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RÉSUMÉ

La détérioration et la dégradation des infrastructures civiles telles que les ponts sont des
problèmes communs à la plupart des pays industrialisés. Ils entrâınent des dommages struc-
turels qui sont à l’origine de dépenses importantes liées au maintien de la sécurité et de
l’état de fonctionnement des infrastructures. Dans le contexte de la surveillance de la santé
structurelle (SHM), une approche courante consiste à utiliser des capteurs afin de surveiller
l’état des structures, par exemple, normal ou anormal, et d’identifier la présence de dom-
mages structurels. La détection des dommages à l’aide d’un système SHM est une tâche
difficile car ils se développent souvent au fil des années et ils ont généralement un effet sur
les réponses structurelles qui est d’un ordre de grandeur inférieur aux effets externes tels
que la température. En plus de détecter les anomalies, nous nous intéressons à quantifier
la capacité à détecter à juste titre ces dommages, c’est-à-dire quantifier la détectabilité des
dommages structurels, afin d’évaluer la viabilité et l’utilité d’un système SHM. Lorsqu’un
dommage structurel se produit, les réponses structurelles passent d’un état normal à un état
anormal. Ici, une anomalie fait référence à un tel écart, et est quantifiée par rapport à
ses caractéristiques consistant en l’ampleur de l’anomalie et sa durée. Ces caractéristiques
représentent la gravité d’un dommage structurel et son temps de développement, respec-
tivement. Par conséquent, les principaux objectifs d’un système SHM sont de détecter les
changements dans les réponses structurelles, c’est-à-dire les anomalies, et en outre, d’associer
l’ampleur de ces changements à la gravité des dommages structurels.

Les méthodologies de détection d’anomalies existantes ne sont généralement pas en mesure
d’associer l’apparition d’anomalies à des dommages structurels; ces méthodes manquent d’un
mécanisme pour quantifier la probabilité de détecter des anomalies en fonction de l’ampleur
d’une anomalie, de sa durée et du temps nécessaire pour détecter une anomalie après son
début, c’est-à-dire quantifier la détectabilité de l’anomalie. De plus, la capacité des méthodes
d’interprétation des données existantes utilisées pour détecter les anomalies est limitée : ces
procédés ne sont pas en mesure de faire la distinction de manière fiable entre un changement
dû à un écart par rapport à la condition normale, c’est-à-dire une anomalie, et un changement
dû à des variations d’effets externes, par exemple les fluctuations de température saisonnières.
En conséquence, les méthodes existantes génèrent souvent un grand nombre d’alarmes fausses
qui compromettent la viabilité d’un système de surveillance.

Cette thèse présente une nouvelle approche de détection d’anomalies qui permet de quan-
tifier de manière probabiliste la détectabilité des dommages structuraux. À cette fin, de



vi

nouvelles méthodologies basées sur les données sont proposées afin de a) détecter les anoma-
lies, b) quantifier de manière probabiliste la détectabilité des anomalies, c) associer l’ampleur
des anomalies aux niveaux de gravité des dommages structurels, et d) mesurer la capacité
d’une configuration de capteurs pour distinguer les dommages structurels, c’est-à-dire la
distinguabilité des dommages. Les méthodes de détection d’anomalies proposées dans ce
travail de recherche reposent sur des modèles linéaires dynamiques bayésiens ainsi que sur
l’apprentissage par renforcement et par imitation. Le premier permet de séparer les change-
ments dans les réponses structurelles de ceux causés par des effets externes. Les deux derniers
permettent d’incorporer les informations obtenues à partir des changements dans les réponses
structurelles afin de détecter un large éventail d’anomalies avec différentes amplitudes et
durées. De plus, la détectabilité des anomalies de chaque capteur est quantifiée à l’aide du
taux annuel de fausses détections ainsi que de la probabilité de leurs vraies détections. Le
premier est le nombre d’anomalies par an détectées à tort. Cette dernière est la probabilité
de détecter correctement une anomalie par rapport à l’ampleur de l’anomalie, sa durée et
le temps de détection. De plus, cette thèse propose une méthode afin d’examiner la ca-
pacité d’un capteur à détecter des dommages structurels avec différents niveaux de gravité.
Cette méthode repose sur a) la quantification des changements dans les réponses struc-
turelles causées par un dommage structurel basé sur un modèle physique de la structure, et
b) la comparaison de ces changements à l’emplacement des capteurs avec les magnitudes de
l’anomalie détectable obtenues à partir de la détectabilité de l’anomalie de chaque capteur.
De plus, cette thèse développe une métrique afin de mesurer la distinguabilité des dommages
de différentes configurations de capteurs, et par la suite de identifier la configuration qui
maximise la distinguabilité des dommages. Les méthodologies proposées dans cette thèse
sont validées à l’aide de mesures réelles recueillies sur trois travées instrumentées du pont
Jacques-Cartier, Canada.
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ABSTRACT

The deterioration and degradation of civil infrastructures such as bridges are common issues
among most industrialized countries. They result in structural damages that are responsible
for important expenses associated with maintaining the safety and serviceability of infras-
tructures. In the context of structural health monitoring (SHM), a common approach is to
use sensors in order to monitor the condition of a structure, e.g., normal or abnormal, and
identify the presence of structural damages. Detecting damages using a SHM system is a dif-
ficult task because they often develop over the span of years, and they typically have an effect
on structural responses which is orders of magnitudes smaller than external effects such as
the temperature. In addition to detecting anomalies, we are interested in quantifying the ca-
pacity to rightfully detect these damages, i.e., quantifying the structural damage detectability,
in order to evaluate the viability and usefulness of a SHM system. When a structural damage
occurs, structural responses depart from a normal condition to an abnormal one. Here, an
anomaly is referred to such a departure, and is quantified with respect to its characteristics
consisting in an anomaly’s magnitude and its duration. These characteristics represent the
severity of a structural damage and its time to develop, respectively. Therefore, the core
objectives for a SHM system is to detect changes in structural responses, i.e., anomalies, and
further, to associate the magnitudes of these changes to the severity of structural damages.

Existing anomaly detection methodologies are typically not able to associate the occurrence
of anomalies to structural damages; These methods lack a mechanism to quantify the proba-
bility of detecting anomalies as a function of an anomaly’s magnitude, its duration, and the
time required to detect an anomaly after its starting time, i.e., quantifying the anomaly de-
tectability. The capacity of existing data interpretation methods used for detecting anomalies
are limited: These methods are not able to reliably discriminate between a change due to a
departure from the normal condition, i.e., an anomaly, and a change due to external effect
variations, e.g., the seasonal temperature fluctuations. As a result, existing methods often
yield a large number of false alarms that undermine the viability of a monitoring system.

This thesis presents a new anomaly detection approach that enables quantifying probabilis-
tically the structural damage detectability. To this end, new data-driven methodologies are
proposed in order to a) detect anomalies, b) quantify probabilistically the anomaly detectabil-
ity, c) associate the magnitudes of anomalies to the severity levels of structural damages, and
d) measure the capacity of a sensor configuration in distinguishing structural damages, i.e.,
the damage distinguishability. The anomaly detection methods proposed in this thesis rely on
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Bayesian dynamic linear models as well as the reinforcement and imitation learning methods.
The former allows separating the changes in the structural responses from the ones caused by
external effects. The latter two enable incorporating information obtained from the changes
in the structural responses in order to detect a wide range of anomalies with different mag-
nitudes and durations. Furthermore, the anomaly detectability of each sensor is quantified
using the false detection rate of anomalies as well as the probability of their true detections.
The former is the number of anomalies per year that are wrongfully detected. The latter is
the probability of rightfully detecting an anomaly with respect to an anomaly’s magnitude,
its duration, and the time to required to detect an anomaly after its starting time. Moreover,
this thesis proposes a method in order to examine the capacity of sensors to detect structural
damages with different severity levels. This method relies on a) quantifying the changes in
structural responses caused by a structural damage based on a physics-based model of the
structure, and b) comparing these changes at the location of the sensors with the detectable
anomaly’s magnitudes obtained from the anomaly detectability of each sensor. Furthermore,
this thesis develops a metric in order to measure the damage distinguishability of different
sensor configurations, and subsequently identify the configuration that maximizes the dam-
age distinguishability. The methodologies proposed in this thesis are validated using real
measurements collected on three instrumented spans of the Jacques Cartier Bridge, Canada.
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Ẑ Demonstration
Ξ Demonstrations set
M, N Discretization size
d Discretization map
d̂ Damage vector
µ ≡ E Expected value vector
Z Episode
E Extensometer
cε Exploration constant
x Hidden state variable vector
rt Innovation vector
Gt Innovation covariance matrix



xxvii

M Joint regime probability
Kt Kalman gain matrix
xKR Kernel regression hidden state variable
` Kernel length or the initial length of the extensometer
xL Level hidden state variable
xLA Local acceleration hidden state variable
IL Lateral inclinometer
I1 Longitudinal inclinometer on axis 1
I3 Longitudinal inclinometer on axis 3
cα Learning-rate constant
M Model matrices set
Lt Marginal likelihood
d Modified damage vector
N Number of visited states by an agent
K Number of consecutive episodes
Q Number of damage scenario
y Observation vector
v Observation model error vector
C Observation matrix
R Observation model error covariance matrix
p Probability density or transition probability function
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CHAPTER 1 Introduction

The deterioration and degradation [7] of civil infrastructures such as bridges refer to the
changes in the structural performance due to changes in the material or geometry of an
structure. They are common issues among most industrialized countries where they are re-
sponsible for societal expenses affecting economical growth [8]. Civil infrastructures have to
be maintained and monitored in order to ensure their serviceability and safety [9,10]. To this
end, structural health monitoring (SHM) systems have been of interest to many researchers
and asset owners [11]. SHM systems often use sensors to provide continuous measurements
about the structural responses and its surrounding environment [12]. These measurements
are then interpreted in order to provide information about the state of a structure, e.g.,
normal or abnormal, as well as the presence of structural damages.

Structural responses depart from a normal condition to an abnormal one, when a structural
damage occurs. Here, an anomaly refers to such a departure, and is quantified with respect
to its characteristics consisting in an anomaly’s magnitude and its duration. They represent
the severity of a structural damage and its time to develop, respectively. The core objectives
for a successful SHM system is to detect changes in structural responses, i.e., anomalies, and
further to associate their magnitude to the severity levels of structural damages. Addressing
these objectives involves coping with some challenges, because structural damages typically
develop over the span of years, and they typically have an effect on structural responses
which is orders of magnitudes smaller than external effects such as the temperature. There-
fore, methodologies developed for interpreting data and detecting anomalies should be able
to discriminate between changes in the structural responses from the external effects. In
addition, SHM data interpretation and anomaly detection methods require to minimize the
false detection of anomalies, maximize their true detections, and distinguish between differ-
ent structural damages [11, 13]. Addressing these requirements would ensure a reliable and
useful SHM system for the long-term monitoring of civil infrastructures.

Existing data interpretation methods are limited in their capacity at removing external effects
such as traffic and temperature fluctuations. Therefore, it is difficult to distinguish a change
in the behavior of a structure from an unusually heavy traffic load, or a seasonal change in
temperature. Moreover, they often rely on a threshold mechanism for detecting anomalies; A
decision maker triggers an alarm, if the difference between predicted structural responses and
observations exceeds predefined threshold values. The lack of capacity to remove external
effects when using threshold-based anomaly detection methods typically results in a large
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number of false alarms that undermines the viability of the analyses derived from the data
used for the continuous monitoring of structures. In addition, even if the data interpretation
is carried out as expected, existing anomaly detection methods are not able to quantify
probabilistically the capacity of sensors at detecting anomalies with respect to an anomaly’s
magnitude, its duration, as well as the time required to detect an anomaly, i.e., quantifying
the anomaly detectability. Moreover, existing methods are often not able to associate the
occurrence of an anomaly’s magnitude, if detected, to the severity of structural damages,
i.e., quantifying the structural damage detectability, in order to evaluate the viability and
usefulness of a SHM system. Besides, an anomaly’s magnitude could be associated to different
types of structural damages, yet these methods lack a mechanism to evaluate the performance
of a sensor configuration in discriminating between these damages, i.e., structural damage
distinguishability.

1.1 Objectives and Contributions

This thesis aims at developing data-driven methods that are well suited for monitoring the
condition of civil infrastructures based on quantifying two criteria: (i) The anomaly de-
tectability and (ii) The structural damage distinguishability. The former enables minimizing
the false detection of anomalies, while maximizing their true detections. The latter allows
associating the magnitudes of detected anomalies to the severity levels of structural damages
by using multiple sensor configurations. The aforementioned criteria are the basis for the
contributions made in this research work. They form the main objectives of this thesis that
are summarized as:

• Formulate a methodology for identifying alarm triggering policies in order to detect
anomalies. The methodology needs to limit the false alarms, while maintaining the
anomaly detectability for anomalies with low magnitudes and long durations.

• Develop a method for characterizing probabilistically the anomaly detectability of a
SHM system. The characterization needs to be presented probabilistically as a function
of an anomaly’s magnitude, its duration, and the time required to detect an anomaly.

• Develop a methodology in order to associate the magnitudes of anomalies to the severity
levels of structural damages in order to discriminate the damages that are detectable
from the ones that are not.

• Develop a metric in order to quantify the distinguishability of different structural dam-
ages over different sensor configurations.
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The general flow of this thesis is illustrated in Figure 1.1. The arrows indicate the input-
output of eight distinct elements representing the aforementioned objectives. These elements
are categorized in four general steps, namely measurement, state inference, decision making,
and damage distinguishability. The following subsections present the detailed descriptions of
these elements.

Measurement

The goal of this step is to present the Jacques Cartier Bridge as well as the measurements
collected from three instrumented spans. First, we present the case study because each
chapter in this thesis presents methodologies to address particular objectives, followed by
a validation for the Jacques Cartier Bridge. Moreover, this step presents the preprocessing
procedures for the data collected, identify the possible issues regarding the data acquisition,
and discuss the reliability of the collected data for the long-term monitoring of the Jacques
Cartier Bridge. The first three elements, from left to right, shown in Figure 1.1, corresponding
to this step are: (i) The sensor technology used on the bridge, including the sensors types
and their locations, (ii) The Jacques Cartier Bridge involving its general layout and the
characteristics of the instrumented spans along with the sensors configuration, and (iii) The
data collected on three instrumented spans along with the preprocessing procedure.

State Inference

The goal of this step is to interpret the preprocessed data in order to remove the external ef-
fects from the measurements collected on a structure. The proposed interpretation technique
uses Bayesian dynamic linear models (BDLM) from the field of machine learning to create
empirical models. An empirical model learns to reproduce the behavior of a system, e.g.,
a bridge, from the measurements recorded on it. In contrast to physics-based models, e.g.,
finite element model, the empirical models do not contain information about the geometry
and a structure’s properties. Therefore, empirical models allow resources to be concentrated
on the development of a single generic model that can then be used to interpret data from
any bridge. As shown in Figure 1.1, the elements corresponding to this step are as follows:
(iv) Bayesian dynamic linear model in order to build generic empirical models, and (v) Mea-
surements decomposition consisting in the underlying structural responses and the external
effects.
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Figure 1.1 The general flow of this thesis composed of eight distinct elements, namely (i) sen-
sor technology, (ii) structural characteristics and sensors configuration, (iii) measurements,
(iv) Bayesian dynamic liner models (BDLM), (v) measurement decomposition, (vi) rein-
forcement learning (RL) or limitation learning (IL), (vii) alarm triggering policies, and (viii)
damage distinguishability.

Decision Making

The main objective of this step is to quantify the anomaly detectability of each sensor using
the underlying structural responses obtained from the previous step. To this end, the first step
is to develop an anomaly detection method capable of operating for a wide range of anomalies.
The proposed anomaly detection method uses the reinforcement learning (RL) and imitation
learning (IL) approaches from the field of machine learning. In the reinforcement learning
approach, instead of defining rule-based alarm-triggering thresholds, we let agents figure out
how to optimally trigger alarms while satisfying our preference constraints encoded in a
reward function for true anomaly detections, false alarms, and missed alarms. On the other
hand, in the imitation learning approach, an agent learns the optimal policy by imitating
a demonstration set for which the corresponding optimal policy is issued beforehand. This
approach is analogous to a classification problem where the objective is to determine the
alarm triggering policy, i.e., to trigger an alarm or not. With the anomaly detection method
developed, the detectability of anomalies is quantified through an annual false alarm ratio and
a probability of true detections that is a function of the anomaly’s magnitude, its duration
and the time required to detect an anomaly. The former expresses the number of false
alarms that the anomaly detection method yields, and the latter is its capacity at rightfully
detecting anomalies. Upon addressing the objectives of this section, the anomaly detectability
quantification will serve for the next step. From Figure 1.1, the associated elements are: (vi)
Reinforcement learning or imitation learning approaches as the basis for detecting anomalies,
and (vii) Alarm triggering policies which dictate the optimal action, in this case triggering
an alarm in the presence of an anomaly or not triggering an alarm otherwise.
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Damage Distinguishability

The ensemble of methods developed in the previous steps enables associating the magnitudes
of detected anomalies to the severity levels of structural damage scenarios, and evaluating the
capacity of different sensor configurations in discriminating between these damages. There-
fore, we are able to judge the performance of various sensor types along with their placements
in order to maximize the distinguishability between different structural damage scenarios; It
enables discriminating between the damage scenarios that will be detectable from those that
will not, thus setting realistic expectations with respect to the capacity of a structural health
monitoring system. In Figure 1.1, this step is associated with the last element: (viii) damage
distinguishability.

1.2 Thesis Structure

In this thesis, first we propose an anomaly detection method for interpreting data collected on
civil infrastructures. In addition, we present methodologies in order to quantify the anomaly
detectability of sensors with respect to two metrics, namely the annual false alarm ratio and
the probability of true anomaly detections. The former quantifies the number of anomalies
per year that are wrongfully detected. The latter quantifies the probability of rightfully
detecting an anomaly with respect to an anomaly’s magnitude, its duration, and the time
required to detect an anomaly. This thesis validates the methodologies developed on three
instrumented spans of the Jacques Cartier Bridge in Canada. Upon quantifying the anomaly
detectability, we present methodologies in order to associate the magnitudes of detected
anomalies to the severity levels of structural damages, and maximize the distinguishability
between them using multiple sensor configurations. Figure 1.2 illustrates the structure of the
current thesis with respect to the objectives presented in Section 1.1. The four aforementioned
steps are shown along with their corresponding chapters. The arrows show the flow of theses
steps. Chapter 2 provides the literature review for the existing methods along with the
necessary background for Chapters 3-6. Chapter 3 presents the Jacques Cartier Bridge
instrumentation as well as the acquired measurements. Furthermore, this chapter presents
the analysis carried out on the time series data obtained from the sensors. Chapter 4 presents
the methodologies developed based on the reinforcement learning approach for detecting
anomalies as well as for the anomaly detectability quantification. Chapter 5 presents the
methodologies developed based on the imitation learning approach for detecting anomalies,
and for the anomaly detectability quantification. Chapter 6 presents the damage scenario
detectability and distinguishability methodologies based on the anomaly detection methods
developed in the previous chapters. Chapter 7 presents the conclusion of the current research
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Measurement
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Literature Review & Background
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Chapters 4 & 5

Chapter 3
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Figure 1.2 The structure of the current report. The project’s objectives are divided in four
steps, namely measurement, state inference, decision making, and damage distinguishability.

project along with its limitations and future work.

Co-Authored Papers

A part of the work presented in this thesis has already been published. The list of the
published co-authored papers are

− S. Khazaeli and J.-A. Goulet, “Damage detection for structural health monitoring using
reinforcement and imitation learning,” Engineering application of artificial intelligence,
(submitted) 2022.

− S. Khazaeli, L. H. Nguyen, and J.-A. Goulet, “Anomaly detection using state-space
models and reinforcement learning,” Structural Control and Health Monitoring, vol.
28, no. 6, p. e2720, 2021.

