment. Moreover, observations from laboratory experiments typically display a

heteroscedastic inter-specimens variability. Because experiments and specimens manufacturing is

expensive, it is uncommon to have more than three specimens to build a model for the observed

responses. The method proposed in this paper uses GPR to predict each tested specimen using a

shared prior structure and models the global heteroscedastic behaviour by combining observations

using conjugate prior distributions. An application of the method to high performance fiber reinforced

concrete experiments highlights fiber addition benefits for reducing water permeability caused by

macro-cracks.

INTRODUCTION
Modeling the variability in the results of laboratory experiments is difficult when only

few specimens are available. In civil engineering, this situation is common practice because
preparing and testing specimens often incurs high costs. Experimentalists are left with the
difficult task of quantifying the inter-specimen variability from a sparse dataset. When
tests are performed as a function of covariates, an additional challenge is that experimental
results typically display a heteroscedastic behaviour, so that test results variability depends
on covariate values. Figure 1a & 1b respectively show an example of a homoscedastic and
of a heteroscedastic behaviour. For Figure 1a, the observations variability is independent
of the covariate x, which is not the case for Figure 1b. Moreover, both figures represent
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the special case where all observations are obtained from different specimens that are
independent of each others. This paper focuses on the case where observations obtained for
different covariate values, are only available from a limited number of replicated specimens.
This case is displayed in Figure 1c.

x

y

Observations
Mean%
CI 90%

(a) Homoscedasticity and independent observations

x
(b) Heteroscedasticity and independent observations

x
(c) Heteroscedasticity and dependent observations

Figure 1: Dataset examples displaying (a) a homoscedastic behaviour, (b) a heteroscedastic
behaviour and (c) a heteroscedastic behaviour with dependent observations. In (c) the
dashed line links observations obtained from a same specimen.

Many methods to construct a model from laboratory experiments already exist, methods
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such as Multiple Linear Regression (MLR), Multivariate Adaptive Regression Spline (MARS)
and Symbolic Regression (SR) are able to model complex datasets (Jeon et al. 2014), but are
prone to over-fitting as they select the best equation formulation to fit the data. Methods
like Support Vector Machine (SVM) or Neural Network (NN) are able to model highly
non-linear datasets (Siddique et al. 2008; Pal and Deswal 2008). S loński (2010) succeeded
in modeling compressive strength in high-performance concrete with NN method. Many
methods, e.g. Lampinen and Vehtari (2001), Ma et al. (2014) and Zhong et al. (2008) rely
on a Bayesian approach to infer the model parameters which can become useful in order
to capture uncertainty in physics formula. Based on such a method, Gardoni et al. (2002,
2007) modeled both capacity and fragility in reinforced concrete columns or elastic modulus
of concrete. This last method can be applied to heteroscedastic behaviours by transforming
data in a homoscedastic space or by adding input dependent-noise to the model (Bansal and
Aggarwal 2007; Blau et al. 2008). Also, Yeh (2014) estimated the distribution of compressive
strength of high-performance concrete which displayed a heteroscedastic behaviour, through
the NN method.

One specific Machine Learning method suited to address these probabilistic models
challenges is Gaussian Process regression (GPR) (Rasmussen and Williams 2006; MacKay
1998). Regarding over-fitting, Gaussian Process Regression is known to be more robust to
over-fitting than other approaches such as linear regression because it can model complex
function using few parameters. For a specific discussion, the reader is invited to consult
Rasmussen and Williams (2006). S loński (2011) recommended this approach instead of
NN for the identification of concrete properties. One of the strengths of GPR is that it
allows to interpolate and extrapolate experimental values by providing mean values as well
as the covariance matrix for its predictions. The accuracy of GPR predictions depends on
the distance between predicted and observed covariates. In the case of an extrapolation
far from available observations, the prediction uncertainty reflects the absence of empirical
observation to rely on. GPR can handle highly nonlinear sets of data. Simple regression
problems such as the one presented in Figure 1a can readily be processed with the GPR
method which is already implemented in open-source codes such as GPML (Rasmussen
and Nickisch 2010). For regression problems involving heteroscedasticity, Goldberg et al.
(1997) proposed to employ a hierarchical approach so that the GPR variance is itself
modelled by a Gaussian process (Kersting et al. 2007). This model was later extended by
Tolvanen et al. (2014) to embody the heteroscedasticity in both process and observation
noises. These methods are implemented in the open-source code GPstuff (Vanhatalo
et al. 2012). Wand and Neal (2012, 2014) have proposed an alternative approach to
model heteroscedasticity in the context of GPR by introducing latent covariates. Although
the formulation of both approaches is different, they share the same hypothesis that all
observations are independent of each others as illustrated in Figure 1b. Methods based on
GPR are efficient to model homoscedasticity ; for example, based on a dataset of only five
specimens, Thiyagarajan and Kodagoda (2016) modeled concrete moisture. They are also
reliable for modeling heteroscedastic behaviours associated with large datasets obtained
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from independent specimens as demonstrated by Kersting et al. (2007), Le et al. (2005)
and Titsias and Lázaro-Gredilla (2011).