− L. H. Nguyen, I. Gaudot, S. Khazaeli, and J.-A. Goulet, “A kernel-based method for
modeling non-harmonic periodic phenomena in Bayesian dynamic linear models,” Fron-
tiers in Built Environment, vol. 5, p. 8, 2019.
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CHAPTER 2 Literature Review and Background

This chapter presents a review of existing structural health monitoring strategies along with
the methods for detecting anomalies and their limitations. In addition, this chapter presents
the limitations of existing methods for detecting structural damages. Furthermore, this chap-
ter provides the background for the methodologies developed in this thesis. In this regard,
it presents the fundamentals of Bayesian dynamic linear models (BDLM) that are empirical
models based on the data collected on a structure in order to separate the external effects
such as the temperature from the structural responses. In addition, it presents the limitations
of a BDLM for detecting anomalies. Afterwards, This chapter presents the fundamentals as-
sociated with the reinforcement learning (RL) and imitation learning (IL) approaches, and
discuss how these approaches may overcome the existing limitations corresponding to detect-
ing anomalies.

2.1 Structural Health Monitoring

The deterioration and degradation of civil infrastructures such as bridges are responsible for
important societal expenses. According to the latest Canadian infrastructure report card
(CIRC) [14], nearly 40% of roads and bridges are in fair or worse condition. An independent
report carried out by Trisura [15] has indicated that according to the Canadian federation of
municipalities (FCM), there is a need for more than $250 billion dollars of investment in order
to bring Canadian infrastructures to an acceptable condition. Moreover, Risk Analytica [16]
has claimed that the Canadian government needs to invest annually 5.1% of its gross domestic
product (GDP) on infrastructure over a span of 50 years in order to reach a maximum GDP
growth, from which 22% of this investment should be allocated for repairs and maintenance.

In the U.S., the American road and transportation builder association (ARTBA) [17] has
found that more than 46000 bridges are in poor condition, for which one out of three needs
to be repaired or replaced. The American society of civil engineers (ASCE) estimated the
gap in investment to maintain infrastructures in a good condition to be 2.5 trillion dollars
over the next 10 years [18]. The latest ASCE estimations have revealed that underinvestment
in infrastructures will cost more than 10 trillion dollars by 2039. Despite the need for such
a large amount of investments, limited financial resources prohibit the maintenance of all
infrastructures at the same time. To address this limitation, an approach is to monitor
infrastructures in order to assess their condition and enable the data-driven allocation of
resources.
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Structural health monitoring (SHM) aims at providing information about structural condition
for decision makers in order to support the operation, maintenance, and the replacement of
structures [10,13]. SHM uses sensors to collect measurements about the structural responses
and their surrounding environment. The measurements are then interpreted to infer the
condition of a structure over time. In this regard, an anomaly, is defined as a change in the
structural responses from a reference condition that is referred to as the normal condition.
Changes from the normal condition of a structure are often associated with various damages
that can developed over a period spanning several years. Therefore, a SHM system should
focus on the long-term monitoring of structures in order to detect anomalies at an early
stage before they become critical. In the context of anomaly detection, a true detection
consists in correctly identifying an anomaly when it occurs. In contrast, a false detection,
i.e., a false alarm, occurs when a decision maker wrongfully identifies the presence of an
anomaly. Therefore, detecting anomalies and avoiding false alarms is the primary objective
when developing anomaly detection methods in the context of structural health monitoring.

A SHM system requires building a model in order to analyze structural responses; From the
modeling perspective, two primary SHM approaches are identified in the literature, namely
physics-based and data-driven models [13,19]. Physics-based models rely on physical princi-
ples to build a model for a structure. Such a model is used to analyze structural responses
in order to gain knowledge about damage sensitive properties associated with the structure’s
mass, stiffness, and damping. The finite element (FE) method [20] is among popular ap-
proaches to create physics-based models for structures. Once a FE model is built, structural
responses obtained from sensors are used to update damage sensitive properties of the model,
so they coincide with the measured responses from the sensors [21,22]. Afterwards, a decision
maker can use changes in damage sensitive properties during the updating process in order
to identify the presence of damages and their potential locations. However, physics-based
models have a limited ability to represent structural responses over time when subject to
complex environmental conditions such as traffic load and air temperature, which leads to a
limited scalability [19]. In addition, physics-based models are often case-specific in the sense
that a decision maker needs to treat each structure individually and build a separate model
for each of them. This results in additional complexities and costs during the model building
and re-calibration steps.

In contrast, data-driven models solely rely on structural responses without the necessity of
building a physics-based model. Many methods from the field of statistics and machine
learning have been developed in order to detect anomalies in time series data. The reader is
referred to [19, 23, 24] for a detailed review of these methods. The vast majority of existing
data-driven anomaly detection approaches are based on a threshold-based alarm-triggering
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paradigm. In general, these methods create a model from a training dataset representing the
normal signature of a structure. Training datasets often consist in damage sensitive features
extracted from dynamic responses of structures. For instance, Balsamo et al. [10] used
Mel-frequency cepstral coefficients extracted from structural vibration responses as damage
sensitive features. Such coefficients are defined in the context of cepstrum domain from the
field of speech recognition, and have been showed to be effective in the context of structural
health monitoring applications. Once a model is built from training datasets, the newly
collected data are analyzed and tested against the model in order to identify whether or not
the predictions fit the test data within an acceptable threshold. For instance, Morgantini et
al. [25] and Achilli et al. [26] used the squared Mahalanobis distance as metric to measure the
distance between the model predictions and the test dataset, and the assessment regarding
the presence of an anomaly is carried out by comparing this distance with a predefined
threshold. The reader is referred to [19, 27–31] for examples of threshold-based anomaly
detection methods. The key limitation of these methods is not related to the choice of a
particular mathematical formulation for modeling time series data, but to the way anomalies
are detected; The presence or absence of an anomaly is inferred based on the difference
between the predicted values returned by the model and those observed on a structure. This
approach is subject to a tradeoff between the frequency of false alarms and the anomaly
detectability. This aspect is the key factor limiting the scalability of a SHM system for
anomaly detection as outliers and changes in the conditions surrounding a structure cause
frequent false alarms that need to be mitigated by raising the detection threshold, which
in turn reduces the detectability of anomalies. One method that has tackled several of the
limitations with respect to the threshold-based approaches for anomaly detection relies on
the Bayesian dynamic linear model (BDLM) [32] that will be reviewed in Section 2.2.

Another limitation of existing data-driven methods is that when a model is built, it cannot
be continuously adapted as new data are collected [19,33–35]. In addition, they need labeled
data, where anomalies have been identified, which are typically not available for many civil
structures or costly to obtain. In particular, anomalies in infrastructures are rare events, and
yet in many cases, existing methods require labels for the structural conditions resulting in
a limited scalability [10,30,33,36,37].

Another limitation is that most existing methods have not been developed or validated with
real operational conditions, where a full-scale structure is studied in its operational environ-
ment, and where it is subject to loading such as traffic, and external effects such as tempera-
ture and weather changes. Moreover, existing methods typically study ad-hoc punctual and
sudden damage scenarios whereas in practice we are interested in detecting anomalies that
have a small magnitude, which develop over a time-span of years. For examples, Farrar and
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Worden [19] have employed statistical pattern recognition to find the anomalies and corre-
lated them to different damage scenarios on a benchmark laboratory structure in the Los
Alamos National Laboratory, USA. Ghazi and Büyüköztürk [28] have employed hypothesis-
testing for damage detection of a laboratory structure using energy-based non-linear features.
Balsamo et al. [10] and Li et al. [31] have employed cepstural damage sensitive features and
examined them on a simulated and a laboratory shear-type building. Overall, there is a lack
of methods that been validated in real-life operational condition for a wide range of anomaly
scenarios.

A common approach to quantify the performance of anomaly detection methods is to use
metrics such as accuracy, F1-score, and recall, in order to quantify true and false anomaly
detections [38–40]. In general, an effective anomaly detection method results in metrics
indicating a high early true detection rate, while keeping a low false alarm rate. However,
existing metrics do not account for anomaly characteristics such as the anomaly’s magnitude,
its duration and time to detection; Anomalies affect the measurements collected on a structure
by creating a deviation in the behavior of structures representing the normal condition. This
deviation can be quantified in terms of its magnitude, which is referred to as the anomaly
magnitude. In addition, such a deviation occurs over a period of time known as the anomaly
duration. The time to detection refers to the time that a SHM method takes in order to
identify the presence of an anomaly after its starting time.

A structural health monitoring system should select sensor configurations such that they (i)
lower the costs associated with the type and number of sensors, (ii) minimize false detec-
tions of anomalies, while maximize their true detections, (iii) discriminate between different
structural damages, and (iv) separate the environmental effects from the structural mea-
surements [11]. Therefore, data interpretation and anomaly detection methods proposed in
the literature play the key role in order to determine the best sensor configuration. One of
the most popular methods in detecting anomalies is associated with vibration-based mon-
itoring [41] for which the idea is that any mechanical change in the structure is reflected
in the changes in its dynamic characteristics such as mode shapes. A mode shape refers
to the deformation of a structure vibrating at its natural frequency [42]. When a damage
occurs, the natural frequency changes, hence the corresponding mode shape. Kammer [43]
employed a metric called the Fisher information matrix (FIM) in order to track the changes
in the structural mode shapes. A change in the FIM metric is an indication of a change
in the mode shapes so as in the dynamic characteristics of a structure. Therefore, changes
in a FIM metric are implicitly associated with anomalies that occurred on a structure. As
a result, the best sensor configuration is the one which results in a higher FIM because it
maximizes the information corresponding to the data acquired from the locations yielding
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best modal identification [44]. Another metric employed for identifying an optimal sensor
configuration relies on the signal-to-noise ratio (SNR) [45]. This metric is obtained by mod-
eling the measurements at different sensor locations as a function of the spatial location of
the sensors. A higher value for the SNR indicates that the location of the sensor results
in gaining more information about the structural condition. Using FIM and SNR metrics
in order to identify the best sensor configuration is an optimization problem for which the
objective is to maximize the values of these metrics. The reader is referred to [11,45–48] for a
detailed explanation about formulating these methods and solving the resulting optimization
problem. However, using such metrics only paints a part of the picture as there is only an
indirect relationship between these metrics and the anomaly detectability; A decision maker
is not informed about the presence of an anomaly by only using the SNR metric, and the
FIM metric is not capable of effectively discriminating between different structural damages.
In addition, structural damages occur locally in most cases and therefore, a change in the
local dynamic properties of a structure may not be detected by tracking the changes in the
FIM metric, and consequently changes in structural mode shapes. Moreover, these metrics
do not necessary carry information regarding the severity levels of the structural damages
that occurred on a structure.

In general, existing approaches lack a systematic way for probabilistically characterizing the
anomaly detectability as a function of its characteristics such as the anomaly’s magnitude,
its duration and the time to detection, and further associate the magnitude of an anomaly
to the severity levels of structural damages. The remaining sections of this chapter provide
the theoretical backgrounds for the methodologies developed in this thesis.

2.2 Bayesian Dynamic Linear Models

In order to detect anomalies from SHM data, Goulet [32] has employed a particular type of
state-space models called Bayesian dynamic linear models (BDLMs) which assume that all
variables follow multivariate Gaussian distributions and all the equations are linear. The core
idea behind BDLMs is to use the knowledge of a time-series kinematics in order to predict
the evolution of its sub-components through time and combine this information with the
information contained in observations. Using sub-components allows decomposing structural
responses into the superposition of reversible and irreversible behaviors. Reversible behaviors
are typically due to external effects such as temperature and loading, whereas irreversible
ones are the result of changes in a structure itself. Irreversible responses are decomposed
using generic baseline components including a baseline, a baseline’s rate of change, and a
baseline’s acceleration components [32, 49, 50]. They represent the structure’s degradation,
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degradation’s speed, and degradation’s acceleration, respectively. Reversible responses are
decomposed using either a periodic [49], a dynamic regression [51], or a kernel regression
[52] component. In addition, in a BDLM, time-dependent model errors are handled by an
autoregressive component. BDLMs are able to consider more complex model structures than
methods such as autoregressive models (ARMs) and autoregressive moving average (ARMA)
models [32, 38]. In fact, these models can be seen as special cases of BDLMs for which only
an autoregressive component is used in building a dynamic model.

2.2.1 Mathematical Formulation

BDLMs use generic sub-components for representing the underlying behaviors for the obser-
vation vector yt = [y1 y2 · · · yY]ᵀt that consists in Y observations at a time t. Sub-components
are assembled in order to form the hidden state vector xt = [x1 x2 · · · xX]ᵀt consisting in X
hidden states. The term hidden refers to the fact that the corresponding variables are not
observed directly. At a time t, the estimation is based on the information coming from two
sources: A linear dynamic model called a transition model that predicts the evolution of the
hidden states variables across time, and a linear observation model based on the empirical
observations yt in order to update the knowledge of the hidden state variables. The transition
model is defined following

xt = Atxt−1 + wt, w : W ∼ N (w; 0,Qt), (2.1)

where At is the transition matrix and wt is the transition model error vector following a
Gaussian distribution with zero mean and covariance matrix Qt. The observation model
follows

yt = Ctxt + vt, v : V ∼ N (v; 0,Rt), (2.2)

in which Ct is the observation matrix and vt is a vector of observation errors following a
Gaussian distribution with zero mean and covariance matrix Rt. The formulation of the
model matrices M = {At,Ct,Qt,Rt} is based on the assembly of generic sub-components
which can model behaviors such as a structure’s degradation, a degradation’s speed, a degra-
dation’s acceleration, periodic phenomena, and so on. The reader is referred to [32,35,49,50]
for a complete review of the different sub-components available.

Consider Figure 2.1 where the observed structural responses yt are shown by gray circles.
The units of the observations depend on the sensor type, e.g., mm for elongation or ◦d for
inclination. Figures 2.1b-2.1d illustrate the baseline (B) generic sub-components including
the structure’s degradation xB

t , degradation’s speed ẋB
t , and degradation’s acceleration ẍB

t .
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Figure 2.1 Illustration of the kinematics of a dynamic model including: (a) observations, (b)
structure’s degradation (c) structure’s degradation’s speed, and (d) structure’s degradation’s
acceleration.

The dot notation indicates derivatives with respect to the time such that ẋB
t = d

dt
xB
t and

ẍB
t = d2

dt2
xB
t . In order to simplify the illustration, the uncertainty around the estimations is

not shown in Figures 2.1b-2.1d.

The structure’s degradation, its speed, and its acceleration are hidden state variables that
jointly define the degradation’s kinematics of the system. They represent the transition model
describing the evolution of the hidden state variables vector xt = [xB

t ẋ
B
t ẍ

B
t ]

ᵀ. The general
form of such kinematics in a discrete-time domain with a time step length ∆t follows

Kinematics :



xB
t = xB

t−1 + ẋB
t−1∆t+ ẍB

t−1
∆t2
2 + wB

t

ẋB
t = ẋB

t−1 + ẍB
t−1∆t+ wḂ

t

ẍB
t = ẍB

t−1 + wB̈
t

, ∀t. (2.3)

In Equation 2.3, w denotes the transitions errors; They correspond to three hidden state
variables namely structure’s degradation error wB

t , the degradation’s speed error wḂ
t , and the

degradation’s acceleration error wB̈
t . It is common to write Equation 2.3 in the matrix form
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as

Kinematics :

xt︷ ︸︸ ︷
xB
t

ẋB
t

ẍB
t

 =


1 ∆t ∆t2

2

0 1 ∆t
0 0 1


︸ ︷︷ ︸

At

xt−1︷ ︸︸ ︷
xB
t−1

ẋB
t−1

ẍB
t−1

+


wB
t

wḂ
t

wB̈
t


︸ ︷︷ ︸

wt

, (2.4)

where, xt and xt−1 are respectively the hidden state vectors at time t and t − 1; At is the
transition matrix and wt is the error vector at time t. Moreover, the observations yt are
decomposed into its underlying behavior and error terms following the observation model

yt =
[
1 0 0

]
︸ ︷︷ ︸

Ct


xB
t

ẋB
t

ẍB
t

+ vt, (2.5)

where, Ct is the observation matrix and vt is the observation error. Figure 2.1 is an example
of a trend-stationary regime with respect to the degradation’s kinematics. The kinematics of
the hidden state variables for a stationary regime follows a constant degradation’s speed for
all time steps so that the degradation’s acceleration ẍB

t = wB̈
t = 0 over time. Note that, in this

thesis, both terms stationary and trend-stationary are used interchangeably. The transition
matrix and error vector presented in Equation 2.4 are re-written as

At =


1 ∆t 0
0 1 0
0 0 0

 , wt =


wB
t

wḂ
t

0

 . (2.6)

In order to keep the hidden state estimation procedure simple, it is helpful to rely on a
shorthand notation for the value that a variable can take from time 1 to time t by a subscript
1:t. Therefore, y1:t ≡ {y1, y2, · · · , yt} defines a set containing t observations. µt|t ≡ E[Xt|y1:t]
defines the expected value of the hidden states vector at time t, conditional on all the data
ranging from time 1 up to time t. Note that in the case where we are interested in times
from 1 up to t − 1, the notation changes for µt|t−1 ≡ E[Xt|y1:t−1]. Analogously, Σt|t ≡
cov[Xt|y1:t] denotes the covariance of a hidden states vector at time t, conditional on all
available observations starting from time 1 up to time t. The hidden state estimation is
a recursive process in which the prior knowledge at time t is obtained from the posterior
knowledge at time t − 1. This task is carried on using the Kalman filter (KF) [53], which
is an iterative two-step mathematical process consisting in the prediction and update steps.
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The prediction step computes the joint prior knowledge p(xt|y1:t−1) at time t following

p(xt|y1:t−1) = N (xt;µt|t−1,Σt|t−1) Prior state estimate

µt|t−1 = Atµt−1|t−1 Prior expected value

Σt|t−1 = AtΣt−1|t−1Aᵀ
t + Qt Prior covariance.

(2.7)

The update step evaluate the posterior knowledge p(xt|y1:t) at time t following

p(xt|y1:t) = N (xt;µt|t,Σt|t) Posterior state estimate

µt|t = µt|t−1 + Ktrt Posterior expected value

Σt|t = (I−KtCt)Σt|t−1 Posterior covariance

rt = yt − ŷt Innovation vector

ŷt = E[yt|y1:t−1] = Ctµt|t−1 Predicted observations vector

Kt = Σt|t−1Cᵀ
tG−1

t Kalman gain matrix

Gt = CtΣt|t−1Cᵀ
t + Rt Innovation covariance matrix.

(2.8)

The hidden state estimation can be summarized by

(µt|t,Σt|t,Lt) = Filter(µt−1|t−1,Σt−1|t−1,yt,At,Ct,Qt,Rt), (2.9)

where Lt is the marginal likelihood that will be further described in Section 2.2.3. A key
aspect of BDLMs is their ability to detect anomalies without relying on detection thresholds;
Instead, it relies on a regime switching approach [2], where several models displaying different
degradation kinematics are evaluated in parallel, and the probability of each of these models
can be estimated in real-time as data become available.

2.2.2 Regime Switching

Figure 2.2 shows an example of two regimes: a trend-stationary regime similar to the one
shown Figure 2.1, where the degradation’s speed remains constant, and a non-stationary
regime, where the degradation’s speed varies over time. The non-stationary regime is shown
by the red dashed lines in Figures 2.2b–2.2d. Note that the transition matrix At and error
vector wt for the stationary and non-stationary regimes follow the ones presented in Equa-
tions 2.4 and 2.6, respectively. In Figure 2.2, the dynamic model starts with a constant degra-
dation’s speed during the stationary regime and then switches to a non-stationary regime
with a locally constant degradation’s acceleration before it returns to the stationary regime
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Figure 2.2 Illustration of the kinematics of two dynamic models including: (a) observation, (b)
structure’s degradation (c) structure’s degradation’s speed, and (d) structure’s degradation’s
acceleration.

with a different constant speed. In BDLMs, two dynamic models are built corresponding to
the two regimes for which the probabilities are evaluated using the switching Kalman filter
(SKF) [2].

Figure 2.3 shows an idealized representation of the regime switching probabilities associated
with Figure 2.1; the probability of the stationary regime is one during all time steps, except
for the central portion, where the model switches to the non-stationary regime. In this
configuration, the task of anomaly detection consists in identifying the presence of a switch
from a stationary regime to a non-stationary one. Figure 2.3 shows the time of detection
t = j when the increase in probability for the non-stationary regime is used to trigger an

t = j
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Figure 2.3 Illustration of the probability of regime switching probabilities along with the time
t = j when the regime switch is detected.
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alarm. The remaining part of this section presents the formalism of the switching Kalman
filter, and discusses its current limitations in the context of anomaly detection.

The SKF models non-stationary system responses by estimating at each time t, the proba-
bility of each regime along with their hidden state values. Each regime is defined by its own
model matrices. Consider Figure 2.2b where a system that has two possible regimes are iden-
tified by the regime state variable st ∈ {1, 2}, where 1: stationary (s) or 2: non-stationary
(ns). Each regime state st has a probability πst

t ≡ p(st|y1:t). Note that the relationship be-
tween the probability of the stationary and non-stationary regimes is π1

t = 1− π2
t indicating

that the two possible regime states are mutually exclusive and collectively exhaustive. There-
fore, at a time t, the objective of the SKF is to estimate: (i) the hidden state variables vector
xt and (ii) the regime state probability πst

t associated with each regime state st. Analogously,
the hidden state estimation in SKF consists in a two-step mathematical process; The first
step computes the joint prior knowledge for both regimes p

(
xi(j)t |y1:t−1

)
at time t following

p
(
xi(j)t |y1:t−1

)
= N

(
xi(j)t ;µi(j)t|t−1,Σ

i(j)
t|t−1

)
Prior state estimate

µ
i(j)
t|t−1 = Aj

tµ
i
t−1|t−1 Prior expected value

Σi(j)
t|t−1 = Aj

tΣi
t−1|t−1

(
Aj
t

)ᵀ
+ Qi(j)

t Prior covariance,

(2.10)

where, the superscript inside the parentheses i(j) indicates the current state st = j at time t
given the state st−1 = i at time t− 1. The update step evaluates the posterior knowledge for
both regimes p

(
xi(j)t |y1:t

)
at time t following

p
(
xi(j)t |y1:t

)
= N

(
xi(j)t|t ;µi(j)t|t ,Σ

i(j)
t|t

)
Posterior state estimate

µ
i(j)
t|t = µ

i(j)
t|t−1 + Ki(j)

t ri(j)t Posterior expected value

Σi(j)
t|t =

(
I−Ki(j)

t Cj
t

)
Σi(j)
t|t−1 Posterior covariance

ri(j)t = yt − ŷi(j)t Innovation vector

ŷi(j)t = E[yt|y1:t−1] = Cj
tµ

i(j)
t|t−1 Predicted observations vector

Ki(j)
t = Σi(j)

t|t−1

(
Cj
t

)ᵀ (
Gi(j)
t

)−1
Kalman gain matrix

Gi(j)
t = Cj

tΣ
i(j)
t|t−1

(
Cj
t

)ᵀ
+ Rj

t Innovation covariance matrix.

(2.11)

The SKF hidden state estimation procedure can be summarized by

(µi(j)t|t ,Σ
i(j)
t|t ,L

i(j)
t ) = Filter(µjt−1|t−1,Σ

i
t−1|t−1,yt,A

j
t ,Cj

t ,Q
i(j)
t ,Rj

t ), (2.12)
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where, Li(j)t is the marginal likelihood. Note that in case of single-regime models, the SKF for-
mulation in Equation 2.12 is reduced to the filtering formulation as presented in Equation 2.9
by setting i = j = 1. For the SKF, the transition matrix is defined following

Z =

 zi(i) zi(j)

zj(i) zj(j)

 , Zi(j) = 1− Zi(i), (2.13)

where, Zi(j) = p(st = j|st−1 = i) denotes the prior probability of transitioning from a state i
at time t − 1 to a state j at time t. The joint regime probability Mi(j)

t−1,t|t = p(st−1 = i, st =
j|y1:t) is evaluated from the combination of the likelihood of observations Li(j)t|t , the transition
probabilities Zi(j), and the prior probability of the states πit−1|t−1 following

Mi(j)
t−1,t|t =

Li(j)t|t · Zi(j) · πit−1|t−1∑
i

∑
j

Li(j)t|t · Z
i(j) · πit−1|t−1︸ ︷︷ ︸

Normalization constant

.
(2.14)

Therefore, the probability of each regime is obtained by marginalizing the joint regime prob-
abilities as

πjt|t =
∑
i

Mi(j)
t−1,t|t. (2.15)

Figure 2.4a illustrates a limitation of Equation 2.12, where the number of models combina-
tions increases exponentially with the number of time steps. For example, starting from two
models at time t − 1 the number of models reaches eight after two successive time steps at
time t + 1. To address this issue, the SKF employs the collapse step using the generalized
pseudo Bayesian algorithm of order two [54]. Figure 2.4b illustrates the collapse step for two
models between time steps t− 1 and t; Applying the SKF on two models, yields four models
each having a posterior mean vector, covariance matrix, and joint regime probabilities. The
collapse step receives them as the input and returns two models each having a posterior mean
value vector, covariance matrix, and a probability associated with each regime state. The
collapse step can be summarized by

(µjt|t,Σ
j
t|t, π

j
t|t) = Collapse(µi(j)t|t ,Σ

i(j)
t|t ,W

i(j)
t−1|t), (2.16)
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t− 1 t t+ 1

(a)

t− 1 Collapse t

(b)

Figure 2.4 Illustration of the number of models: (a) exponential growth of the models within
time and (b) Collapse approximation step between time t − 1 and its successor t. Figure is
reproduced from Goulet [1].

where,

Wi(j)
t−1|t =

Mi(j)
t−1,t|t

πjt|t
µjt|t = µ

i(j)
t|t ·W

i(j)
t−1|t Posterior expected value

m = µ
i(j)
t|t − µ

j
t|t

Σj
t|t =

∑
j

[
Wi(j)

t−1|t · (Σ
i(j)
t|t + mmᵀ)

]
Posterior covariance.

(2.17)

Figure 2.5 illustrates the summary of the SKF filtering for two regime switching state variable
st ∈ {1, 2} representing 1: stationary and 2: non-stationary regimes.

2.2.3 Parameter Estimation

In BDLM, each model dynamic involves a parameter set P whose values need to be estimated
from a training dataset. The parameter set consists in the transition prior probabilities
Zii,∀i = 1, 2 and the parameters associated with model matrices {At,Ct,Qt,Rt}. In the case
of multiple observations, additional parameters are defined in order to establish dependencies
between the observations. These parameters will be further discussed in Section 3. It is
common to use the maximum likelihood estimation (MLE) technique in order to estimate the
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Figure 2.5 Illustration of the SKF algorithm for the two regime models 1: stationary and
2: non-stationary. The superscript (.) indicates the corresponding regime’s model that being
used for the computation. The Figure is reproduced from Nguyen and Goulet [2].

parameters, where the objective is to obtain the optimal parameter set

P∗ = arg max
P

ln f(y1:T|P), (2.18)

which maximizes the joint log-likelihood ln f(y1:T|P). The joint log-likelihood is obtained by
the summation of the marginal log-likelihoods at each time t following

ln f(y1:T|P) =
∑
t

ln f(yt|y1:t−1,P), (2.19)

=
∑
t

ln
∑

j

∑
i

Li(j)t · Zi(j) · πjt−1|t−1

 ,
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where the marginal likelihood Li(j)t corresponds to the joint prior probability of observations
of the model classes following

Li(j)t = p(yt|St = j, St−1 = i,y1:t−1,P), (2.20)

= N
(
yt; Cj

t(P)µt|t−1,Cj
t(P)Σi(j)

t|t−1C
j
t(P)ᵀ + Rj

t (P)
)
.

The maximization of the joint log-likelihood in Equation 2.18 is typically carried on using
gradient-based optimization algorithms [55].

2.2.4 Example of Application

In order to illustrate the application of the SKF for detecting anomalies, consider Figure 2.6
where 6 years of observations are collected on the Champlain Bridge in Canada [56]. Fig-
ure 2.6a shows the elongation of an optical fiber sensor on the bridge that carries reversible
and irreversible responses of the bridge over time. In addition, Figure 2.6b shows the air
temperature of the area near the bridge.
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Figure 2.6 Observation data for a bridge in Canada: (a) Elongation in mm and (b) Temper-
ature in ◦C.

Figure 2.7 illustrates the hidden state decomposition carried out by a BDLM using the
regime switching technique presented in Section 2.2.2. Figures 2.7a-2.7c show the irreversible
responses of the structure due to changes in degradation’s kinematics. Figures 2.7d and 2.7e
show the reversible responses of the structure. In particular, Figure 2.7d shows the external
effects that are not caused by the temperature and Figure 2.7e illustrates the external effects
due to observed temperature data. Note that Figure 2.7 does not show the uncertainty
around the estimations. The stationary and non-stationary regimes represent the normal
and abnormal conditions of the structure, respectively. Figure 2.7f shows the probability of
the non-stationary regime for the same data presented in Figure 2.6a. The probability of the
non-stationary regime is around zero for all times except the time, when the probability of the
non-stationary regime suddenly increases to one. This indicates the presence of an anomaly
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Figure 2.7 Illustration of decomposed observation data. Red dotted lines are corresponding to
the detected anomaly period. The solid black lines indicate the mean value of the estimated
hidden states. For a better illustration, the uncertainty around the mean values are not
displayed.

during the corresponding timestamps as shown by red dotted lines in Figures 2.7a-2.7c. The
probability of the regime switching, as shown in Figure 2.7f, can be used for decision making.
For instance, when the probability of regime switching is close to one, a decision maker has
a strong indication that a structure is in abnormal condition and that further engineering
attention is needed.

2.2.5 Limitations

The main limitation of making decisions solely based on the probability of the non-stationary
regime is that it is prone to false or missed alarms, especially for low probability events; It
is common to have situations where the probability of the abnormal regime is low, while
the underlying irreversible responses indicate a possible switch between two regimes, and
vice versa. Therefore, the decision to trigger an alarm or not needs to consider not only the
probability of regime switching, but also other criteria such as changes in the degradation’s
speed. To illustrate this point, consider Figure 2.8 where the irreversible responses and the
probability of the non-stationary regime for a structural response is obtained. Two interesting
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Figure 2.8 Illustration of the probability of the non-stationary regime and hidden states:
shaded areas are corresponding to timestamps with same probability of anomaly. The solid
black lines indicate the mean value of the estimated hidden states. For a better illustration,
the uncertainty around the mean values are not displayed.

periods are emphasized by gray shaded areas, where the probability of the non-stationary
regime is close to 40%. Decision making based on a predefined probability value, i.e., a
threshold value, for these two periods perhaps results in the same action, i.e., triggering an
alarm. However, the decision maker cannot be certain whether triggering an alarm is rightful
or not. To overcome this limitation, there is a need for leveraging information from both
degradation’s speed and the probability of regime switching. In Figures 2.8a–c, although
the two timestamps have identical probability of anomalies, the estimated hidden states are
different. Such a difference can be used to improve the decision making. Later in Section 5.4,
we will further study this limitation by quantifying probabilistically the anomaly detectability
when relying only on a threshold value corresponding to the probabilities of a non-stationary
regime.

Using only the degradation’s speed and the probability of regime switching is not sufficient
for decision making because the anomaly characteristics are not modeled in the analysis.
The anomaly’s magnitude and its duration affect the probability of regime switching and
degradation’s kinematics. However, there is no mechanism to identify these characteristics
based on a BDLM. As a result, quantifying the anomaly detectability and subsequently
associating the magnitude of detected anomalies to the severity levels of structural damages
are not possible. The disciplines of reinforcement learning and imitation learning are suited
for addressing their limitations.
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2.3 Machine Learning

In general, anomaly detection methods encompass three areas of machine learning, namely
supervised learning, unsupervised learning, and reinforcement learning [38]. In supervised
learning, the model receives a sequence of inputs and the corresponding desired outputs such
as labeled observation data indicating the normal and abnormal condition of structures. In
such a setup, the goal is to correctly produce new outputs for new given inputs [19,57]. On the
other hand, in unsupervised learning, the model receives a sequence of inputs without labeled
outputs. The goal is then to build a model that is a representation of input patterns [30,32].

2.3.1 Reinforcement Learning

In reinforcement learning (RL), there is no sequence of inputs either to be mapped to desired
outputs like in the case of supervised learning or to be examined to find patterns like in the
case of unsupervised learning. Instead, it enables a decision maker, called the agent, to make
decisions by taking actions in an environment in order to achieve its goal [58, 59]; RL is a
sequential decision making process, where an agent interacts with its environment by taking
actions that influence the environment’s state. Accordingly, the environment gives a feedback
in the form of a reward, a signal indicating whether the agent takes beneficial actions. The
agent interacts with its environment in order to learn an optimal policy consisting in the best
actions to take as a function of the state of the environment.

Applications of RL are typically seen in game playing such as the Atari environment [60]
and the Go game [61]. In these cases, the environment is an emulator allowing an agent to
take some actions defined within the game. For example, take the Breakout game shown in
Figure 2.9; The game consists in some brick layers, a ball, and a paddle. The agent uses the
paddle to hit the ball into the bricks in order to eliminate them. The agent can move the

Figure 2.9 Illustration of the Breakout Atari game emulator. It consists in some layers of
bricks, a paddle, and a ball. The agent moves the paddle to the left or right in order to hit
the ball into the bricks and eliminate them. The figure is adapted from Yandex LLC. [3].
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paddle to the left or right in order to control the ball and eventually remove all the bricks.
If the ball hits the floor, the agent would lose the game and the emulator would restart the
game from the beginning: At each time step, the agent selects an action from a set of actions
{left, right} in order to move the ball. The action selected is passed to the emulator which
modifies the state of the ball and returns its new location. In addition, the emulator gives
a reward in the form of a scoring system based on the number of bricks eliminated. The
agent’s objective is to maximize the long-term accumulation of these scores during the game
without losing the ball.

In the beginning, the agent might lose the ball often. Eventually, as the agent learns how
to play the game, it reaches the maximum score. The learning process in the context of the
RL involves two important aspects; The first aspect is that the agent uses different sources
of information from the emulator in order to form the environment’s states to interact with.
For instance, in the original work done by Mnih et al. [60], the sources of information for
the Breakout game are the Atari frames consisting in 210 × 160 pixels color images. The
second aspect of the learning is associated with the consideration of the long-term effects
of actions. For instance, in the Breakout game, the agent requires not only to collect the
current reward by choosing the right move, but also it needs to take into account the next
moves that enable the agent to collect scores for new ball positions; For example, the agent
might need to bounce the ball by moving to the right instead of left. Because, in some time
steps after, the ball position is on the right side of the screen, and therefore, the agent can
bounce the ball back again without losing it.

In the context of SHM, the game should be replaced by the anomaly detection procedure, and
actions by decisions based on triggering an alarm or not. In this setup, RL offers solutions to
the limitations of the SKF-BDLM, presented in Section 2.2.2, by considering the temporal
aspects related to the degradation’s speed and the time required by an agent to detect
anomalies: RL-based methods enable the decision making process to account for different
sources of information in order to build the environment that the agent interacts with. For
instance, the agent can incorporate information from the SKF-BDLM analysis including the
regime switching probabilities and the degradation’s speed. In addition, the formalism of RL
accounts for the long-term accumulation of rewards in order to potentially delay or speed
up a decision. In the context of anomaly detection, the long-term planning considerations of
RL controls the time to detection of anomalies. Therefore, the RL can enable an agent to
account for early anomaly detection as well as preventing false alarms. This section reviews
the elements of RL and explores existing RL algorithms available in the literature.
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Elements of Reinforcement Learning

RL problems involve seven primary elements [62], namely, agent, environment, state, policy
and action, reward, (action-)value function, and, optionally, a model. These elements are
formalized via a Markov decision process (MDP) [49]: for a discrete time step set t =
{1, 2, 3, . . .}, a MDP is defined by a tuple 〈S,A, rt, p(st+1|st, at), γ〉. Here, S ⊆ RS is a S-
dimensional continuous environment, where S ∈ N is the number of dimensions; The action-
space A is a discrete set containing A ∈ N actions; At time t, the immediate reward rt ≡
r(st, at) ∈ R is a function of the corresponding state st ∈ S and action at ∈ A; p(st+1|st, at) ∈
(0, 1) is the probability to transit from the state st to the successor state st+1 after taking
the action at; and γ ∈ (0, 1] is the discount factor. A policy π(st) = at is a function defining
the action that an agent takes given the state it is in. In the special case, where policies are
stationary and deterministic, an agent that follows the policy π(st) always takes the same
action for the same state.

In order to introduce RL concepts, consider the example of a robot moving on the ground
where the goal is to reach a target and avoid obstacles. An agent, is an entity that observes
the environment using sensors and takes actions in order to achieve its goal. In this example,
the agent is the robot moving in different directions. The environment S, is a state-space
that the agent interacts with. For the moving robot example, the environment can consist
in the surrounding areas and obstacles perceived using sensors. An environment’s state, or
simply a state, st ∈ S at time t is a particular configuration of an environment that an
agent can take. For example, in the case of a moving robot, the state can be its position
in a two dimensional space. A policy π(st) = at is a function of the state which represents
the action at ∈ A that the agent takes for a given state st. For a moving robot, the action
at ∈ A = {left, right, forward, backward} can be selected from a set consisting in movements
along different directions. A reward r(st, at) is a scalar that an agent receives for being in a
state st and taking an action at; it defines what is a good and bad action for the agent, given
the state it was in. For a moving robot, the reward can be a positive scalar when the agent
reaches the target and a negative one when it hits the obstacles. An action-value function
qπ(st, at), for an agent being in the state st at time t following the policy π, is defined in terms
of the expected value of the utility U(st, π) = rt(st, at) + ∑∞

t′=t+1 γ
t′−1rt′(St′ , at′), describing

the total accumulated discounted rewards that an agent receives when following the policy.
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It is common to define the action-value function as

qπ(st, at) =Eπ [U(st, π)] (2.21)

= r(st, at)︸ ︷︷ ︸
immediate reward

+γ ·
successor action-value function︷ ︸︸ ︷

qπ(St′ , at′) .

In Equation 2.21, for an agent being in the state st at the time t, the successor state St′ is a
random variable where t′ = t+1. In addition, γ ∈ (0, 1] is the discount factor quantifying how
much future reward values are discounted in comparison with the current one. In this view,
an action-value is evaluated by not only collecting the reward associated with the current
action, but also considering future rewards due to succeeding actions: The action-value of
a state-action pair (st, at) at time t is the expected return of the agent that starts from the
state st and takes the action at, and takes the future actions by following the policy π [62].
Also, the action-value function can be expressed based on the immediate reward and the
action-value function of the successor state as shown in the second line of Equation 2.21.
The optimal stationary policy π∗(s) is then obtained by the maximization of the action-value
function following

π∗(s) = arg max
at

q(st, at). (2.22)

In the context of RL, a model is defined in the form of transition probabilities p(St+1|st, at)
indicating the probability that the agent transits from one state to another by taking an
action. Figure 2.10 shows schematically the interaction between an agent and an environment.
Being in the state s ≡ st, the agent take the action a ≡ at. The environment returns the
scalar reward r(st, at) and the agent transmits to the state S′ ≡ St+1 with the probability
p(S′|s, a). This procedure continues until the policy converges or there is a terminal state
such as reaching the target for the moving robot example.

agent

environment

action
at ∈ A

reward
r(st, at) ∈ R

state
St+1 ∈ S

Figure 2.10 The agent-environment interaction in reinforcement learning.
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RL Algorithms

Solving a MDP requires transition probabilities, which are not always available. In this
regard, RL algorithms are divided into two categories, namely model-based or model-free. In
model-based RL, the transition probability p(S′|s, a) for the agent to transit from the state s
to S′ due to the action a is known. In model-based RL, Equation 2.21 leads to the Bellman
equation [63] following

qπ(s, a) = r(s, a) + γ
∑
S′
p(S′|s, a)︸ ︷︷ ︸

RL model

qπ(S′, a′). (2.23)

The Bellman equation can be solved using the value or policy iteration algorithms [58].
Alternatively, temporal difference methods, known as TD(λ), have been introduced by Sutton
[59] in order to cope with situations where transition probabilities are not known. In these
approaches, the value function is evaluated between states st and sλ representing the current
state and the successor λ-state after the current one, respectively. The difference between
two values is then used to update the action-value corresponding to the state st. The simplest
form of temporal difference method TD(λ = 0) is Q-learning, where the action-value functions
known as Q-value functions, are evaluated between two immediate successor states s and S′.