The shaded region in Figures 1a-c describes the 90% confidence interval computed
using in a) the standard homoscedastic GPR approach, and b,c) Tolvanen et al. (2014)
heteroscedastic GPR. The confidence interval in Figures 1a & 1b are consistent with
the expected result, because the model hypothesis regarding independent observations is
satisfied. For Figure 1c, the 90% confidence interval is too narrow to describe the variability
across specimens because the underlying hypothesis in Tolvanen et al. (2014) method is that
all observation is obtained from a different specimen. In Figure 1b, the effective number
of observations is 200, whereas in Figure 1c it is 3. In Figure 1c, if a fourth specimen
were to be tested, there is a high probability that the new observations would fall out of
the confidence interval. The poor performance displayed in Figure 1c is attributed to the
inadequacy of the observation independence hypothesis which overestimates the information
in the data, leading to an over-narrow confidence interval. Existing methods are currently
not able to model the response from statistically dependent observations caused by same
unmeasured variables and displaying a heteroscedastic behaviour.

This paper proposes a new extension to Gaussian Process Regression for creating
probabilistic models from few replicated specimens displaying a heteroscedastic behaviour.
This situation is common when analyzing laboratory experiments in the context of civil
engineering. The key aspect of this paper is to extend the GPR model to heteroscedasticity
associated to epistemic uncertainty characterized by a low number of test specimens. In
the method presented in this manuscript the heteroscedastic behavior is treated using
the conjugate prior distribution. First, the standard GPR method is presented, then
its extension to overcome the limitations presented above. Finally, the potential of the
method is illustrated using experimental data of the water permeability test conducted
on high performance fiber-reinforced concrete tie-specimens (Hubert et al. 2015). The
challenge associated with this illustrative example is to provide a probabilistic model for
the permeability in order to quantify the effectiveness of different fiber reinforcement ratios.

GAUSSIAN PROCESS REGRESSION

Model definition

Given a datasetD = {(xi, yi), i = 1, . . . , N}, includingN observations y = [y1, y2, ..., yN ]ᵀ

assumed conditionally independent for N values of the covariate x = [x1, x2, ..., xN ]ᵀ, Gaus-
sian Process Regression can predict an unobserved value, given a new covariate value x∗.
The vector x can be extended to a matrix of several covariates. Because GPR quantifies
the uncertainty for each of its predictions, it is suited for interpolation and extrapolation.
In GPR, observations y are function of the covariates x and are described by a multivariate
Gaussian distribution y|x : Y ∼ N (M,Σ). This last distribution is characterized by a
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mean column vector M and a covariance matrix Σ which includes observations errors v,

y︸︷︷︸
observations

= f(x)︸︷︷︸
reality

+ v︸︷︷︸
observations errors

, with v : V ∼ N (0, σ2v) (1)