When an environment is discrete, conventional RL algorithms such as the value and policy
iteration or Q-learning are used. When an environment is continuous, one can discretize the
environment and use conventional RL algorithms, or employ function approximation meth-
ods. In general, function approximation methods are developed to either estimate action-
values and find the optimal policy according to Equation 2.22 or directly approximate the
optimal policy [62]. A function approximator receives the state st at time t as an input and
returns approximated action-value set {q̂(st, an,t;θ),∀n = 1 : A}, where, an,t ∈ A is the nth

element of the action set A containing A individual actions. In addition, the function ap-
proximator is characterized by a set of parameters θ that is learned from agent-environment
interactions. Once action-values are estimated, the optimal policy can be determined from
Equation 2.22.

Different types of linear and nonlinear function approximation methods are listed in [62, 64,
65]. Recent advancements in deep neural networks have led to the development of efficient
and reliable approximation methods such as deep Q-learning and actor-critic methods [61].
The primary limitation of function approximation methods is that the convergence is only
guaranteed in case of linear function approximation, where the convergence in nonlinear cases
is an active field of research in the machine learning community [66].
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Q-Learning

The main obstacle in solving Equation 2.23 is to have access to the transition probabilities.
If such transition probabilities are not known, we cannot directly maximize the action-value
functions in order to obtain optimal policies. Instead, an agent estimates the action-values
while interacting with its environment [67]. The action-value function is referred as Q-value
function Q(s, a), and is evaluated through the updating equation

Q(st, at) := Q(st, at) + αt

[
r(st, at) + γ max

at+1
Q(St+1, at+1)−Q(st, at)

]
, (2.24)

where := is the update symbol; Q(st, at) is the updated Q-value at time t; αt ∈ (0, 1) is the
learning rate; and st is a vector-valued state of the agent. Equation 2.24 converges to the
optimal value function asymptotically [68,69], where it updates one state-action pair (st, at)
at each time-step t according to the current reward r(st, at), discount factor γ, learning rate
αt, and the expected maximum Q-value of the successor state St+1.

Intuitively, an agent should learn less after having spent more time experiencing an envi-
ronment. Therefore, one can start with a high learning rate value to allow fast changes
and reduce it as time progresses. It is common to use an iteration-dependent learning rate
function such as

αt = α(N1:t(st, at); cα) = cα
cα + N1:t(st, at)

, (2.25)

where N1:t(st, at) is the number of times a state-action pair has been visited up to time
t and cα ∈ R+ is the learning rate constant. In addition, to ensure that the learning-
rate can take any value and that Equation 2.24 converges, the learning-rate must satisfy∑∞
t=1 αt = ∞ and ∑∞

t=1 α
2
t < ∞. The reader is referred to [70] for a description of different

learning-rate functions and their influences on the learning procedure.

In order to identify which action should be selected at a time t, it is necessary to present the
exploitation and exploration [71] dilemma; Exploitation uses the current knowledge about
the state st to select the action at that maximizes the Q-value. In contrast, exploration
selects other actions rather than the one that is currently thought to be the best in order to
potentially reaches a solution associated with higher Q-values. Among different strategies,
the ε-greedy algorithm [67] is a common approach to address the exploitation and exploration
dilemma: At a time t, an agent explores by selecting an action randomly with the probability
εt ∈ (0, 1) and exploits by selecting an action from the current policy with the probability
1− εt. Intuitively, it is better to encourage an agent to explore more during the early stage of
learning and then reduce the exploration probability as time evolves. It is common to define
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an iteration-dependent exploration function as

εt ≡ ε(N1:t(st); cε) = cε
cε + N1:t(st)

, (2.26)

where N1:t(st) is the number of times a state has been visited up to time t regardless of
the selected actions, and cε ∈ R+ is the exploration constant; To select the action at at
time t, a sample ut from a uniform distribution between zero and one, U(ut; 0, 1), is drawn
and compared with the corresponding exploration probability εt. In this setup, the action
selection is expressed mathematically as

at =


Random selection from A, ut ∼ U(ut; 0, 1) ≤ εt

arg max
at

Q(st, at), Otherwise
. (2.27)

The reader is referred to [62] and [72] for a review of different exploration strategies.

In the context of civil structures, reinforcement learning has been employed in the field of
active structural control where a controller takes some actions based on a feedback from an
instrumented structure. The goal is then to minimize an error signal defined as the difference
between the actual and desired feedback from a system [73,74]. Although some of definitions
and principles in RL and control theory are different, the core idea behind both approaches
remains the same. However, few researches are dedicated to precisely formulate structural
control problems in the form of a RL framework [75, 76]. For instance, Khalatbarisoltani
et al. [76] have employed Q-learning for an active control of a mass driven system on a
laboratory-scale structure. For the environment, they have used a physics-based model based
on a mass-spring-damper system, which introduces limitations as discussed in Section 2.1
with respect to using physics-based models. RL-based anomaly detection approaches have
been seldom applied in SHM contexts despite being well suited for the problem at hand. For
examples, Huang et al. [77] and Yu an Sun [24] have proposed a value-based and policy-
based forward anomaly detection methods based on deep reinforcement learning. Oh and
Iyengar [78] have used an inverse RL method for the task of anomaly detection, where
the objective is to determine an underlying reward function, and subsequently the agent’s
preference, from a sample of optimal actions. The above-mentioned researchers have showed
advantages of both forward and inverse RL for anomaly detection on various time series.
However, the time series employed do not account for the specificities of SHM data that are
collected on civil infrastructures. In addition, they have used performance metrics such as
F1-score, accuracy, and recall, which are used to evaluate the performance of the model built
in the context of classification where the objective is to discriminate between the normal and
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abnormal states of structures. However, they do not account for anomaly characteristics, i.e.,
the anomaly magnitude, its duration, and the time required to detect an anomaly, that are
continuous variables.

2.3.2 Imitation Learning

One of the limitations in the context of reinforcement learning is the requirement to design
a reward function r(st, at) that encourages or prevents an agent to take actions in order
to accomplish the task in hand. To overcome this limitation, Pomerleau [79] proposed an
approach that consists in learning from demonstrations, also known as imitation learning (IL).
In IL, an expert, usually a human, provides the optimal policy within a set of demonstrations
associated with the desired behavior. Then, the agent learns the optimal policy by imitating
the expert’s policy. For example, in the game Breakout presented in Section 2.3.1, an expert
assigns optimal actions for the set {left, right} for moving the paddle in different situations,
instead of designing a reward function in order to encourage an agent to move left or right.

There are two approaches towards imitation learning in the literature. In the first approach,
an agent learns to directly imitate the expert’s policy. The simplest form of this approach is
called behavior cloning which is a supervised learning approach. Note that in this thesis we
use the term imitation learning instead of supervised learning in order to follow the existing
terminology used in the literature. In this setup, a classifier is trained from a demonstra-
tions set in order to predict the expert’s behavior. The training set is obtained from an
expert’s policy and it consists in state-action pairs. The behavior cloning approach is shown
to yield poor results when the demonstrations issued by the expert are not uniformly sampled
from the environment. Ross et al. [80] introduced an algorithm known as data aggregation
(DAgger) in order to relax this limitation. As such, demonstrations are used incrementally
whenever needed; An agent learns to imitate the expert’s policy with given demonstrations,
and whenever there are states which are not in the current demonstrations set, the agent
makes a query about optimal actions from the expert for these new states. The reader is
referred to Hussein et al. [81] for a comprehensive review of existing methods relying on
directly imitating the expert’s policy. In the second approach, which is not considered in
the current work, an agent learns to indirectly imitate the expert’s policy by first learning
the reward function and then learning the optimal policy. This approach is known as in-
verse reinforcement learning and the reader is referred to [82] for detailed review of existing
methods.

The elements of the imitation learning approach are similar to the ones of the reinforcement
learning approach presented in Section 4.1 with respect to an environment S, an action
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space A, a transition probability between two consecutive states given the action taken by
an agent p(St+1|st, at), and a policy π(s) = at, a function that determines the action taken by
an agent for a given state st. In addition, the expert’s policy πexpert(s) = aexpert

t is a function
defined by an expert, that determines the optimal action for a given state st. Moreover, a
demonstrations set Ξ is defined as

Ξ = {Ẑ1, Ẑ2, · · · , ẐZ}, (2.28)

where, it contains Z demonstrations Ẑ, each consisting in state-action pairs which issued
by an expert, i.e., Ẑi = {(s1, a

expert
1 ), (s2, a

expert
2 ), · · · }. In this setup, the imitation learning

consists in an optimization problem following

π∗(s) = arg min
at

∑
s∈Ξ

J(π(s), πexpert(s);θ), (2.29)

where, π∗(s) is the optimal policy, and J(.) is a loss function parameterized by θ, a set of
unknown parameters associated with the classification model [55]. Solving Equation 2.29
leads to a classifier predicting the optimal actions that an agent should take given the states.

2.4 Conclusion

Most existing SHM methods rely on threshold-based approaches for detecting anomalies.
These approaches are limited by their poor control over false alarms which jeopardize the
viability of the anomaly detection system. In most cases, existing anomaly detection methods
focus on detecting specific anomalies instead of considering a wide range of possible ones.
Moreover, many existing SHM methods for detecting anomalies are applied on laboratory
structures, yet their applications on real-world structures subject to operational conditions
have not been examined.

The methods based on Bayesian dynamic linear models with regime switching, i.e., SKF-
BDLM, offer a part of the solution to the limitations associated with threshold-based anomaly
detection methods. Using a regime switching paradigm enables having control over false
alarms while maintaining a high anomaly detectability. In addition, BDLM methods have
been applied on full-scale structures that are operating under real-life conditions [52,56,83].
Therefore, these methods are suitable for long-term monitoring of structures. However, the
main issue with SKF-BDLMs is that there is no systematic criteria for triggering alarms
that would consider the temporal aspects related to the degradation’s speed and the time to
detection; The only source of information for anomaly detection is the probability of regime
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switching, which in many cases, is not sufficient for a robust anomaly detection. In addition,
BDLM methods lack a mechanism in order to take into account delayed and early detections.
For example, delaying a decision regarding the detection of anomalies can help preventing
false alarms.

In order to identify an efficient sensor configuration that is able to discriminate various struc-
tural damages, we need to develop a systematic procedure along with metrics such as annual
false positive ratio and the probability of true positive detections. Such a systematic proce-
dure should be probabilistic and requires characterizing the diversity of possible anomalies
through their magnitude, duration and time to detection. Developing such a metric requires
an anomaly detection method that incorporates the degradation’s speed and characterizes
delayed and early detections.
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CHAPTER 3 Jacques-Cartier Bridge Monitoring and Data Analaysis

This chapter first presents the Jacques Cartier Bridge and its general structural character-
istics. In addition, it introduces the monitoring campaign along with the instrumentation
configuration including sensor types and locations. Furthermore, this chapter illustrates the
data acquired and discusses the issues identified for some of the sensors. Finally, this chapter
provides the empirical models built for each sensor using the Bayesian dynamic linear models
described in Section 2.2.

3.1 Bridge Presentation

The Jacques Cartier Bridge is a steel cantilever truss bridge crossing the Saint-Lawrence
river, Canada. Originally inaugurated in May 1930, this 2765 m bridge connects Montreal
to Longueuil. Figure 3.1 illustrates the schematic elevation of the Jacques Cartier Bridge
indicating nine distinct sections differing in the types of sub- and superstructures. The struc-
ture of the bridge consists in: (i) concrete for the deck and substructure of the south shore
approach, and (ii) steel for the superstructure and substructure of the Montreal approach.
Each of the 40 spans is composed of a 23.1 m wide concrete deck supported by riveted trusses,
and dowels, as well as tension anchors in the spans associated with the sections 3 and 7.

Figure 3.1 Illustration of the not-to-scale schematic elevation (upstream view) of the Jacques
Cartier Bridge. The bridge has 40 spans grouped in 9 different sections. The figure is
reproduced from the Jacques Cartier Bridge technical data sheet [4].

The Société des ponts Jacques Cartiers et Champlain has been responsible for managing
various interventions to ensure the bridge’s safety and for extending its life span. Interven-
tions encompass: (i) major renovation programs such as replacing the whole bridge’s deck
in 2001−2002, and (ii) a structural steel reinforcement program involving reinforcing and
replacing steel ribs and plates. In the next sections, we present the monitoring campaign
and measurement system layout that has been installed on the Jacques Cartier Bridge for
the purpose of supporting the methodological developments in this thesis.
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3.2 Monitoring Campaign

Starting in 2019, three spans have been instrumented on the Longueuil approach, see the
section 2 region in Figure 3.1. These spans are located between the axes 4 and 7 as depicted
by the shaded green area in Figure 3.2. We refer to these spans as “4 − 5”, ”5 − 6”, and
“6−7”. Except for repairs due to the structural steel reinforcement program, the three spans
are identical with respect to their superstructures, geometry, and boundary conditions; Each
span is supported by fixed supports on the north side, and expansion joints and bearing
devices on the south side. In Figure 3.2, the fixed supports and expansion joints are indicated
by F and EXP, respectively.

Figure 3.2 Illustration of the selected spans (shaded are) between the axes 4 to 7. The drawing
is reproduced from the Jacques Cartier Bridge deck replacement program documentation [5].

3.3 Instrumentation

The selected spans of the Jacques Cartier Bridge are instrumented with three types of sen-
sors collecting measurements, that is inclination in degree [d◦] for inclinometers, elongation
in [mm] for extensometers, and air temperature in degree Celsius [C◦] for thermometers. The
instrumentation configuration for each span is identical and consists in three inclinometers,
an extensometer, and a thermometer, which are installed on the downstream side of the
span. Therefore, in total, there are nine inclinometers, three extensometers, and three ther-
mometers. Figure 3.3 shows the location of the sensors on a typical span of the bridge. The
drawing shows seven vertical axes named from 1 to 7. The two longitudinal inclinometers are
located on the axes 1 and 3 and measure rotations around the y axis; the lateral inclinometer
is located on the axis 3 and measure rotations around the x axis; the extensometer is located
on the axis 4 on the lower cord measuring elongations along the x axis; the thermometer
is located on the axis 4. Note that accelerometers have been installed, however, the data
are not considered because the signal-to-noise ratio is too low to make a distinction between
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Lateral inclinometer

Extensometer

Longitudinal inclinometerThermometer

x

y
z

Figure 3.3 Sensor configuration for each span: an extensometer on the axis 4, two longitudinal
inclinometers on the axes 1 and 3, and a lateral inclinometer on the axis 3. All the sensors are
installed on the downstream side of the span. The drawing is reproduced from the Jacques
Cartier bridge steel repairs program documentation [6].

actual vibrations of the structure and the ones induced by external excitements such as traffic
loading and wind. Each sensor has a particular ID indicating the sensor type and location as
shown in Table 3.1. The third column in Table 3.1 shows the sensors’ complete ID received
from the consultant’s data acquisition servers. For brevity, we define a generic simplified ID
for each sensor. This allows to readily identify a sensor’s type and location. Each simplified
name consists in the span name followed by an abbreviation, that is I1 for a longitudinal
inclinometer on the axis 1, I3 for a longitudinal inclinometer on the axis 3, IL for a lateral
inclinometer, E for an extensometer, and T for a thermometer. For instance, the complete
name of the longitudinal inclinometer on the axis 1 on the span 4− 5, shown in the first row
of the table, is “INC LONG 4 5AV 1”, which is simplified to “4− 5 : I1”.
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Table 3.1 Sensors’ complete and simplified IDs.

Sensor type Span
ID

Complete Simplified

Longitudinal
Inclinometer
(axis 1)

4− 5 INC LONG 4 5AV 1 4− 5 : I1
5− 6 INC LONG 5 6AV 1 5− 6 : I1
6− 7 INC LONG 6 7AV 1 6− 7 : I1

Longitudinal
Inclinometer
(axis 3)

4− 5 INC LONG 4 5AV 3 4− 5 : I3
5− 6 INC LONG 5 6AV 3 5− 6 : I3
6− 7 INC LONG 6 7AV 3 6− 7 : I3

Lateral
Inclinometer
(axis 3)

4− 5 INC LATE 4 5AV 3 4− 5 : IL
5− 6 INC LATE 5 6AV 3 5− 6 : IL
6− 7 INC LATE 6 7AV 3 6− 7 : IL

Extensometer
(axis 4)

4− 5 EXT 4 5AV 4 4− 5 : E
5− 6 EXT 5 6AV 4 5− 6 : E
6− 7 EXT 6 7AV 4 6− 7 : E

thermometer
(axis 4)

4− 5 TH 04 5AV 3 4− 5 : T
5− 6 TH 05 6AV 3 5− 6 : T
6− 7 TH 06 7AV 3 6− 7 : T

3.4 Data

The data acquisition started in May 2019 with the averaged acquisition frequency of one
data point per 10 min. This research analyzes the data from August 2019 until November
2021; We have discarded the first three months of the data due to multiple sensor calibration
issues that resulted in missing or improperly collected measurements. Figures 3.4a and 3.4b
illustrate an example of the extensometer and temperature measurements on the span 5− 6
with the respective labels 5 − 6 : E and 5 − 6 : T, according to Table 3.1. We use weekly

(a) (b)

Figure 3.4 Illustration of the elongation and temperature data collected on the span 5−6: (a)
elongation data with an averaged period of acquisition of 10 min, and (b) raw temperature
data with an averaged period of acquisition of 10 min.
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averaged data for all measurements in the current research as it facilitates and speeds up the
analysis without limiting the interpretation capacity. Figures 3.5a and 3.5b show the weekly
averaged data corresponding to the raw data displayed in Figure 3.4a and 3.4b, where each
data point on Figures 3.5a and 3.5b corresponds to the average of data points collected within
a week.
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Figure 3.5 Illustration of the weekly averaged elongation and temperature data collected on
the span 5 − 6: (a) weekly averaged elongation data, and (b) weekly averaged temperature
data.

The bridge responses measured by extensometers and inclinometers are affected by the tem-
perature. Our study of these time series has revealed that the temperature is the dominant
external effect. Figure 3.6 shows two examples of dependencies between the normalized
weekly averaged temperature and elongation data as well as the normalized longitudinal
inclination data. The normalization is carried out ensuring the data range is (0, 1). Note
that the normalization is linear and plotting the data in the original space would yield the
same results. Here, such normalization is carried out for a better illustration resulting in
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Figure 3.6 Illustration of the dependency between the normalized temperature data and the
normalized structural measurements: (a) normalized elongation and (b) normalized inclina-
tion. The dependency between the temperature and elongation is positive, while it is negative
for inclination.
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figures with equal axes scales. Figure 3.6 displays a strong linear dependency between the
temperature and the elongation and inclination data; The dependency between the temper-
ature and elongation is positive, while it is negative for inclination. Figure 3.7 shows the
weekly averaged data for each span. The gray areas represent removed timestamps for which
the data was improperly collected or was missing. Moreover, the data corresponding to the
sensor 6 − 7 : I3 has not been collected after February 2021. The next section presents the
analysis of these time series including the method used to account for dependencies between
the temperature data and other measurements.

3.5 Results

This section presents the empirical models built for the three instrumented spans of the
Jacques Cartier Bridge. We use Bayesian dynamic linear models (BDLM) in order to model
the time series as described in Section 2.2. The modeling process encompasses decompos-
ing the measurements by employing BDLM generic components, and creating dependencies
between the structural responses and temperature data.

3.5.1 Jacques Cartier Bridge Time Series Modeling

For non-stationary regimes, we employ a level hidden state variable xL in order to describe
the baseline behavior of the structural response. The rate of change in the baseline is the
trend hidden state variable xT. The rate of change in the trend is the local acceleration hidden
state variable xLA. These three variables represent the degradation’s kinematics describing
the irreversible responses of the structure’s degradation, the degradation’s speed, and the
degradation’s acceleration. They jointly form the local acceleration vector xLA

t = [xL
t x

T
t x

LA
t ]ᵀ

similar to the one presented in Equation 2.4. For stationary regimes, the acceleration is zero
for all the time steps. Therefore, the irreversible responses consist in a level and a local trend
hidden state variables. They jointly form the local trend vector xLT

t = [xL
t x

LT
t ]ᵀ as presented in

Equation 2.6. Note that the only irreversible response to model temperature data is the local
level xLL hidden state variable. The kernel regression vector xKR

t models the reversible periodic
patterns for each observation [52]. For the measurements associated with inclinometers and
thermometers, we use 10 hidden control points for the kernel regression which result in the
vector of hidden states xKR

t =
[
xKR
t,0 x

KR
t,1 · · · xKR

t,10

]ᵀ
. The autoregressive component xAR

t models
the time-dependent residual term representing the effect of other phenomena that cannot be
modeled by the components employed.

Moreover, a BDLM involves a set of parameters P that is learned from the observed data.
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In general, the parameter set consist in σw ∈ R+, the standard deviation of the process noise
for each irreversible component; ` ∈ R+ and σ ∈ R+ are the kernel length and the standard
deviation of the hidden periodic pattern corresponding to the kernel regression component;
and φAR ∈ (0, 1], the autoregressive coefficient. Here, we assume a fixed kernel period equal
to 365.2422 days and a zero standard deviation for the hidden control points. Apart from
the parameters corresponding to the components, there are additional ones that need to be
learned; They are σv ∈ R+, the observation standard deviation for each measurement, and
regression coefficients β expressing the dependencies between time series data. Regression
coefficients are introduced in the observation model matrix Ct in order to create a linear
dependency between each measurement and temperature time series. Appendix A provides
the observation model matrices for modeling time series.

Table 3.2 summarizes the list of generic components used to model the time series obtained
from the extensometer, inclinometer, and thermometer, the three types of sensors used in this
thesis. The first column identifies the name of each component followed by its schematic sym-
bol and mathematical notation, and the last column provides the corresponding parameters
that either are fixed or need to be learned from data. The hidden state variables estima-
tion and the optimization of model parameters P∗ are carried out by using the openBDLM
library [84].

Table 3.2 BDLM generic components used to model a non-stationary regime. The columns
show the names, symbols, notations, and parameters for each hidden state variable. Note
that parameters with fixed values are not optimized. The icons are adopted and edited
from [1].

Component Icon Notation Parameter
Level xL σL

w = 0

Trend xT σT
w = 0

Local acceleration
(acceleration)

xLA σLA
w = 0

Kernel regression xKR `, σKR
w = 0

Autoregressive xAR φAR, σAR
w

Observation y
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The only observed external effect is the air temperature. Therefore, it is required to establish
dependencies between the periodic and autoregressive components of the temperature data
and other measurements. Figure 3.8 shows the schematic of the generic BDLM model for
non-stationary regimesMns corresponding to inclinometers (Figure 3.8a) and extensometers
(Figure 3.8b). The diagrams represent the components selected in order to decompose the

Temperature

Dependency

(a) Inclinometer

Temperature

Dependency

(b) Extensometer

Figure 3.8 Illustration of the schematics for the generic BDLM models associated with the
non-stationary regime across three spans: (a) inclinometer, and (b) extensometer. The icons
used is in accordance with Table 3.2. A stationary regime follows the same diagrams except
that it does not include the acceleration. The only dependency is between the structural
responses and the temperature data. Such a dependency is established throughout the kernel
regression and autoregressive components.

time series into reversible and irreversible responses. Note that the generic BDLM model for
the stationary regime Ms remains the same as those presented in Figure 3.8 except that it
does not include the acceleration. Therefore, the irreversible responses consist in a level xL

and a local trend xLT hidden state variables. The remaining part of this section provides the
results obtained using BDLMs.

3.5.2 Thermometer

The vector of hidden state variables xt for each empirical model of temperature data follows

xt =
[
xLL,T
t ; xKR,T

t ;xAR,T
t

]
, (3.1)

where [ ; ] indicates the column-wise concatenation of the vectors and the additional super-
script T indicates that the observations are for the temperature. Note that building the
empirical model for temperature data only requires the stationary modelMs because we do
not expect to have a regime switch. Appendix A provides the detailed model matrices set
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Ms. Moreover, the model parameters that learned from data are

P =
{
`KR,T, φAR,T, σAR,T, σT

v

}
. (3.2)

Table 3.3 shows the optimized parameters set P∗ for all three spans. The first column
shows the name of the spans, and the remaining columns are the values corresponding to
the estimated parameters which their values are similar; This indicates that the temperature
data decomposition results in similar hidden state variable estimations.

Figure 3.9 illustrates the time series decomposition associated with the temperature mea-
surements. We use the same model matrices in order to build the empirical models for all
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Figure 3.9 The hidden state estimations for temperature data across all instrumented spans
4− 5, 5− 6, and 6− 7. The solid lines are associated with the expected values µt|t for each
hidden state variable, and the shaded areas represent the uncertainty µt|t± σt|t around these
expected values. Note that the uncertainty around the estimations is small that is not visible.

three temperature measurements across all three spans. The generic components involve the
local level, kernel regression, and autoregressive components. As it is seen, the hidden state
estimations for all three spans are coinciding.

The temperature data affect other measurements collected from the inclinometers and exten-
someters. Such effects are modeled by creating dependencies between the kernel regression
and autoregressive hidden state variables of temperature measurements with the ones for
other sensors. In the next section, we introduce two coefficients βKR and βAR in the observa-
tion matrix Ct in order to account for such dependencies.
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Table 3.3 Optimized parameters set P∗ for the BDLM models associated with the temperature
data across all three spans.

Span `KR,T φAR,T σAR,T σT
v

4− 5 0.46 0.07 2.61 0.10
5− 6 0.46 0.08 2.65 0.10
6− 7 0.45 0.07 2.64 0.10

3.5.3 Inclinometer

We use an identical model structure for all inclinometer data as shown in Figure 3.8a. The
vector of hidden state variables xt for each empirical model follows

xt =

 xLA,I
t ; xKR,I

t ;xAR,I
t︸ ︷︷ ︸

inclination components

; xLL,T
t ; xKR,T

t ;xAR,T
t︸ ︷︷ ︸

temperature components

 , (3.3)

where the additional superscript I indicates that the observations are related to the incli-
nometer data. In Equation 3.3, the local acceleration vector xLA

t = [xL
t x

T
t x

LA
t ]ᵀ describes

the non-stationary regime of the dynamic system as presented in Equation 2.4. For the
stationary regime, the local acceleration is equal to zero for all time steps following the tran-
sition matrix and error presented in Equation 2.6. Appendix A provides the detailed model
matrices for both regimes, i.e.,Ms andMns. Furthermore, we use the same model parame-
ters presented in Table 3.3 for temperature data. Therefore, the only parameters that need
to be learned from data are associated with inclinations, transition probabilities, and the
dependency coefficients following

P =

 zs,s, zns,ns︸ ︷︷ ︸
regime transition

, σLA,I
Tr , `KR,I, φAR,I, σAR,I, σI

v︸ ︷︷ ︸
inclination, I

, βAR,I|T, βKR,I|T︸ ︷︷ ︸
dependency, I|T

,

 , (3.4)

where zi,i is the transition probability between the regimes, and σLA
Tr ∈ R+ is the standard

deviation of the transition model that corresponds to the transition from a stationary to
a non-stationary regime. In Equation 3.4, two dependencies are introduced. They corre-
spond to the dependency between the temperature and inclination data with respect to the
autoregressive component, i.e., βAR,I|T, and the kernel regression component βKR,I|T. These
two coefficients determine how temperature data affect the structural measurements. In
what follows, we present the results for the data collected from the lateral and longitudinal
inclinometers.
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Lateral Inclinometer

The lateral inclinometer for each span is located on the downstream side of the axis 3 as shown
in Figure 3.3. The regime transition probabilities for all three spans are fixed such that zs,s =
0.9999 and zns,ns = 0.9995. In addition, for these spans, the observation standard deviation
is fixed to σI

v = 0.0001 and the transition model standard deviation is fixed to σLA
Tr = 1×10−7.

Table 3.4 shows the optimized parameter values. The first column identifies the span names

Table 3.4 Optimized parameters for the BDLM models associated with the lateral inclinome-
ter across all three spans. The columns are divided into two categories with respect to the
inclination data, and the dependency coefficients.

Span Inclination, I Dependency (×10−4)
`KR,I φAR,I σAR,I βAR,I|T βKR,I|T

4− 5 0.86 0.11 0.001 −2.12 −2.96
5− 6 5.21 0.55 0.001 −4.40 −1.39
6− 7 3.85 0.58 0.002 −6.33 −2.89

and the following three columns show the optimized parameter values associated with the
inclination data. The last two columns are the dependency values between the temperature
and inclination data. The dependency coefficients confirm that there is a negative linear
dependency between the lateral inclinometer data and temperature data.

Figure 3.10 illustrates the hidden state estimations along with the probability of the non-
stationary regimes for all instrumented spans. As it is seen, the span 4 − 5 hidden state
estimations differ from the other two spans; In Figure 3.10c, the level response xL shows a
shift indicating that the lateral inclinometer suggests a different degradation for the span
4− 5 compared with the other ones. Such a difference is also seen for the trend responses xT

as depicted in Figure 3.10e. Figure 3.10b shows the periodic patterns that are not displayed
by the temperature data. For the lateral inclinometer on the span 4−5, it shows that such a
periodic external effect is different from the other two spans. This is in agreement with the
values obtained for the kernel regression length `KR,I as presented in the second column of
Table 3.4 in the sense that different kernel lengths result in different patterns. In Figure 3.10f,
the probabilities indicate regime switches around October 2020 for the spans 5−6 and 6−7.
For the span 4−5, a regime switch with a probability of approximately 0.5 happened around
March 2021. We are not aware of the cause of the aforementioned regime switches; since
they happened on three spans approximately around the same time, we do not presume
they are structural anomalies. Rather, we suspect that they are due to intervention, sensor
malfunctioning, and other non-structural damages.
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Figure 3.10 Illustration of the hidden state estimations and the probability of the non sta-
tionary regimes for the lateral inclination data on the axis 3 across all instrumented spans
4− 5, 5− 6, and 6− 7. The solid lines are associated with the expected values µt|t for each
hidden state variable, and the shaded areas represent the uncertainty µt|t± σt|t around these
expected values.
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Longitudinal Inclinometer 1

The longitudinal inclinometer 1 for each span is located on the downstream side of the axis
1 as shown in Figure 3.3. The regime transition probabilities for all three spans are fixed
such that zs,s = 0.9999 and zns,ns = 0.9990. In addition, for these spans, the observation
standard deviation is set to σI

v = 0.0001 and the transition model standard deviation is
fixed to σLA

Tr = 1 × 10−7. Table 3.5 shows the optimized parameter values. Similarly to the

Table 3.5 Optimized parameters for the BDLM models associated with the longitudinal
inclinometer 1 across all three spans. The columns are divided into two categories with
respect to the inclination data and the dependency coefficients.

Span Inclination, I Dependency (×10−4)
`KR,I φAR,I σAR,I βAR,I|T βKR,I|T

4− 5 1.67 0.68 0.0004 −3.51 −3.77
5− 6 4.42 0.43 0.0009 −3.64 −4.16
6− 7 0.81 0.52 0.0005 −1.56 −2.63

lateral inclinometer data, the last two columns in Table 3.5 indicate that the longitudinal
inclinometer 1 has a linear negative dependency with temperature data.

Figure 3.11 illustrates the hidden state estimations along with the probability of the non-
stationary regimes. In Figure 3.11c, there is a shift in the level xL corresponding to the span
4− 5 compared with the other two spans. In addition, the periodic component for the span
6 − 7 is different compared with two other spans as shown in Figure 3.11b; Figure 3.11f
illustrates the probability of the non-stationary regimes for the three spans. The span 5− 6
shows two regime switches with a probability of 1 during August 2020 and May 2021. The
span 4− 5 shows a regime switch that started in April 2021 with a probability of around 0.3
which reaches 1 around July 2021. However, the analysis of the longitudinal inclinometer
data for the span 6 − 7 indicates that there was no anomaly during the time from 2019 to
2021.

Longitudinal Inclinometer 3

The longitudinal inclinometer 3 for each span is located on the downstream side of the axis
3 as shown in Figure 3.3. The regime transition probabilities for all three spans are fixed
such that zs,s = 0.9999 and zns,ns = 0.9995. In addition, for these spans, the observation
standard deviation is fixed to σI

v = 0.0001 and the transition model standard deviation is
set to σLA

Tr = 1 × 10−7. Table 3.6 shows the optimized parameter values. Similarly to the
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Figure 3.11 Illustration of the hidden state estimations and the probability of the non-
stationary regimes for the longitudinal inclination data on the axis 1 across all instrumented
spans 4− 5, 5− 6, and 6− 7. The solid lines are associated with the expected values µt|t for
each hidden state variable, and the shaded areas represent the uncertainty µt|t ± σt|t around
these expected values.

lateral and longitudinal inclinometers data, the last two columns in Table 3.6 indicate that
the longitudinal inclinometer 3 data has a linear negative dependency with temperature data,
but only for the spans 5− 6 and 6− 7. In contrast, the dependency coefficients for the span
4 − 5 is positive; we suspect that this sensor is installed in a reverse direction resulting in
such positive dependencies.

Figure 3.12 illustrates the hidden state estimations along with the probability of the non-
stationary regimes obtained for the longitudinal inclinometers 3 across all three instrumented
spans. From Figure 3.12a, we suspect that the measurements for the span 4− 5 is collected
differently compared with the other two spans; This is confirmed by the dependency coeffi-
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Table 3.6 Optimized parameters for the BDLM models associated with the longitudinal
inclinometer 3 across all three spans. The columns are divided into two categories with
respect to the inclination data and the dependency coefficients.

Span Inclination, I Dependency (×10−4)
`KR,I φAR,I σAR,I βAR,I|T βKR,I|T

4− 5 2.51 0.48 0.0004 +5.11 +3.28
5− 6 0.36 0.67 0.0003 −3.06 −4.42
6− 7 4.57 0.74 0.0004 −1.00 −1.64
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Figure 3.12 Illustration of the hidden state estimations and the probability of the non-
stationary regimes for the longitudinal inclination data on the axis 3 across all instrumented
spans 4− 5, 5− 6, and 6− 7. The solid lines are associated with the expected values µt|t for
each hidden state variable, and the shaded areas represent the uncertainty µt|t ± σt|t around
these expected values.
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cients presented in Table 3.6 for which the coefficients for the span 4 − 5 have the opposite
sign compared with those associated with other spans which have a negative sign. In ad-
dition, Figure 3.12e shows the trend response for the measurement data. The span 5 − 6
shows a positive degradation’s speed for the stationary regime, while it is negative for the
spans 4 − 5 and 6 − 7. Another point that needs to be mentioned is related to the kernel
regression hidden state shown in Figure 3.12b; The periodic component for the span 5 − 6
differs from the other two spans, which is confirmed by different values obtained for the ker-
nel regression lengths `KR,I presented in Table 3.6. Figure 3.12f illustrates the probability of
the non-stationary regimes for the instrumented spans. The spans 4 − 5 and 6 − 7 indicate
regime switches with a probability close to one around October 2020. The span 5− 6 shows
two regime switches with probabilities of 0.6 and around October 2020 and February 2021.

3.5.4 Extensometer

We use the same generic model for all extensometer data as shown in Figure 3.8b. The vector
of hidden state variables xt for each empirical model follows

xt =

 xLA,E
t ;xAR,E

t︸ ︷︷ ︸
elongation components

; xLL,T
t ; xKR,T

t ;xAR,T
t︸ ︷︷ ︸

temperature components

 , (3.5)

where the additional superscript E indicates that the observations are for the elongation
data collected from extensometers. Analogously to the inclinometer empirical models, the
local acceleration vector xLA

t = [xL
t , x

T
t , x

LA
t ]ᵀ in Equation 3.5 describes the non-stationary

regime of the dynamic system as presented Equation 2.4. For the stationary regime, the
local acceleration is equal to zero for all time steps following the transition matrix and
error presented in Equation 2.6. Appendix A provides the detailed model matrices for both
regimes, i.e.,Ms andMns. Again, we use the same model parameters presented in Table 3.3
for temperature data. Therefore, the only parameters that need to be learned from the
data are associated with the elongation, the transition probabilities, and the dependency
coefficients following

P =

 zs,s, zns,ns︸ ︷︷ ︸
regime transition

, σLA,E
Tr , φAR,E, σAR,E, σE

v︸ ︷︷ ︸
elongation, E

, βAR,I|T, βKR,E|T︸ ︷︷ ︸
dependency, E|T

 , (3.6)

where, two dependencies similar to the ones in Equation 3.4 are introduced for the extensome-
ter data. They correspond to the dependency between the temperature and elongation with
respect to the autoregressive βAR,E|T and the kernel regression βKR,E|T components. The regime
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transition probabilities for all three spans are fixed such that zs,s = 0.9999 and zns,ns = 0.9990.
Moreover, the observation standard deviation is fixed to σE

v = 0.001 and the transition model
standard deviation is set to σLA

Tr = 1× 10−7. Table 3.7 shows the optimized parameter values.
The last two columns indicate that the elongation data have a linear positive dependency
with respect to the temperature. Figure 3.13 illustrates the hidden state estimations along

Table 3.7 Optimized parameter values for the BDLM models associated with the exten-
someters across all three spans. The columns are divided into two categories of optimized
parameters associated with the elongation data and the dependency coefficients.

Span Inclination, E Dependency
φAR,E σAR,I βAR,E|T βKR,E|T

4− 5 0.82 0.004 0.02 0.02
5− 6 0.82 0.003 0.02 0.02
6− 7 0.80 0.003 0.02 0.02

with the probability of the non-stationary regimes for all instrumented spans. The elongation
data corresponding to the span 4 − 5 has a shift shown in Figure 3.13c. The probability of
the non-stationary regimes indicate that the regime is stationary for all the time steps during
2019 and 2021.
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Figure 3.13 Illustration of the hidden state estimations and the probability of the non-
stationary regimes for the elongation data across all instrumented spans 4−5, 5−6, and 6−7.
The solid lines are associated with the expected values µt|t for each hidden state variable,
and the shaded areas represent the uncertainty µt|t ± σt|t around these expected values.

3.6 Discussion

We identified many issues along with the regime switches associated with the inclinometers.
In order to evaluate the performance of these sensors, we simulated synthetic time series
using their respective empirical models associated with a stationary regime as shown in
Figure 3.14. The subscript 1:15 indicates that the mean and standard deviation are com-
puted for 15 simulated time series. For the thermometers and extensometers, the synthetic
time series coincide with the real measurements in the sense that they follow the same
patterns. However, for the inclinometers, there are some cases that there is a match between
the real and synthetic time series, e.g., the longitudinal inclinometer 1 on span 4−5 and 6−7.
Nevertheless, in many cases there are drifts between the simulated and real time series, and
we do not see common tendencies in the drift patterns. In addition, in some cases such drifts
are reversed; For instance, the elongations for the longitudinal 3 show a downward trend for
the span 4− 5, while it is upward for the span 6− 7.

Furthermore, in some cases we see interruptions or jumps in data associated with the lon-
gitudinal inclinometer 1 on span 5 − 6 and the longitudinal inclinometer 3 on span 6 − 7.
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The former inclinometer shows a jump in the collected data during October 2021 and April
2022. The latter shows that the measurements are not collected after February 2021. From
the above-mentioned issues, we conclude that the main issue is with the inclinometers them-
selves. As a result, the repeated interruptions, drifts, and jumps in the collected data make
us believe that these sensors are not adequate for the long-term monitoring of the Jacques
Cartier Bridge because they are unable to have a long-term stability in the acquisition of
structural responses. However, for the purpose of validating the methodologies developed in
this thesis, we will use the empirical models built for the inclinometers.