These matrices describing the prior structure or the distribution before any observation
need to be chosen carefully in order to suit the studied behaviour. In a first step, a simple
prior structure can be set up and afterwards refined if necessary. In practice, it is common
to employ M = 0 and a square exponential covariance function,

g(xk, xl) = σ2f exp

[−(xk − xl)2
2`2

]
+ σ2vδ(xk, xl)

where σ2f is the process noise variance and ` is the correlation length which defines the
influence of one covariate xk on another covariate xl. The longer is the correlation length,
the higher will be the correlation between a covariate and another for a same distance
|xk−xl|. The estimation of hyper-parameters σf , ` and σv is described in the next subsection.
The observations noise variance σ2v only appears on the covariance matrix diagonal where
xk = xl, as observations error are assumed to be independent from one to another. Also,
the covariance matrix Σ needs to be positive semi-definite,

Σ =


σ2f + σ2v g(x1, x2) · · · g(x1, xN )

σ2f + σ2v · · · g(x2, xN )
. . . · · ·

Sym. σ2f + σ2v


GPR can estimate unobserved values f = [f(x1∗), f(x2∗), . . . , f(xP∗)]

ᵀ given the target
covariate values x∗ = [x1∗, x2∗, ..., xP∗]

ᵀ. GPR computes the covariance for all observed and
unobserved values and stores it in a new covariance matrix. The mean column vector M
is completed by the prior mean of the predictions M∗ of the target values x∗. And the
multivariate Gaussian distribution becomes,
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[
y
f

]
∼ N

([
M
M∗

]
,

[
Σ Σ∗

ᵀ

Σ∗ Σ∗∗

])
, with

Σ∗ =


g(x1∗, x1) g(x1∗, x2) · · · g(x1∗, xN )

g(x2∗, x2) · · · g(x2∗, xN )
. . . · · ·

Sym. g(xP∗, xN )



Σ∗∗ =


σ2f g(x1∗, x2∗) · · · g(x1∗, xP∗)

σ2f · · · g(x2∗, xP∗)
. . . · · ·

Sym. σ2f


The estimated values f dependent on the observations y are described by a multivariate

Gaussian distribution,

E[f ] = M∗ + Σ∗Σ
−1(y −M),

cov(f) = Σ∗∗ −Σ∗Σ
−1Σ∗

ᵀ,

f |y ∼ N (E[f ], cov(f))

Hyper-parameter estimation

With GPR, the parameters of the prior distribution i.e. the hyper-parameters, are
estimated using the dataset D. For the square exponential covariance function, the set of
hyper-parameters is Pf = {σf , `, σn}. According to Bayes theorem, the posterior probability
for hyper-parameters values is given by,

p(Pf |D) =
p(D|Pf ) · p(Pf )

p(D)

∝ p(D|Pf ) · p(Pf )

With the hypothesis that prior p(Pf ) is constant, the maximum values for the posterior
and the likelihood are reached for the same optimal value P∗f . In case where large datasets
are available, the variance var[Pf |D]→ 0 so that it becomes a reasonable assumption to
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employ the MLE approximation P∗f rather than the full posterior p(Pf |D). A practical
issue is that as the number of terms in the covariance matrix increases, the likelihood is
affected by zero underflow. Using the log-likelihood instead solves this issue and the MLE
of the hyper-parameters Pf becomes P∗f = arg max

Pf
{log(p(D|Pf ))}.

GPR FOR SPARSE AND HETEROSCEDASTIC DATASETS
To start with, the attention is restricted to the simplified context of a single covariate

value xi associated with a set of Ns observations Di = {(xi, sj , yj), j = 1, . . . , Ns}, where
each observed response yj ∈ R is obtained from a different specimen sj ∈ S = {1, · · · , Ns}.
For different specimens, observations are realizations of the process yj : Y = T + V , where
the random variable T ∼ p(t;Pt) describes the inter-specimens variability and V is the
observations errors. In this case the realization t of the inter-specimens variability T is
defined by the variable its parameters Pt. In this context, the aim is the characterization of
the posterior predictive probability density function (pdf) when posterior hyper-parameters
uncertainty is marginalized,

T̃ ∼ p(t|Di) =

∫
p(t;Pt) · p(Pt|Di)dPt.

For general cases, inferring the posterior pdf for hyper-parameters p(Pt|Di) using Bayes
theorem,

p(Pt|Di) =
p(Di|Pt) · p(Pt)

p(Di)

and marginalizing its effect in the posterior predictive are known to be challenging tasks
(Murphy 2007; Gelman et al. 2014). If specific conjugate distributions are employed to
describe the prior knowlege p(Pt) and the likelihood of observations p(Di|Pt), both the
posterior p(Pt|Di) and the posterior predictive p(t|Di) can be exactly calculated with little
efforts using analytic formulations (Gelman et al. 2014).

The challenge is that in common experimental setups, such as the example presented in
Figure 2, the number of observations yj available for any given covariate xk or xl is most
often equal to either zero or one. In such a context, it is not possible to take advantage of the
analytic formulations allowed by conjugate priors. This section presents how a combination
of GPR and conjugate priors overcomes this limitations.

Combining GPR and conjugate priors

The first aspect of the method proposed consists in employing the GPR method to
build a joint model for each of the Ns specimens. The joint model requires increasing
the covariate set to include both experiments input x = [x1, x2, ..., xN ]ᵀ with xi ∈ R
and specimens numbers s = [s1, s2, ..., sN ]ᵀ with sj ∈ S. Because such a model enables
predicting the response for each specimen sj for any covariate xi, it will be possible to
employ conjugate priors to characterize inter-specimen variability.
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A single observation for  

Figure 2: Example of observations obtained on replicated specimens for a set of covariates
values. This Figure illustrates the challenge that for most covariate x either only one or no
observation is available.

The joint model for multiple specimens employs the modified square exponential covari-
ance function,

g(xk, xl, sk, sl) =

(
σ2f exp

[−(xk − xl)2
2`2

]
+ σ2vδ(xk, xl)

)
· δ(sk, sl). (2)

This new formulation implies that there is no correlation between two distinct specimens,
indeed for sk 6= sl, g(xk, xl, sk, sl) = 0. This allows taking into account dependency within
a same specimen. This covariance function enables the creation of a single model sharing
the same hyper-parameters Pt = {σf , `, σv} for all of the Ns specimens and for the N
observations. Like for the standard GPR formulation presented in Section 2, the hyper-
parameters Pt are estimated from data using a MLE approach. For each one of the Ns

specimens, GPR employs the complete dataset D = {Di, i = 1, . . . , N} to estimate the
expected value and covariance for f(xi∗, sj) for any covariate xi∗ ∈ R and any specimen
sj ∈ S. For example, given a dataset of three specimens, Figure 3 schematizes the
predictions of the GPR; note that the between-specimen heteroscedastic uncertainty is
not yet considered. Because of the covariance function in Equation 2, which separates the
specimens, GPR provides, for a single covariate xi∗, the marginal distribution for f(xi∗, sj),
and this for each specimen of S. Then, given three tested specimens, GPR results are
f ∼ f(xi∗, [s1, s2, s3]

ᵀ) = N (M,Σ) with the column vectors M = E(f) and Σ = cov(f).

Heteroscedasticity and Conjugate distribution

The methodology proposed to overcome limitations presented in the previous section
employs GPR to estimate f(x∗, s), for any target covariate value xi∗, and for any specimen
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f(x i* ,s1)
f(x i* ,s2)
f(x i* ,s3)
E[f(x i* ,s1)]
E[f(x i* ,s2)]
E[f(x i* ,s3)]

t

Figure 3: Example of predicted marginal distributions for three specimens for the covariate
value xi∗.

sj . Therefore, at a given xi∗, even if no actual observation is available for this specific
covariate, the Ns missing values are provided by the GPR predictions f(xi∗, s). The
prediction accuracy depends on the number of observations per specimen, the larger the
dataset the more reliable will be the prediction of the specimen behaviour.