3.7 Conclusion

This chapter presented the analysis of the data collected on the Jacques Cartier Bridge. We
employed BDLM in order to analyze the measurements associated with the inclinometers,
extensometers, and thermometers. The analysis of the measurements led to the decompo-
sition of the data into reversible and irreversible responses for each sensor along with the
probability of the non-stationary regimes for inclinometers and extensometers. The BDLM
models identified regime switches during the time steps between August 2019 and Novem-
ber 2022. In addition, we identified many issues regarding interruptions, drifts, and jumps
in data associated with the inclinometers. These issues makes us believed that choosing
the inclinometers is not suited for the long-term monitoring of the Jacques Cartier Bridge.
However, we will use the empirical models built for inclinometers data for the purpose of
validating the methodologies developed in this thesis. In contrast, the empirical models for
the thermometers and the extensometers showed a stable acquisition of temperature and
elongation data that is suited for the long-term monitoring of the bridge. The analysis of the
time series resulted in empirical models for each sensor. Such models can be used in order
to generate new time series mimicking the structural responses. The next two chapters will
present methodologies based on the reinforcement learning and imitation learning in order to
leverage the BDLM empirical models for developing an anomaly detection framework. This
framework benefits from (i) the interpretability of the BDLM models in order to extract
irreversible responses subject to a wide range of anomalies, and (ii) incorporating the infor-
mation obtained from the BDLM analysis consisting in the structural degradation’s speed
and the probability of the non-stationary regime for decision making.
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CHAPTER 4 Anomaly Detectability Using Reinforcement Learning

This chapter presents the methodologies developed for detecting anomalies and for quantify-
ing the detectability of anomalies, along with the application of these methods to the Jacques
Cartier Bridge. We first present the components behind the anomaly detection method based
on the reinforcement learning (RL) approach: (i) an environment based on a decomposition
of time series using Bayesian dynamic linear models (BDLM), (ii) a procedure for generating
synthetic time series representing the structural responses subject to a wide range of anoma-
lies, and (iii) a reward function based on true and false detections in order to encourage
or prevent an agent to take actions at different time steps. Moreover, we present how we
propose to quantify the anomaly detectability with respect to the anomaly’s magnitude, its
duration, and the time required to detect an anomaly after its starting time. Such a quantifi-
cation leads to two probabilistic metrics; The annual false detection ratio, and the probability
of true positive detection, which characterize probabilistically the capacity of each sensor in
detecting anomalies. Finally, we validate these methodologies on the measurements collected
on the three instrumented spans of the Jacques Cartier Bridge.

4.1 Anomaly Detection Using Reinforcement Learning

Making decisions regarding the presence of an anomaly requires incorporating the information
from both the irreversible responses of a structure and the probability of being in a non-
stationary regime. In this research, these two quantities are represented by the expected value
of the degradation’s speed µT

t known as the trend (T), and the probability of a non-stationary
(ns) regime πns

t . They jointly form the environment’s state vector st = [µT
t π

ns
t ]ᵀ ∈ S.

Figure 4.1 shows an example of a continuous environment’s state-space S for which the
solid and dashed lines represent the evolution of a vector st over time. An episode Z =
{s1, s2, · · · } is defined as a set of environment’s state vectors for consecutive time steps.
Episodes such as the one depicted by the solid line are initialized at s1, at which time it
follows a stationary regime with a zero degradation’s speed. An anomaly starts at the time
t = ts which corresponds to the state sts . At a time t > ts after an anomaly begins, a regime
switch from a stationary to a non-stationary state should be detected, so that πns

t should
go from a value near zero to a value near one. For the agent, the term anomaly detection
refers to taking an action from a set A = {a0 : trigger an alarm, a1 : not trigger an alarm},
depending on the presence of an anomaly; the agent’s action should be triggering an alarm
at a state st>ts such as the one shown by the red dotted circle, and it should be as close as
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∞

S ∈ R2

µT

π
n
s

s1
sts r(st, at)

Z

Figure 4.1 Illustration of the episodes Z and environment’s state vector st = [µT
t π

ns
t ]ᵀ ∈ S

for which the agent triggers an alarm at time t during the non-stationary regime. The curves
inside the environment represent different realizations. One of them (solid line) is highlighted
to explain the nomenclature; sts is associated with the start time of an anomaly. The red
dashed circle indicates the time for which the agent triggers the alarm.

possible to the time ts. On the other hand, for the times t < ts, the agent’s action should
be not triggering an alarm. Here, once the agent selects the action of triggering an alarm
at any time, the episode is terminated and restarted with a new one as shown by dashed
lines in Figure 4.1. The reward r(st, at) ∈ R is a scalar function of the environment’s state
st and of the agent’s action at indicating whether the agent takes desirable actions during
the agent-environment interactions [67]. In Section 4.1.2, we present the reward function
and its values. A policy π : s → a is a map from a state to an action to be taken by an
agent. For a given policy π, the value of taking the action a in the environment’s state s is
denoted by the action-value function qπ(s, a) as shown by Equation 2.21 in Section 2.3.1. In
this setup, the anomaly detection can be regarded as a sequential decision making problem,
where the objective is to maximize the long-term expected return quantified by the action-
value function. Therefore, the anomaly detection problem is governed by the execution of
the optimal policy π∗ presented in Equation 2.22 following

π∗(s) = arg max
at

qπ∗(st, at), (4.1)

= arg max
at

Eπ∗
[ ∞∑
t=1

γt−1rt(St, at)
]
.

RL-based anomaly detection has two advantages; First, the policy depends on the environ-
ment’s state s, which consists in the information from both the local trend hidden state
variable and the probability of the non-stationary regime. This addresses the issues regard-
ing the decision making being solely based on the probability of the non-stationary regime
outlined in Section 2.2.5. Second, in Equation 4.1, evaluating the action-values depends on
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the current and future reward values. This implies that the decision making considers the
long-term effect of taking actions. Therefore, maximizing the accumulated discounted re-
wards results in maximizing the anomaly detectability, while minimizing the number of false
and missed alarms. Note that in the aforementioned setup, the agent does not control the
state variables. Rather, it follows the trajectories, such as the one shown in Figure 4.1, which
are obtained from the BDLM analysis of the time series.

We use the Q-learning method in order to train an agent in a discretized environment’s state-
space Ŝ such that dM×N : S → Ŝ is a discretization map from a continuous environment’s
state-space S into a discretized one Ŝ with a grid size M × N . Figure 4.2 shows the same
environment’s state-space depicted in Figure 4.1 which has been discretized with a grid size
of 5× 4.

ŝt

ŝt+1
st

st+1Z

µT

π
n
s

Figure 4.2 Mapping the continuous environment’s state st = [µT
t π

ns
t ]ᵀ ∈ S into discretized

one ŝt ∈ Ŝ for two successive times t and t + 1 during an episode Z. The shaded areas and
diamonds marks indicate the discretized regions and their centers visited by the agent. The
darker shaded areas correspond to the regions visited by the agent for a consecutive time
steps t and t+ 1.

Two successive continuous environment’s states st and st+1 are shown by solid circles; the
corresponding discretized states are respectively ŝt = d(st) and ŝt+1 = d(st+1), which are
shown by darker shaded areas. In general, the grid size depends on the problem at hand.
Using a coarse grid may result in poor policies for the discretized environment’s states.
Therefore, the grid needs to be fine enough to ensure the convergence of the Q-values [85].
On the other hand, increasing the grid size increases the number of states and the subsequent
memory allocations during the learning phase; This results in a slower learning as well as
the necessity for using a larger amount of data to train an agent. We set the grid size based
on the pilot study we carried out on the Champlain Bridge, Canada [56]. Here, we use a
fine grid size for lower expected values of the local trend and lower values of the probability



58

of the non-stationary regime; This allows the agent to be trained for small changes in the
environment associated with these low values. On the other hand, for higher values of the
mean trend an the probability of the non-stationary regime, we use a coarse grid.

In a discretized RL setup, the task is to find the optimal policy by interacting with the
environment through several episodes as shown in Figure 4.1. Each episode includes T time
steps and at the end-time of each episode, i.e., t = tT, the agent cannot select further action to
determine the next state. Consequently, at time t = tT−1, the agent-environment interaction
is terminated and restarted with another episode such as the ones depicted in Figure 4.1
by dashed lines. The optimal policy is attained when the Q-values converge to stationary
values. Here, the Q-values are considered as having converged when the expected Q-values
over all visited states for K consecutive episodes satisfy the convergence error ratio

δi:i+K =

∣∣∣Eŝ[Qi+k(ŝ)]− Eŝ[Qi(ŝ)]
∣∣∣∣∣∣Eŝ [Qi(ŝ)]

∣∣∣ ≤ δ0, ∀k = {1, 2, · · · , K}, (4.2)

where δ0 is a user-defined convergence tolerance and Qi(ŝ) is the Q-value for a state ŝ at time
T− 1 of the ith episode. The subscript ŝ indicates that the expected value is computed from
all the visited states. Note that, the choice of the grid size was studied via a grid search in
order to ensure the convergence of the learning process following Equation 4.2. In this thesis,
the expected Q-values over all visited states is computed for ten consecutive episodes, i.e.,
K = 10, and the user-defined convergence tolerance δ0 is set to 1× 10−6.

4.1.1 Environment’s State-Space

For structural health monitoring applications, agent-environment interactions should mimic
the underlying structural responses in the presence of various anomalies. Training an agent
to detect anomalies solely based on real data cannot address this challenge because anomalies
are rare events in the context of infrastructure monitoring. This limits training an agent to
learn from various anomalies. Therefore, we use the BDLM models built in order to simu-
late new time series. Afterwards, we employ the newly generated time series along with a
stochastic anomaly function in order to build an environment’s state-space which with an
agent interacts.

Stochastic Anomaly Function

We define an anomaly as a switch from a stationary to a non-stationary regime. In order
to simulate such a transition, we define an anomaly function representing a change in the
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structure’s degradation using a continuous logistic function

fa(t;J ) = ha

|ha|
· |ha|+ 2εa

1 + e−k(t−tc) , (4.3)

in which the steepness k is governed by

k = 2
wa

ln
(
|ha|
εa

+ 1
)
. (4.4)

A logistic function is differentiable over its entire domain and have exact closed-form deriva-
tives, which determines the kinematics of the anomaly function. In Equation 4.3, the logistic
function parameters can be generated from J = {ha : Ha, wa : Wa, tc : Tc}, a set of random
variables describing the stochastic characteristics of a non-stationary regime. It consists in
the anomaly’s magnitude ha, its duration wa, and the center time tc of the anomaly function.
The user-defined anomaly tolerance εa is the minimum magnitude corresponding to the time
for which a non-stationary regime starts, i.e., fa(ts) = εa.

Figure 4.3 illustrates three different anomaly realizations with the same magnitude ha > 0 and
different centers and durations such that w1

a < w2
a < w3

a. Hatched regions on the horizontal
axis indicate the out-of-domain values which are discarded. For the anomaly function shown
by a solid line, the non-stationary duration wa is centered at the time tc and is associated
with the start time ts = tc − wa/2 and the end time te = tc + wa/2. Anomaly function
values corresponding to the start and end time of the non-stationary duration are εa and

−∞ t1 ts tc te tT +∞
0

εa

ha + 2εa

ha + εa

w2
a

w1
a

w3
a

Time, t

f a
(t
;J

),
[u

ni
t]

stationary regime area
out-of-domain area
anomaly realization

Figure 4.3 Illustration of an anomaly function fa(t;J ) with ha > 0. The curves represent
three anomaly realizations with the same height h1

a = h2
a = h3

a = ha and anomaly tolerance
ε1a = ε2a = ε3a = εa, and different durations such that w1

a < w2
a < w3

a. One of them (solid line)
is highlighted to explain the nomenclature. The non-stationary regime is centered at time tc
for which te,s = tc ± wa/2.
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ha + εa, respectively. The green shaded areas indicate the anomaly tolerance for which the
regime is considered to be stationary. For the cases where |ha| < εa or ha = 0, we assume
that there is no anomaly, i.e., fa(t) = 0, ∀t. In Figure 4.3, the anomaly function magnitude
|fa(t)| ∈ (0, |ha|+ 2εa) approaches 0 as t tends to −∞. In addition, an anomaly starts some
time steps after the time t1 denoting the first timestamp of the an episode. Therefore, at the
time t1, the anomaly function introduces an error of magnitude |fa(t1)|, which must satisfy
|fa(t1)| < ε. Here, ε is a user-defined tolerance. In order to start episodes with a stationary
regime, we accept anomaly realizations for which ts ≥ t1 + w0, where w0 > 0 is the number
of initial time steps without any anomaly.

Simulated Environment’s State Space

The process of simulating an environment’s state-space involves generating synthetic abnor-
mal structural responses and then estimating hidden-state variables and regime probabilities;
Generating abnormal structural responses is carried out by simulating synthetic time series
using the BDLM matrices associated with a normal regimeMs,obs, and the prediction step of
the Kalman filter as explained in Section 2.2.2. Afterwards, the values fa(t;J ) for a realiza-
tion of the anomaly function are added to the synthetic time-series. This process is repeated
in order to build synthetic times series containing a wide range of anomalies. The simulation
of synthetic structural responses ysim

t is summarized by

ysim
t = Sim(µobs

t|t ,Σobs
t|t ,Ms,obs,P∗,obs, fa(t;J )), (4.5)

where, the superscripts obs and sim refer to the quantities that are obtained from the ob-
served and simulated structural responses, respectively. Once abnormal synthetic structural
responses are obtained, we employ the switching Kalman filter, presented in Section 2.2.2, in
order to estimate its hidden-state variables and regime probabilities.

Figure 4.4a shows an example of ten synthetic responses containing anomalies. In each figure,
the red line is the actual observations y obs. The black lines are the simulated responses y sim

for 10 years for which t1 = 2019-08 and tT = 2029-08. The vertical dashed line indicates the
initial number of time steps in days without anomaly, i.e., w0 = 90. For a better illustration,
Figure 4.4b shows the synthetic time series and observations corresponding to Figure 4.4a
for a shorter time span that is between 2019-08 and 2022-02. The synthetic anomalies are
generated by sampling the anomaly function parameters from the corresponding uniform
distributions. The types of distributions and the corresponding parameters for generating
anomalies depend on the requirements of the anomaly detection with respect to the prior
knowledge about an anomaly’s magnitude and duration.
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Figure 4.4 Comparison between 10 synthetic abnormal structural responses y sim and obser-
vations y obs for elongation and temperature measurements. The anomaly’s height, duration,
and the time corresponding to the center of the non-stationary regime are sampled from
the respective uniform distributions Ha ∼ U(ha;−0.03, 0.03) mm, Wa ∼ U(wa; 0, 5) year, and
Tc ∼ U(tc; 2019-08, 2029-08). The number of time steps without synthetic anomaly w0 = 90
days: (a) ten years synthetic time series simulations, and (b) the same synthetic time series
and observations for a shorter time between 2019-08 and 2022-02.

Figure 4.5a illustrates the estimated local trend expected values and the probability of the
non-stationary regime for the ten synthetic structural responses shown in Figure 4.4. The
vertical yellow dash-dotted lines indicate the anomalies’ center time tc. The shaded areas cor-
respond to the duration wa of the anomalies. Figure 4.5b shows the simulated environment’s
state-space in which we presented 10 episodes corresponding to the estimated values shown
in Figure 4.5a. In Figure 4.5, two episodes are emphasized by the green and red colors. They
respectively show high and low probabilities of detecting anomalies. Section 2.2.5 presented
an example of how relying only on the probability of the non-stationary regime to detect
anomalies is prone to false or missed alarms. The RL-based anomaly detection method copes
with this issue by incorporating the trend hidden-state variable along with the probability
of the non-stationary regime. Moreover, we do not have a precise prior knowledge about the
occurrence of anomalies in the sense that we do not know when, with what magnitude, and
with what duration anomalies will happen. The anomaly detection method proposed thus
uses a wide range of anomalies during the training phase such as the two examples shown in
the green and red colors in Figure 4.5.

Figure 4.6a shows the continuous states s (blue dots) and their corresponding discretized
states ŝt (shaded regions) associated with 100 episodes obtained from the simulation process
with the same configuration that was used to generate the states in Figure 4.5.
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Figure 4.5 Simulation of 10 episodes: (a) illustration of the abnormal episodes. The vertical
dash-dotted lines indicate the anomalies’ center time tc. The shaded areas correspond to the
duration wa of the anomalies, and (b) illustration of the environment’s state-space S.

(a) (b) (c)

Figure 4.6 Example of a discretized environment using 20 × 20 grid along with the data
points (blue dots) corresponding to 100 episodes mapped on the environment’s states: (a)
the continuous states s obtained from 100 episodes with the same configuration that was used
to generate the states in Figure 4.5, (b) the 20 × 20 grid along with the mapped data into
the 400 induced discretized states states ŝ. The shaded regions represent the visited states ŝ,
while the while ones are associated with non-visited states ¬ŝ, and (c) the final discretized
environment for training an agent. The shaded regions are the discretized states for which
an agent interacts with.
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4.1.2 Reward Function

The reward function represents a feedback from the environment determining whether the
agent should be encouraged or discouraged for the action it takes [86]. The reward function
r(st, at) for an episode Z takes the form of a confusion matrix as shown in Table 4.1. Reward
values are based on the comparison between the optimal action and actions taken by an
agent at the time t. Note that because each episode is issued from an anomaly simulation
process, we know whether an anomaly is present or not. In Table 4.1, the true positive reward
rTP and true negative reward rTN correspond to the environment’s states where the agent
correctly selects the optimal action of triggering an alarm in the presence of an anomaly or
doing nothing otherwise. On the other hand, the false positive (false alarm) reward rFP and
false negative (delayed or missed alarm) reward rFN are associated with an incorrect action
taken by an agent.

Table 4.1 Reward function r(st, at) presented in the form of a confusion matrix. The action
a ∈ A = {a0 : trigger an alarm, a1 : not trigger an alarm}.

Agent action
Optimal action
a0 a1

a0 rTP rFP

a1 rFN rTN

In general, true positive and negative reward values are greater than the false positive
and negative ones such that rTN, rTP > 0 and rFP, rFN < 0. The delayed reward rFN =
−ηf̂a(t;J ), t > ts, depends on the normalized anomaly function f̂a(t;J ) ∈ (0, 1) such that
the agent is discouraged incrementally as it delays triggering a rightful alarm; η ≥ 0 is the
false negative factor enabling the user to control the reward value.

4.1.3 Anomaly Detection Framework

The methods presented in previous sections are assembled into an anomaly detection frame-
work applicable for full-scale infrastructure monitoring. The framework is illustrated in
Figure 4.7 which encompasses three stages identified by the dashed boxes, namely Stage I,
Stage II, and Stage III. They are respectively associated with the empirical model estimation,
systematic abnormal time series generation, and employing the Q-learning method. The goal
of the first two stages is to built an environment with which an agent interacts. To this end,
the anomaly detection framework employs the empirical model of the structure to simulate



64

Stage I

Stage II

Stage III
yobs

Mns,obs Ms,obs µobs
t|t ,Σ

obs
t|t ,P∗

BDLM

SIM fa(t;J )

ysim

BDLM µsim
t|t , π

ns, sim
t|t

Environment
S = [µLTt|t π
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Figure 4.7 Illustration of the anomaly detection framework in the state-space model, which
consists in three stages corresponding to the empirical model estimation (Stage I), systematic
abnormal time series generation (Stage II), and employing the Q-learning method (Stage III).

episodes consisting in stationary and non-stationary regimes as described in Section 4.1.1;
Stage I builds an empirical model from the structural responses yobs and the user-defined
generic components associated with the stationary and non-stationary regimes. The generic
components involve model matrices Ms,obs and Mns,obs. In this stage, the BDLM uses the
structural responses and model matrices to estimate the hidden state variables expected val-
ues µobs

t|t and covariance matrix Σobs
t|t , as well as the model parameters P∗. In Stage II, the

goal is to simulate new episodes from simulated structural responses y sim as described in
Section 4.1.1. To this end, structural responses are simulated from the stationary model ma-
trix Ms,obs, the stochastic anomaly function fa(t;J ), and estimated hidden state variables
expected values and covariance matrix obtained from the Stage I. Afterwards, BDLM uses
both the model matrices and simulated structural responses to establish a new environment’s
state-space. The goal of the last stage is to train the Q-learning agent over multiple episodes
in order to learn the alarm triggering policy as described in Section 2.3.1. In Stage III,
two termination criteria are defined to restart the agent-environment interaction with a new
episode by simulating new structural responses from Stage II. The first criterion, t < tT − 1,
is related to the end time of each episode, and the second one is related to the action taken
by the agent such that if it triggers an alarm, the episode is terminated.
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4.2 Probabilistic Quantification of Anomaly Detectability

This section presents the methods developed for quantifying the anomaly detectability with
respect to two metrics, namely the annual false positive ratio and the probability of true
positive detections.