As explained in Section 3, the predictive inter-specimens variability T̃ ∼ p(t;Di) can be
modeled with analytic formulations provided by conjugate priors. However, the conjugate
prior formulation employed is only suited for perfect observations that are not contami-
nated by any uncertainties (Murphy 2007). In this paper, GPR outputs are probability
density functions (pdfs). Here, a sampling-based approach is employed to marginalize the
GPR output uncertainties in order to obtain the posterior predictive pdf T̃ . The model
explainations will focus on one single covariate value xi∗ as the method is applicable for
any other covariate value xi∗ with i = 1, . . . , N . That way, for the covariate xi∗ and given
the GPR joint Normal distribution f(xi∗, s) with the column vector s = [1, 2, . . . , Ns]

ᵀ,
samples fq : f ∼ f(xi∗, s) = N (M,Σ) are drawn from the GPR distribution and passed
to the conjugate prior so that the new dataset is Dq

i = {(xi∗, fq)}, with q the number of
samples.

In order to estimate the posterior predictive pdf T̃q ∼ p(t;Dq
i ) for the covariate value

xi∗, the posterior pdf for hyper-parameters p(Pt|Dq
i ) has to be defined first. Assuming that

the variable Tq ∼ p(t;Pt) which describes the inter-specimens variability follows a Normal
distribution, the conjugate prior associated to a Normal likelihood N (µi, σ

2
i ) with unknown

parameters µi and σ2i is a Normal-Inverse-Gamma distribution NIG(m0, V0, a0, b0) (Murphy
2007). Following Bayes theorem and with the dataset Dq

i , the posterior distribution of the
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hyper-parameters Pt = {µi, σ2i } can be written as,

p(Pt|Dq
i ) =

p(Dq
i |Pt) · p(Pt)
p(Dq

i )

∝ p(Dq
i |Pt)︸ ︷︷ ︸

Likelihood
N (µi, σ

2
i )

· p(Pt)︸ ︷︷ ︸
Prior

NIG(m0, V0, a0, b0)

.

The hyper-parameters posterior distribution p(µi, σ
2
i |Dq

i ) follows a Normal-Inverse-Gamma
distribution NIG(mNs , VNs , aNs , bNs) (Murphy 2007). With the hypothesis that there is
no prior knowledge on the hyper-hyper-parameters (parameters of the hyper-parametres),
their initial values Pc = {m0, V0, a0, b0} are chosen to tend to zero (i.e. 10−6) in order to
represent the absence of prior knowledge. The hyper-parameters posterior follows,

p(µi, σ
2
i |Dq

i ) = NIG(mNs , VNs , aNs , bNs)

V −1Ns
= V −10 +Ns = Ns,

mNs
VNs

= V −10 m0 +Nsfq = Nsfq,

aNs = a0 +
Ns

2
=
Ns

2
,

bNs = b0 +
1

2

[
m2

0V
−1
0 +

∑
fq

2 −m2
Ns
V −1Ns

]
=

1

2

[∑
fq

2 −m2
Ns
V −1Ns

]
.

Finally, the posterior predictive is the compound distribution of the Normal prior predictive
and the Normal-Inverse-Gamma hyper-parameters posterior. The result is a Student’s
t-distribution,

T̃q ∼ p(ti|Dq
i ) =

∫∫
p(ti|µi, σ2i ) · p(µi, σ2i |Dq

i ) dµi dσ
2
i

= t2aNs

(
mNs ,

bNs(1 + VNs)

aNs

)
= t2aNs (µT̃ , σ

2
T̃Σ

).

It must be noted that σ2
T̃Σ

is the scale parameter linked to the variance σ2
T̃

by

σ2
T̃

=
ν

ν − 2
σ2
T̃Σ
, with ν = 2aNs posterior degrees of freedom.

This last posterior predictive T̃q can be evaluated for every covariate xi∗ with i = 1, . . . , N .
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Prediction of an untested specimen

It is now possible to predict the mean and the variance of an untested specimen Ns + 1,
relying on the dataset of Ns tested specimens. To do so, the previous method has to be
repeated for a large number of samples through a Monte Carlo method. This means sampling
Q times the estimates fq for the covariate xi∗, which will provide Q Student’s t-distributions
samples t̃q : T̃q. From the posterior predictive distribution T̃q, the model can predict, for
xi∗, the response of an untested specimen Ns + 1 which is t̃q : T̃q ∼ t2aNs (µT̃ |fq, σ2T̃Σ

|fq).
This prediction is also repeated Q times based on the Q sampled distributions T̃q in order
to obtain the mean of the specimen Ns + 1 for the covariate xi∗,

E[T̃ ] ≈ 1

Q

∑
q

t̃q

The empirical confidence interval of the predicted and untested specimen Ns + 1 is also
evaluated after sampling Q times the posterior predictive Student’s t-distributions T̃q. The
Q samples describe the confidence interval for the specimen Ns + 1 at a given covariate
xi∗. The method has been described for a given single covariate value xi∗, all of it can be
replicated for any other covariate value.