4.2.1 Categorization of an Agent’s Decisions

In order to quantify an agent’s performance at detecting anomalies, we need to categorize
the outcome of its decisions. Table 4.2 summarizes the four possible situations that an agent
can be in, while following its policy π(s). If an action is to trigger an alarm at any time t
after the anomaly’s start time ts, the decision leads to a true positive (TP) detection, while
if an agent triggers an alarm at any time step before ts, it is a false positive (FP) one. In
addition, if an action is to not trigger an alarm for any time step after ts, it leads to a false
negative (FN) detection, while for any time steps before ts it is a true negative (TN) one.
In order to draw probabilistic conclusions about the detectability of anomalies, we generate
independent synthetic datasets with labeled anomalies and test an agent against them. As
a result, we are able to quantify the anomaly detectability capacity of an agent with respect
to two quantities: (i) the annual false positive ratio, and (ii) the probability of true positive
detections.

Table 4.2 Agent detection terminology, given its policy π(s) with the two possible actions a0:
trigger an alarm, and a1: not trigger an alarm, and the time to detection with respect to the
anomaly’s start time ts.

Terminology Agent’s action
True positive (TP) a0, t ≥ ts
False negative (FN) a1, t ≥ ts
True negative (TN) a1, t < ts
False positive (FP) a0, t < ts

4.2.2 Annual False Positive Detection Rate

The estimation of the annual false positive ratio ζFP involves testing the agent against an
environment Stest, FP for which all the episodes are free from anomaly, and then calculating
the fraction of false positive detections from the total number of false positive detections. To
this end, two quantities are evaluated in the test environment: (i) total number of time steps
#time steps obtained from the total number of episodes in the environment, and (ii) the
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average of the number of time steps per year #time steps/year for each episode. Therefore,
the annual false positive ratio ζFP is expressed in events per year and is estimated by

ζFP = #false positive detections×#time steps/year
#time steps , (4.6)

= #false positive detections
year .

4.2.3 Probability of True Positive Detection

In order to evaluate the probability of a true positive detection, we only consider the actions
for the time steps after the beginning of an anomaly, i.e, t ≥ ts. This implies that only true
positives and false negative detections are considered in order to build a probabilistic model
for the true positive detections. The task of building such a probabilistic model corresponds
to a classification problem with two classes {−1 ≡ false negative,+1 ≡ true positive}. The
covariates for this classification problem are the absolute value of the anomaly’s magnitude
|ha|, its duration wa, and the number of time steps Nt>ts that are required to detect an anomaly
after its start. Note that the covariate Nt>ts determines the delay caused by an agent in
detecting an anomaly, while the other two covariates are the anomaly’s characteristics. For
a test environment Stest, TP, a set of D joint observations is defined by D = {(xi, yi),∀i ∈
{1 : D}}, where, xi = [|ha| wa Nt>ts ]ᵀ are the covariates vector and yi ∈ {−1,+1} are the
system responses. Note that whenever the policy is to trigger an alarm after the beginning
of an anomaly, we consider that the policy for the remaining time steps of the episode to
be triggering an alarm. This consideration is due to the termination criterion explained in
Section 4.1.3, for which the agent-environment interaction is terminated whenever the agent
triggers an alarm.

Figure 4.8 shows an example of an abnormal episode used in building a test data set D.
Figure 4.8a illustrates a realization of the anomaly function fa(t;J ). The anomaly’s mag-
nitude is ha = 0.11 and its duration is wa = 1 year. The unit of the anomaly magnitude is
the same as the measurements’. Figure 4.8c depicts the resulting simulated time series using
the anomaly realization along with the simulation procedure expressed in Equation 4.5. Fig-
ures 4.8b and 4.8d show the trend expected value µT and the probability of the non-stationary
regime, respectively. As shown in Figure 4.8c, the agent triggers an alarm approximately 10
months ≡ 0.83 year after the anomaly begins. The point where the alarm is triggered is
identified by a circle marker and a vertical dashed line.

Figure 4.9 shows an example of the results on a test environment containing 1200 episodes,
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Figure 4.8 Example of an abnormal episode used to build a test data set D. The realization of
the anomaly function results in an anomaly magnitude of ha = 0.11 and a duration of wa = 1
year. The shaded area represents the anomaly duration for which the agent triggers an alarm
approximately 10 months ≡ 0.83 year after the anomaly starts. The point where the alarm
is triggered is identified by a circle marker and a vertical dashed line. The covariates vector
is xi = [0.011 1 0.83]ᵀ.

where each consists in an anomaly having a different magnitude, duration, and time of
occurrence. The three axes correspond to the covariates vector x. Note that the unit of the

Figure 4.9 Example of the joint observations D = {(xi, yi),∀i ∈ {1 : D}} from 1200 episodes,
where the covariates vector xi = [|ha| wa Nt>ts ]ᵀ, and the classes yi are −1 ≡ false negatives
(blue dots) and +1 ≡ true positives (red dots).

anomaly magnitude |ha| depends on the measurements’ type that is mm for the extensometers
and ◦d for the inclinometers. The red dots are associated with the true positive detections,
where the action consists in rightfully triggering an alarm, i.e., y = +1. The blue dots
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indicate the false negative detections, y = −1, for which the agent wrongfully avoids to
trigger an alarm. Note that the episodes resulting in false positives are discarded because
they are considered separately for evaluating the annual false positive ratio as explained in
Section 4.2.2. We employ the tractable approximate Gaussian inference (TAGI) method [87]
for Bayesian neural networks in order to build a classification model that will characterize
the probability of a true positive detection as a function of the anomaly’s magnitude, its
duration, and the time to detection. TAGI is parameterized by the neural network’s weights
and biases. Once these parameters are estimated from the dataset D, the probability of
each class for a given covariates vector x can be evaluated. For the problem at hand, the
probability of the two classes are: (i) the probability of a true positive detection Pr(Y =
+1|x), conditional on the covariates vector x, and (ii) the probability of a false negative
detection Pr(Y = −1|x) = 1− Pr(Y = +1|x).

Figure 4.10 illustrates the results obtained from the TAGI classification. Figure 4.10a presents
an example of a model trained using TAGI with the observations obtained for 12000 episodes
corresponding to the case presented in Figure 4.9. The colors correspond to the probability
of true positive detections for any instance of the covariates vector x. Figure 4.10b shows
the isosurface extracted from Figure 4.10a for a 90% probability of true positive detections.
Such an isosurface enables quantifying the anomaly detectability of an agent with respect

(a) (b)

Figure 4.10 Example of a model trained using TAGI: (a) probability of true positive detections
with respect to prediction covariates vector x, and (b) the isosurface corresponding to 90%
probability of true positive detections. The vertical planes indicate the minimum detectable
anomaly magnitude |ha|min = 0.01 (blue plane) and the minimum detectable anomaly growth
rate per year ψmin = 0.15|ha|min (yellow plane). The black circle and diamond identifies two
point located at the intersection of the isosurface and the vertical blue plane.
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to two quantities identified by the two vertical planes: (i) the minimum detectable anomaly
magnitude |ha|min, which is shown by the blue color plane, and (ii) the minimum detectable
anomaly growth rate per year ψmin = ψ0 × |ha|min, which is shown by the yellow color plane.
ψmin is a function of the minimum detectable anomaly magnitude, where ψ0 is a constant ob-
tained from the slope of this plane with respect to the anomaly duration wa. In Figure 4.10b,
the minimum detectable anomaly magnitude |ha|min is 0.01. In addition, the minimum de-
tectable anomaly growth rate is ψmin = 0.15|ha|min unit per year. For this case, the value
of ψ0 indicates that the anomaly with the minimum magnitude of 0.01 is detectable if its
growth rate is 15% of the minimum detectable anomaly magnitude per year or higher. In
other words, the anomaly with the magnitude of 0.01 is detectable with the probability of
90%, if it fully develops in less than Nψ = 1/0.15 ≈ 7 years. For instance, the black circle in
Figure 4.10 is located at the intersection of the two planes on the isosurface. It represents
an anomaly with the minimum magnitude and the duration of 7 years. Such an anomaly is
detectable within 7 years after it starts, with a probability of 90%. However, if this anomaly
develops in more than 7 years, i.e., wa > 7, the agent would not be able to detect it. Another
interpretation of using the yellow plane is related to the point shown by a black diamond in
Figure 4.10b. This point shows an anomaly with the minimum magnitude of 0.01 and the
duration of roughly 5 years. As it is seen, this anomaly is detectable with a probability of
90% within 6 years after its starting time. However, the anomaly’s magnitude for this point
could also be associated with the anomaly shown by the black circle which is detected by the
agent after 6 years. This discussion is also valid for other anomalies with the same magni-
tude but different durations. It is worth noting that the choice of the aforementioned plans
is to provide simplified metrics in order to compare the anomaly detectability of each sensor
using the reinforcement learning approach. Furthermore, in Chapter 5, these planes will be
used as a basis to compare the performance of using reinforcement and imitation learning
approaches. However, more complex functions could be used to carry out such comparisons
depending on the engineering needs.

Such a probabilistic quantification of the anomaly detectability is crucial for the long term
monitoring of infrastructures because anomalies with various magnitudes can develop over
several years and an agent should detect them before they are fully developed. The next
section presents the comprehensive results and discussions associated with the probability
of true positive detections and the resulting isosurfaces for three instrumented spans of the
Jacques Cartier Bridge.
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4.3 Results

In this section, first we present the reinforcement learning agents used to detect anomalies
on the three instrumented spans of the Jacques Cartier Bridge. The differences in these
agents lie within their environments and reward values. Afterwards, we present the anomaly
detectability of the agents with respect to the annual false positive ratio as well as the
probability of true positive detections.

4.3.1 Jacques Cartier Bridge Reinforcement Learning Agents

This section presents the configurations used in order to train and test the reinforcement
learning agents. The differences between the agents lie within the simulated environments
that they interact with, and their reward values. The former depends on the sensor type,
while the latter controls the annual false positive ratio. We target two annual false positive
ratios ζFP = 0.05 and 0.1 per year that correspond to one false positive per 20 and 10 years,
respectively. Note that the study of different agents allows illustrating how the reward values
control the anomaly detectability of an agent [56].

Simulated Environments

We follow the procedure described in Section 4.1.1 in order to simulate environments. Rather
than simulating an environment for each sensor, we simulate one environment for each set of
sensors collecting the same measurements type across all three spans. This generalization of
the environments across sensors is possible because the superstructures of the three spans and
their subsequent structural responses are similar. As a result, there are four environments,
and consequently four agents, which correspond to the lateral inclinometers, the longitudinal
inclinometers 1, the longitudinal inclinometers 3, and the extensometers.

Constructing an environment involves defining the parameters associated with the simulation
of new episodes and with the discretization of the environment. Table 4.3 shows the distribu-
tions and the parameters of the anomaly function for simulating new episodes for each sensor
type. The duration of each episode is 10 years which starts in 2019 and ends in 2029. All
probability distributions used for simulating the episodes have a uniform probability density
with a lower a and an upper b bounds. The bounds for the anomaly magnitude depend
on the type of the sensor, while they remain the same for other parameters associated with
the anomaly function regardless of the sensor type; The duration for an anomaly is drawn
from an uniform distribution with the upper bound b = 2000 days (≈ 5 years). The center
of the anomaly is drawn from a uniform distribution for which the bounds are associated
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with the beginning and end times of an episode. Here, the anomaly tolerance εa depends
on the realization of an anomaly; its value is equivalent to 25% of the simulated anomaly’s
magnitude, i.e., εa = 0.25Ha.

Figure 4.11 illustrates 100 simulated episodes for each sensor type according to the parameters
detailed in Table 4.3. Figure 4.11d shows the simulated episodes for the extensometers. As it
is seen, the simulated episodes are coinciding with each other because the empirical models
for this type of sensor result in similar parameter values as well as initial values for the
hidden state variables. However this is not the case for the inclinometers; Figures 4.11a-

Table 4.3 Probability distributions and their parameters associated with the the anomaly
function for simulating new episodes. The only difference in values is related to the anomaly
magnitude that depends on the sensor type.

Sensor type Parameter Value Unit
a b

Inclinometer Ha ∼ U(ha; a, b) −0.005 +0.005 ◦d
Extensometer −0.030 +0.030 mm

All types

Wa ∼ U(wa; a, b) 0 2000 day
Tc ∼ U(tc; a, b) Aug 15, 2019 Aug 13, 2029 date
w0 constant: 90 day
εa constant: 0.25Ha mm or ◦d
ε constant: 1× 10−7 mm or ◦d

(a) (b)

(c) (d)

Figure 4.11 Illustration of 100 simulated episodes for each sensor type according to Table 4.3.
The simulated episodes for each sensor type consist in the the episodes from the instrumented
spans. The vertical dashed line indicates the number of days without anomaly, i.e., w0 = 90
days. The sensor names are IL: Lateral inclinometer, I1: Longitudinal inclinometer 1, I3:
Longitudinal inclinometer 3, and E: Extensometer.
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4.11c show that the simulated episodes for the inclinometers do not coincide with each other
because either the estimated model parameter values or the initial values for the hidden
state variables are different across the spans. Such differences are not an issue for training
the agents because they are not trained on the time series data, rather they use the expected
value of the trend hidden state variable and the probability of the non-stationary regime. In
addition, the issue corresponding to the different initial trend expected values is resolved by
removing the initial trend values µT

0 from each episode as shown in Equation 4.7.

Training and Test Datasets

Table 4.4 summarizes the dataset properties used in order to train and test each agent
corresponding to a sensor type. For the training dataset Dtrain, we have simulated 400000
episodes associated with each sensor and then merged them into a single set of 1.2 million
episodes for each sensor type. In addition, the simulated episodes for each sensor consist on
average in 522 pairs of the trend expected value and the probability of the non-stationary
regime, i.e, (µT

t , π
ns
t ), t = {1, 2, . . . , T = 522}. Therefore, the total number of continuous

states exceeds 600 millions during the training. The last column of Table 4.4 indicates the
ratio of abnormal episodes. For instance, 0.9 indicates that 90% of the total number of
episodes during the training contain an anomaly simulated with the configuration presented
in Table 4.3, while 10% of the total number of episodes do not contain any anomaly.

Table 4.4 Summary of the datasets used in order to train (Dtrain) and test (Dtest, FP and
Dtest, TP) each agent corresponding to its sensor type. The superscripts FP and TP are re-
spectively associated with the evaluation of the annual false positive ratio and the probability
of the true positive detections.

Data type Notation
Episode

Total number Duration, year Anomaly
Duration, day Ratio

Train Dtrain 1.2× 105 30 2000 0.9

Test Dtest, FP 3000 30 − 0.0
Dtest, TP 6000 60 8000 1.0

Simulating episodes for the test phase follows the same configurations as for the training phase
shown in Table 4.3, except for the number and duration of episodes; In order to evaluate the
annual false positive ratio, the test set Dtest, FP consists in a total number of 3000 episodes
with a duration of 10 years for each measurement type. Note that the episodes for the false
positive test set do not contain anomalies, i.e., ha = 0. Furthermore, the true positive test set
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Dtest, TP consists in 6000 abnormal episodes for each measurement type. The duration of each
episode is 60 years, for which the anomaly duration in days follows a uniform distribution
Wa ∼ U(wa; 0, 8000). Note that in Table 4.4, the superscripts FP and TP are respectively
associated with the evaluation of the annual false positive ratio and the probability of the
true positive detections

Discretized Environment

Table 4.5 shows the configurations for the two-dimensional environments with a grid size
of M × N, which are used to train the agents. The states of each environment are bounded
according to the sensor type. All states have the same lower and upper bounds with respect
to the probability of a non-stationary regime, i.e., 0 ≤ πns

t ≤ 1. The states’ bounds differ with
respect to the trend expected values, that is |µT

t | ≤ 5 × 10−5 ◦d/day for the inclinometers,
and |µT

t | ≤ 1 × 10−4 mm/day for the extensometer. In addition all the environments are
discretized using a grid of 160× 60.

Table 4.5 Configurations of the discretized environments with a grid size of M × N that are
used to train the agents corresponding to the for inclinometers and extensometers.

Sensor type Lower bound Upper bound Grid size (M× N)
µT
t (×10−4) πns

t µT
t (×10−4) πns

t µT
t (M) πns

t (N)
Inclinometer −0.5 0.0 +0.5 +1.0 160 60Extensometer −1.0 0.0 +1.0 +1.0

Agent-Environment Interaction

We use the Q-learning method described in Section 2.3.1 in order to train the agents. The
hyperparameters for the exploration-exploitation method are cα = cε = 5. In addition, we
use the discount factor γ = 0.97 for all the agents, and the initial Q-value Q0 = 0 for all the
discretized states.

Furthermore, for the training of each agent, we take the absolute value of the trend expected
values, i.e., |µT

t | in order to reduce the computational cost. This is because mapping the
simulated episodes on the environment results in a symmetrical set of visited states with
respect to the dimension associated with the degradation’s speed µT

t and therefore, training
only the positive half of the environment is sufficient. Moreover, in the case of inclinometers,
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we remove the initial trend expected value µT
0 from each episode following

st =
[
(µT

t − µT
0) πns

t

]ᵀ
. (4.7)

This modification ensures that each episode begins from a state with a zero trend expected
value because: (i) the initial trend for inclinometers are not equal, and (ii) without such a
modification, we would not be able to take the advantage of the above-mentioned symmetrical
property for the computational efficiency.

Figures 4.12 presents the probability contours for the visited states by the corresponding
agents during the training phase for all the episodes in the training dataset. For instance,
the red areas are associated with the states which are visited with a probability equal to 99%.
As it is seen, many states are not visited, i.e., the white color regions, during the training
because either an episode is terminated due to termination criterion described earlier, or
because an episode does not visit these regions. For these non-visited states, the agent’s
action is considered to be to trigger an alarm, because they consist in high values of either
the probability of the non-stationary regime or the expected value of the trend.
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Figure 4.12 Examples of the probability of the visited states during the training phase. The
three identified colors indicate the percentile of the agent-environment interactions. The non-
visited states are shown by a white color. The sensor names are IL: Lateral inclinometer,
I1: Longitudinal inclinometer 1, I3: Longitudinal inclinometer 3, and E: Extensometer.

Reward Function Values

In order to achieve target annual false positive ratios of ζFP = 0.05 and 0.1 per year, we need
to define specific reward values for each case. Table 4.6 shows the reward values for each
sensor type where it can be noted that the false positive reward value rFP associated with
ζFP = 0.05 is less than the one for ζFP = 0.1. For instance, for the lateral inclinometer these
values are −21 and −15 for the annual false positive ratio of 0.05 and 0.1, respectively. Such
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Table 4.6 Reward values used to train the agents. Two reward sets are defined for each sensor
type in order to obtain the annual false positive ratios of ζFP = 0.05 and 0.1 per year.

Sensor name ζFP
Reward values

rTP rFP rTN η

IL : Lateral inclinometer 0.05 +4 −21 +1 +4
0.10 +4 −15 +1 +4

I1 : Longitudinal inclinometer 1 0.05 +4 −15 +1 +4
0.10 +4 −9 +1 +4

I3 : Longitudinal inclinometer 3 0.05 +4 −16 +1 +4
0.10 +4 −10 +1 +4

E : Extensometer 0.05 +4 −59 +1 +4
0.10 +4 −26 +1 +4

a difference between the false positive rewards is because an agent must receive more penalty
for false detections in the case of ζFP = 0.05 in order to keep the annual false positive ratio
lower than 0.1. The values presented in Table 4.6 are obtained via a grid search approach
where we kept all the reward values constant except the false positive reward in order to
control the behavior of the agent with respect to false detections. Note that, it is possible to
control the behavior of an agent via other reward values than only modifying rFP [56]. The
grid search results regarding the identification of appropriate reward values are provided in
Appendix B.

4.3.2 Jacques Cartier Bridge Anomaly Detection

This section presents the optimal policies for the agents corresponding to the two cases
resulting in the annual false positive ratios of ζFP = 0.05 and 0.1 per year. Hereafter, unless
otherwise mentioned, we use a shorthand notation in order to simplify the name of the
sensors following IL: Lateral inclinometer, I1: Longitudinal inclinometer 1, I3: Longitudinal
inclinometer 3, and E: Extensometer.