CASE-STUDY: PERMEABILITY OF HIGH PERFORMANCE FIBER-REINFORCED
CONCRETE

Test description

The method proposed in this paper is applied to a concrete laboratory experiment. The
aim is to model water permeability in high performance fiber-reinforced concrete (HPFRC)
in tie-specimens, which is function of the applied stress on the specimen. The model is
employed to evaluate the probabilities to obtain a lower water permeability with higher
fiber ratios. The dataset studied is the result of experiments performed by Hubert et al.
(2015). During these tests, water permeability measurements are performed on reinforced
concrete tie-specimens subjected simultaneously to a uniaxial tensile loading. Permeability
depends on how long it takes for the water to go through the entire sample. At the same
time, average stress is measured in the steel rebar placed inside the tie-specimen as shown
in Figure 4a. It can be noted that a tensile loading rate is maintained constant in order to
have a progressive cracking spread up to the yielding of the rebar in the tie-specimen.
During the experiment, 9 high performance fiber-reinforced concrete samples were tested,
more precisely, 3 samples for 3 different fiber ratios, 0%, 0.75% and 1.5%. Figure 4b
presents the set of data obtained from the experimental test. Notice that the range of stress
spreads from 150 MPa to 450 MPa which includes both service and ultimate limits. All nine
specimens, share a common behaviour ; water permeability increases with stress due to
cracks number and cracks width. The graph shows that adding fibers into concrete reduces
water permeability by an order of magnitude for fiber ratios 0% and 1.5%. This can be
explained by the large number of macro-cracks created in fiber reinforced concrete, whereas
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(a) a) Manometer and inlet tank. b) Differential
pressure transmitter. c) Pressure sensor. d)
Outlet tank
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(b) Representation of permeability observations
drawn from nine specimens subjected to tensile
stress

Figure 4: Permeability measurement setup and representation of the test results dataset.

in standard concrete, cracks are fewer but wider, increasing water permeability known to
be proportional to the cube of crack width.

From this set of data, it can be concluded qualitatively that fiber addition reduces
significantly water permeability and increases durability. However, raw data does not
quantify this benefit. Modeling water permeability using the method proposed in this paper
allows estimating the probability to obtain a lower permeability between each pair of fiber
ratios.

Probabilistic models

Hypotheses

In this case-study, heteroscedasticity is observable in permeability measurements for
Ns = 3 replicated specimens which are function of one covariate, the stress measured in
rebars. Indeed, the tensile loading on three replicated specimens under the same covariate
(stress) did not give the same permeability values, because it is, in practice impossible to
manufacture 3 identical prisms of fiber-reinforced concrete. Each fiber ratio, 0%, 0.75%,
1.5%, is studied individually, more precisely three datasets each containing three replicated
specimens are examined. Using the method proposed in this paper, the hypotheses assumed
regarding the Gaussian Process prior are related to the mean and covariance functions. For
the dataset D = {Di, i = 1, . . . , N} with Di = {(xi, sj , yj), j = 1, . . . , Ns}, the Gaussian
Process prior structure is built with the following mean function,

µ(xi) = a · xi + b with a, b ∈ R
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and covariance function,

g(xk, xl, sk, sl) =

(
3∑

r=1
σ2fr exp

[−(xk − xl)2
2`2r

]
+ σ2vδ(xk, xl)

)
· δ(sk, sl)

The main structure of the covariance function is the square exponential (SE) but adds two
other covariance functions, each having a different correlation length. It allows to consider
the impact of one covariate on another at three different scales. This way, the variability
on the permeability behaviour may be better approached and represented, whereas one
correlation length would only model the average variability. For this study, these new
covariance functions have been implemented in the open-source code Gaussian Processes for
Machine Learning (GPML) (Rasmussen and Nickisch 2010). To ensure a strictly positive
water permeability values, the method is applied in the log-space which means using the
log-permeability, the raw dataset becomes D = {(xi, log(yi)), i = 1, · · · , N}. Figure 5
presents the dataset plot in log-space. Note that the scale of the vertical axis has been
modified by the log-transformation.
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Figure 5: Representation of permeability observations function of the covariate stress in
log-space.

Hyper-parameters calibration

Once GPR prior structure is defined, hyper-parameters are identified by MLE. In
the model, one set of hyper-parameters, per fiber ratio, has to be estimated, Pf =
{a, b, σf1 , `1, σf2 , `2, σf3 , `3, σv}. The difficulty lies in finding the parameters needed to
initialize the MLE method. Without a proper choice for initial values, this last estimation
could be stuck in a local maximum and miss the global one. Initial parameters are defined
by observing the data behaviour at first, and then adjusted to assure the selection of a
valid starting point. Table 1 gathers the results of the highest Log-Likelihood (LL) and the
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hyper-parameters associated, for the three fiber ratios 0%, 0.75%, 1.5%.

Table 1: MLE Results.

Fiber Ratio
Hyper-parameters LL

a b σf1 `1 σf2 `2 σf3 `3 σn ·103

0% 0.0049 −13.33 0.213 288.42 0.094 76.22 0.012 9.46 0.032 1.70
0.75% 0.0060 −14.53 0.124 222.45 0.017 31.84 0.0024 10.25 0.031 1.30
1.5% 0.0080 −17.50 0.337 271.76 0.041 53.15 0.013 8.01 0.029 2.10

Results

Prediction of a new specimen

Figures 6 and 7 present the results of the method proposed applied to high performance
fiber-reinforced concrete experiments. They show the prediction of a fourth untested
specimen relying on the data from three tested ones, and that for three fiber reinforcement
ratios. Figure 6 presents the results in the log-transformed space, each graph matching a
fiber ratio. The possible response of a fourth specimen is modeled over the stress interval
σ = [150, 450] MPa, by a mean (thick black line) and its 90% confidence interval. In every
case, notice that, where water permeability observations spread, the confidence interval
is larger and where data points are concentrated the confidence interval tightens. The
probabilistic model in Figure 6c is displayed with a different scale for the vertical axis in
order to obtain a better visualization of the behaviour.

The set of graphs in Figure 7 present the results in the original space. The transformation
from the log to the original space tends to increase the confidence interval’s upper bond.
As permeability values are close to zero but at the same time remain positive, uncertainty
is skewed towards positive values. This explains the wide confidence interval for the
reinforcement ratio 1.5% since for this one, water permeabilities are closer to zero than for
the two other lower fiber ratios.

Comparison of fiber reinforcement ratios

The main goal of this case-study is to quantify the fiber addition benefits. This Section
compares the three tested reinforcement ratios ; the two first graphs in Figure 8 juxtapose
the three predictive models in the log and original spaces. Figure 8 shows that there
are overlaps in confidence intervals for several stress values. The conditional probability
Pr(kj < kj′ |σ), j 6= j′ ∈ [1, Ns], is estimated by comparing samples from pairs of fiber
ratios. A number of Q = 50000 samples are drawn from the Student’s t-distributions
t̃q : T̃q ∼ t2aNs (µT̃ |fq, σ2T̃Σ

|fq), estimated for a range of stress values σ.

In order to compute the joint probability over a stress interval Pr(kj < kj′ |150 MPa ≤
σ ≤ 450 MPa) it is essential to consider the correlation between kj and kj′ as a function
of stress values σ described in Section 4 for the GPR model. The results of samples
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Figure 6: Prediction of water permeability for a fourth untested specimen in the log-space.

comparisons are summarized in Figure 8c. In this case, the variable T̃q follows a Multivariate
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Figure 7: Prediction of water permeability for a fourth and untested specimen in the original
space.

t-distribution,

T̃q ∼ T (MT̃ ,ΣT̃ , ν) with,

MT̃ =


µT̃1

µT̃2
...

µT̃N

 ,

ΣT̃ =


σ2
T̃Σ1

ρ1,2σT̃Σ1
σT̃Σ2

· · · ρ1,NσT̃Σ1
σT̃ΣN

ρ2,1σT̃Σ2
σT̃Σ1

σ2
T̃Σ2

· · · ρ2,NσT̃Σ2
σT̃ΣN

...
...

. . . · · ·
ρN,1σT̃ΣN

σT̃Σ1
ρN,2σT̃ΣN

σT̃Σ2
· · · σ2

T̃ΣN

 ,

ν = 2aNs =
Ns

2
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The sampling method comprises sampling from T̃0 ∼ T (0, 1, ν) and then transforming
T̃q = MT̃ +Rᵀ · T̃0 with R = chol(ΣT̃ ), (RᵀR = ΣT̃ ).
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Figure 8: (a),(b) Predictive models and (c) comparison of conditional probabilities of
permeability in high-performance fiber reinforced concrete for the tested fiber reinforcement
ratios.

Figure 9 presents Pr(kj < kj′ |σk ≤ σ ≤ σl) between pairs of fiber reinforcement ratios
for any stress interval. For a chosen stress value σk from axis X and a chosen stress value
σl from axis Y, the surface provides the global probability of exceedance between two fiber
ratios, over the stress interval [σk, σl]. Notice that the diagonal cross-section for which
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σk < σl matches conditional probabilities from Figure 8c.
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Figure 9: Global probabilities of Pr(kj < kj′ |σk ≤ σ ≤ σl) for permeability across each pair
of fiber ratios.

The probabilities Pr(kj < kj′ |150 MPa ≤ σ ≤ 450 MPa) are presented in Table 2 for the
stress interval σ = [150, 450] MPa. The probability to obtain a lower water permeability by
adding 1.5% of fiber reaches 93% and 91% when comparing with fiber ratios 0% and 0.75%
respectively. Likewise, the probability to get a lower water permeability in concrete with
a reinforced ratio of 0.75% over 0% is 76%. These probabilities support the qualitative
assessment that fiber addition decreases permeability.

DISCUSSION
Probabilistic analyses demonstrate that an introduction of 0.75% or 1.5% of fibers
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Table 2: Probabilities over the entire stress interval to obtain lower water permeabilities
with higher fiber ratios.

Pr(kj < kj′ |150 MPa ≤ σ ≤ 450 MPa)

k0.75% < k0% 0.76
k1.5% < k0.75% 0.91
k1.5% < k0% 0.93

in concrete will, with a very high level of confidence, decrease water permeability in
concrete structures under load. As permeability is the main indicator of the durability of
cracked concrete, the incorporation of fibers will provide an extended durability to concrete
structures in service conditions. This statement obtained by the treatment of experimental
results by a probabilistic approach increases the value to be given to the results. It provides
a quantitative or a better certainty of the trends measured experimentally.

Despite the efficiency of the method, some limits remain ; the main difficulty lies in
the Gaussian Process hyper-parameters estimation. The MLE method can lead to a local
maximum likelihood instead of the global one and then providing biased hyper-parameters.
A careful choice of initial parameters values is therefore essential. Future work could further
study the potential of Bayesian parameter estimation for this purpose.

In the application of the method, three specimens were enough to provide a consistent
model of water permeability over stress. Also, it would be interesting to analyse the results
with the addition of a fourth studied specimen in the dataset and observe if the confidence
interval would decrease significantly in the prediction of a fifth untested specimen.

CONCLUSION
This paper proposes a new extension to Gaussian Process Regression for creating

probabilistic models from few laboratory specimens displaying a heteroscedastic behaviour.
The key aspect of this method resides in the combination of GPR and conjugate priors.
This new method can be applied to replicated specimens observations obtained from any
laboratory experiments. The application of this new method to a HPFRC case-study
probabilistically quantified how adding fibers to high performance concrete decreases water
permeability.
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