Figure 4.13 illustrates the resulting policies for the two annual false positive ratios. Due to the
symmetrical property of the trend expected values, only the positive half of the environment
is shown. The red color indicates that the action is a0: Trigger an alarm, and the blue one
indicates that the action is a1: Not trigger an alarm. The white areas are associated with the
non-visited states. In addition, we consider that the agents’ decision is to trigger an alarm for
the out-of-domain states with respect to the degradation speed, that is |µT

t | > 5×10−5 ◦d/day
for the inclinometers and |µT

t | > 1× 10−4 mm/day for the extensometers. This consideration
is due to the large degradation speed of the out-of-domain states for which the probability
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Figure 4.13 The policy maps for the inclinometers and the extensometers in two cases: (a-d)
ζFP = 0.05/year, and (e-h) ζFP = 0.10/year. For a better illustration, the grid lines are not
shown. The red color indicates that the action is a0: Trigger an alarm, and the blue one
indicates that the action is a1: Not trigger an alarm. The white areas are associated with
the non-visited states. Also, IL: Lateral inclinometer, I1: Longitudinal inclinometer 1, I3:
Longitudinal inclinometer 3, and E: Extensometer.

of the non-stationary regime is estimated by the BDLM to be close to one. This situation
corresponds to the abnormal state of the structure for which the decision should be triggering
an alarm, and therefore there is no need to train an agent for such a case. Rather, the training
of the agents must be carried out for the situations where the probability of the non-stationary
regime is less than one, yet we are not able to decide whether or not the situation represents
an abnormal state of the structure. Figures 4.13a-4.13d correspond to the case for which the
annual false positive ratio is ζFP = 0.05/year, while Figures 4.13e-4.13h are associated with
the ζFP = 0.10/year. For a (|µT

t |, πns
t ) pair in a continuous space, each figure shows the policy

of the agent in the discretized environment. Note that according to Table 4.4, the annual
false positive ratio for each agent is evaluated on its corresponding independent test dataset
Dtest, FP consisting in 3000 normal episodes each uses a 10 years duration. The agents’ action
is to do nothing for the region associated with low degradation speed and probability of the
non-stationary regime, i.e., the blue region at the bottom left corners in Figures 4.13a-4.13h.
However, this region is larger for the cases with the false positive ratio of ζFP = 0.05/year
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compared with the ones with ζFP = 0.1/year. This difference is due to changes in the reward
function values such that the higher is the penalty for rFP, the larger the blue region; The
penalties for the false positive decisions for the agents associated with ζFP = 0.05/year is
higher than the ones for the agents related to ζFP = 0.10/year. As a result, the former
agents have a tendency to trigger lesser alarms than the later ones. Other differences in the
agents’ behavior are sensor dependent. For instance, in the cases of the extensometer shown
in Figures 4.13d and 4.13h, the blue region is narrower for the case associated with higher
false positive ratio shown in Figure 4.13h, which indicates that the agent has the tendency
to trigger more alarms for the same region compared with the agent shown in Figure 4.13d.

The above discussions are examples of how the reward function values control the behavior
of an agent for a long-term decision making that is taking into account the annual false
positive ratios. Choosing a lower penalty for wrongfully detecting anomalies increases the
false positive ratio, and subsequently brings about more false alarms. The current work is
limited to the three instrumented spans. Changing the false positive ratio from 0.05 to 0.1
for each span increases the number of false alarms for all three spans from approximately one
every 20/3 ≈ 7 years to one every 10/3 ≈ 3 years. However, if all the 40 spans of the Jacques
Cartier Bridge would be instrumented, above values would change from two false alarms per
year to four false alarms per year. These calculations show the importance of being able to
control the false alarm ratio within the anomaly detection methodology.

Before proceeding with quantifying the probability of true detections, we apply the policies
obtained in Figure 4.13 on the real data collected from the sensors. Figures 4.14-4.16 illus-
trate the anomaly detection on the data collected from the inclinometers. In each figure,
the points where alarms are triggered are shown with two markers; The yellow marker cor-
responds to the annual false positive ratio ζFP = 0.05/year, and the red one is associated
with ζFP = 0.10/year. Note that the figures corresponding to the anomaly detection for the
extensometers are not provided because the agents rightfully avoid triggering any alarm for
these sensors.

Figure 4.14 shows the anomaly detection associated with the lateral inclinometers, i.e., IL,
across all three instrumented spans. The results show that the agents corresponding to the
lateral inclinometers identify the same timestamp where an alarm is triggered for both annual
false positive ratios across the spans 5− 6 and 6− 7. However, for the span 4− 5 as shown
in Figure 4.14a, the agent corresponding to the annual false positive ratio of ζFP = 0.10/year
triggers an alarm three weeks after the agent associated with the annual false positive ratio of
ζFP = 0.05/year. In general, we expect that the agent with higher false positive penalty has a
tendency to delay the alarm triggering in order to achieve a lower annual false positive ratio.
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Figure 4.14 The anomaly detection for the collected lateral inclinations on axis 3, i.e., IL,
across all the spans. The yellow marker corresponds to the annual false positive ratio ζFP =
0.05/year, and the red one is associated with ζFP = 0.10/year. For the span 4 − 5, the
agent associated with the ζFP = 0.10/year triggers an alarm 3 weeks later than the agent
corresponding to the ζFP = 0.05/year.

Such an expectation is met in cases like the ones shown in Figures 4.16b and 4.16c; These
two figures are associated with the longitudinal inclinometers on the axis 3 corresponding
to the spans 5 − 6 and 6 − 7 for which the agents with the annual false positive ratio of
ζFP = 0.10/year trigger an alarm one week earlier than the agents associated with the annual
false positive ratio of ζFP = 0.05/year. Such a variability in detecting anomalies implies a need
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for quantifying the true positive detections probabilistically as described in Section 4.2.3. Our
results regarding the probability of true positive detections indicate that the agents with the
annual false positive ratio ζFP = 0.1/year detect anomalies earlier than the agents associated
with ζFP = 0.05/year. The detailed results and discussion for the probability of the true
positive detections will be presented in Section 4.3.3.

Figure 4.15 illustrates the anomaly detection corresponding to the longitudinal inclinometers
on the axis 1 across all instrumented spans, i.e., I1. As shown, the agents associated with both
annual false positive ration, i.e., ζFP = 0.05/year and 0.10/year, result in the same timestamps
when an alarm is triggered. Figure 4.16 illustrates the anomaly detection corresponding to
the longitudinal inclinometers on the axis 3 across all instrumented spans, i.e., I3. As shown,
the agents associated with both annual false positive ratios, i.e., ζFP = 0.05 and 0.10 per year,
result in the same alarm triggering time for the span 4−5. On the other hand, as mentioned
earlier, this is not the case for the spans 5−6 and 6−7; The agent with a higher false positive
ratio triggers an alarm one week later than the agents with the lower annual false positive
ratio. Another point that needs to be mentioned is with regards to the occurrence of multiple
anomalies. In some cases such as the ones shown in Figures 4.16b and 4.15b, there are multiple
regime switches that the agents could trigger alarms for. However, the agents in this work
are not suited to address multiple triggering, because they do not have a mechanism in order
to continue evaluating the policies after the first time an alarm is triggered; As described
in Sections 4.1 and 4.2.3, during the training phase, an agent-environment interaction is
terminated whenever an agent takes the action of triggering an alarm.

4.3.3 Jacques Cartier Bridge Anomaly Detectability

We follow the procedure described in Section 4.2.3 along with the independent true positive
test dataset Dtest, TP presented in Table 4.4 in order to evaluate the probability of true positive
detections for each agent. Figure 4.17 illustrates the probability of true detections associated
with the sensors where IL is the lateral inclinometer, I1 is the longitudinal inclinometer 1,
I3 is the longitudinal inclinometer 3, and E is the extensometer. The three axes in each
figure represent the covariates vector x = [|ha| wa Nt>ts ]ᵀ consisting in the absolute value of
the anomaly height |ha|, its duration wa, and the number of time steps Nt>ts required for an
agent to trigger an alarm after its starts.

Figure 4.17 illustrates the probability of true positive detections obtained for each sensor
type, and for each target annual false positive ratio. The colors indicate the probability of
true detections Pr(Y = +1 ≡ true positives|x) ∈ (0, 1). In addition, Figures 4.17a-4.17d
show the the probability of true detections for the annual false positive ζFP = 0.05/year,
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Figure 4.15 The anomaly detection for the collected longitudinal inclinations on axis 1, i.e.,
I1, across all the spans. The yellow marker corresponds to the annual false positive ratio
ζFP = 0.05/year, and the red one is associated with ζFP = 0.10/year.

while Figures 4.17e-4.17h are associated with the ζFP = 0.1/year.

Figure 4.18 shows the isosurfaces corresponding to a 90% probability of true positive detec-
tions extracted from the results obtained by TAGI and shown in Figure 4.17. The blue plane
quantifies the minimum detectable anomaly magnitude |ha|min. The yellow plane quantifies
the minimum detectable anomaly growth rate per year ψmin = ψ0 × |ha|min as a function of
its corresponding |ha|min.
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Figure 4.16 The anomaly detection for the collected longitudinal inclinations on axis 3, i.e.,
I3, across all the spans. The yellow marker corresponds to the annual false positive ratio
ζFP = 0.05/year, and the red one is associated with ζFP = 0.10/year. For the span 5− 6 and
6 − 7, the agents associated with the ζFP = 0.10/year triggers an alarm 1 week earlier than
the agent corresponding to the ζFP = 0.05/year.

For a better illustration, we re-draw Figure 4.18 from top view so it shows the figures form
the |ha| −wa plane perspective. Figure 4.19 presents the results and the induced hue effects
are caused by such a rotation. Figures 4.19a-4.19d correspond to an annual false positive
ratio ζFP = 0.05/year, while Figures 4.19e-4.19h are associated with the ζFP = 0.10/year.
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The comparison between these two cases confirms that increasing the annual false positive
ratio results in an increase in the true positive detections. Such a tradeoff is seen from
two comparisons: (i) comparing the time to detect an anomaly; For an anomaly with a
fixed magnitude and duration, Figures 4.19e-4.19h which correspond to a higher annual false
positive ratio, show earlier anomaly detections as opposed to Figures 4.19a-4.19d which are
associated with a lower ζFP, and (ii) comparing the red area between the two annual false
positive ratios ζFP; For the higher annual false positive ratio, the red areas increase in both
directions with respect to the anomaly magnitude and duration. This implies that for the
case with ζFP = 0.10/year, the agent is able to detect anomalies with lower magnitudes and
with longer durations. Note that the planes in Figure 4.18 are selected such that: (i) the
area enclosed by the planes creates a volume for which all the data points corresponding
to the probability of the true detections Pr(Y = +1 : TP|x) ≥ 90%, and (ii) the yellow
planes, which correspond to the anomaly growth rate, pass the origin, so the interpretation
of the ψ is simplified to a single linear function, i.e., ψmin = ψ0 × |ha|min. Nevertheless, for
specific needs, a more complex function could be used in order to represent more precisely
the minimum anomaly growth rate.

Table 4.7 summarizes the minimum detectable anomaly magnitude and its growth rate. The
first column shows the shorthand and complete name of the sensors. The second column is
associated with the agents with the annual false positive ratios of ζFP = 0.05 and 0.1 per
year. The third column identifies the minimum detectable anomaly magnitude |ha|min, and
the fourth one shows the the constant ψ0 corresponding to the minimum detectable anomaly
growth rate ψmin per year. The last column shows the minimum detectable anomaly growth
rates ψmin in years as a function of |ha|min, i.e., ψmin = |ha|min per Nψ years. For instance,

Table 4.7 Minimum detectable anomaly magnitudes |ha|min and the the constant ψ0 cor-
responding to the minimum detectable anomaly growth rates in year such that ψmin =
ψ0 × |ha|min. The last column show the minimum detectable anomaly growth rates ψmin
in years as a function of |ha|min, i.e., ψmin = |ha|min per Nψ years.

Sensor name ζFP |ha|min ψ0 Nψ [year]

IL: Lateral inclinometer 0.05 0.0017 ◦d 0.15 7
0.10 0.0020 ◦d 0.13 8

I1: Longitudinal inclinometer 1 0.05 0.0013 ◦d 0.19 6
0.10 0.0013 ◦d 0.19 6

I3: Longitudinal inclinometer 3 0.05 0.0010 ◦d 0.25 4
0.10 0.0010 ◦d 0.25 4

E: Extensometer 0.05 0.0100 mm 0.15 7
0.10 0.0090 mm 0.17 6
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for the agent corresponding to the lateral inclinometer with the annual false alarm ratio of
ζFP = 0.05/year, the minimum anomaly magnitude must be equal or greater than 0.0017◦d
per Nψ = 7 years. In other words, an anomaly with a magnitude of 0.0017◦d is detectable, if
it develops in less than seven years.

4.4 Discussion

The goal of reinforcement learning is to determine optimal policies by maximizing the accu-
mulated discounted rewards. While succeeding in the anomaly detection problem, reinforce-
ment learning suffers from two limitations with respect to the reward function. The first
limitation is related to designing a reward function in order to accurately achieve a desired
behavior [88]. In this regard, challenges are associated with the designer’s understanding
about the task in hand, and representing the task in the form of a reward function [89, 90].
In other words, designing an appropriate reward function relies on hand-crafted human ex-
pertise; In the context of anomaly detection, Section 4.1.2 introduced a reward function that
quantifies the reward values based on the time when an alarm is triggered with respect to the
anomaly’s start time. From the decision-maker’s perspective, an alarm should be triggered
right after an anomaly starts, while preventing false alarms when no anomaly is present. In
addition, the time of detection for an anomaly should be as close as possible to the time when
the anomaly starts, so it prevents a delayed triggering points or missed alarms. Such desired
behavior results in the positive and negative reward values in order to either encourage or
prevent an action taken by the agent.

The second limitation is associated with the reward sparsity problem [91]; It refers to a
situation when a reward function only encourages or prevents an agent for taking an action
in limited situations. For instance, if we only consider a single positive reward value for
triggering an alarm after it starts, an agent needs to explore more in order to learn the optimal
policy, because there is not a feedback signal available for the agent with respect to false or
missed detections. Therefore, the reward sparsity affects the cost of the learning process
with respect to the amount of agent-environment interactions required during the learning
process. Reward functions such as the one presented in Section 4.1.2 relaxes this limitation
by using additional reward features related to the actions taken by the agent in different
situations [92]; For the anomaly detection problem, it involves assigning different reward
values that accounts for different time to triggering an alarm as it is shown in Section 4.1.2.
Note that the reward sparsity limitation is less relevant when generating episodes is cheap
such as the simulation process presented in Section 4.1.1 where a generic probabilistic model
is used to generate abnormal episodes.
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4.5 Conclusion

This chapter introduced a framework in order to detect anomalies using reinforcement learn-
ing (RL). The anomaly detection problem was formulated as the identification of alarm
triggering policies in the context of the RL. In this regard, this chapter introduced method-
ologies in order to build environments that the agents interact with; Each environment was
built using episodes that consist in the structural degradation’s speed and the probability
of a non-stationary regime. Each episode was obtained from a generic time series simula-
tion procedure that involves using empirical models of the structural responses as well as a
stochastic anomaly function described in Section 4.1.1. As a result, all the agents were able
to be trained with a wide range of anomalies. Quantifying the anomalies with respect to
their characteristics is a crucial aspect in detecting anomalies because while we do not know
what are the durations and magnitudes of the anomalies as well as their time of occurrence,
we are interested in the anomalies with low magnitudes that develop over several years.

Furthermore, this chapter presented methodologies in order to quantify the detectability of
anomalies for each sensor type. To this end, two metrics were introduced which represent the
annual false positive ratio and the probability of true positive detections. It was found that
the reward function values control the behavior of the agents with respect to the number
of false alarms per year. This is an important step in the anomaly detection procedure
in the sense that the lack of control over the annual false alarm ratios could result in an
unmanageable number of wrongful anomaly detections, which subsequently could bring about
additional costs. Moreover, this chapter examined the probability of true positive detection
for the agents with different false positive ratios. This examination resulted in isosurfaces
identifying the probability of a true positive detection with respect to an anomaly’s magnitude
and its duration, as well as the number of time steps an agent takes in order to detect an
anomaly after its start. Results have confirmed empirically that for a higher annual false
positive ratio, a 90% probability of true positive detections is achieved for an anomaly with
lower magnitude and longer duration. Moreover, this chapter summarized the detectability
of each sensor type with respect to two macroscopic quantities representing the minimum
detectable anomaly magnitude and its growth rate. These two quantities give simple and
interpretable information about the anomaly detectability of each sensor type.

Moreover, this chapter discussed the limitations with respect to the RL-based anomaly de-
tection; They are: (i) designing a hand-crafted reward values such that they are able to
encourage ro prevent an action taken by the agent, and (ii) preventing the reward sparsity
by designing different reward values that allows an agent receiving feedback signals for dif-
ferent situations. Before presenting the methodologies developed for associating the severity
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levels of structural damages to the magnitudes of the anomalies, Chapter 5 will present an
alternative approach to address the limitations regarding the reward function by allowing
the agent to learn alarm triggering policies without having access to a reward function.
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CHAPTER 5 Anomaly Detectability Using Imitation Learning

This chapter presents a method relying on the imitation learning approach for detecting
anomalies and for quantifying the detectability of anomalies. To this end, the objective of
an agent is to learn to imitate a demonstration set obtained from an expert’s policy. In this
regard, we present the procedure of establishing a demonstration set based on an expert’s
decision with respect to triggering an alarm for different time steps during an episode. Finally,
we use the methodologies developed in Chapter 4 for quantifying the anomaly detectability
on the measurements collected on the three instrumented spans of the Jacques Cartier Bridge.
Such a quantification leads to the same probabilistic metrics presented in Section 4.2 which
are the annual false detection ratio, and the probability of true positive detections.

5.1 Anomaly Detection Using Imitation Learning

The main difference between a reinforcement learning agent and an imitation learning one
is that the former uses a reward function as a feedback signal to identify the optimal policy,
while the latter uses a demonstration set established by an expert in order to imitate the
expert’s policy. We can see the imitation learning approach as a classification problem in the
context of the supervised learning approach where the labels are provided by an expert. A
demonstration is represented by an episode Ẑ that is defined as a set of state-action pairs
for consecutive time steps following

Ẑ = {(s1, a
expert
1 ), (s2, a

expert
2 ), · · · }, (5.1)

where, at a time t, st = [µT
t π

ns
t ]ᵀ is the environment’s state vector, and aexpert

t = πexpert(s)
is the action obtained from the expert policy. An agent uses a set of expert demonstra-
tions Ξ = {Ẑ1, Ẑ2, · · · , ẐZ} consisting in Z demonstration sets in order to learn a policy π(s)
that imitates the expert’s policy πexpert(s). In this work, an agent directly learns to imitate
the expert’s policy using the classification approach discussed in Section 2.3.2. Therefore,
the optimal policy π∗(s) is obtained by building a classifier for a set of D joint observa-
tions D = {(si, aexpert

i ),∀i ∈ {1 : D}}, where, si = [µT
t π

ns
t ]ᵀ are the covariates vector and

aexpert
i ∈ {−1 : a0 ≡ trigger an alarm,+1 : a1 ≡ not trigger an alarm} are the system

responses representing the actions taken by the expert. Here, we employ the tractable ap-
proximate Gaussian inference (TAGI) method for Bayesian neural networks in order to build
a classification model [87] from demonstration sets. For the problem at hand, the proba-



90

bility of the two classes are: (i) the probability of triggering an alarm Pr(A = +1 : a0|s),
conditional on the covariates vector s, and (ii) the probability of not triggering an alarm
Pr(A = −1 : a1|s) = 1− Pr(A = +1 : a0|s).

Furthermore, in order to quantify the anomaly detectability of each agent, we carry out the
same procedure presented in Section 4.2; This implies that we apply the classifier built on
two independent test datasets, i.e., Dtest, FP and Dtest, TP, in order to quantify the annual false
positive ratio and the probability of true positive detections. Here, we use the same datasets
that were used for quantifying the anomaly detectability using reinforcement learning; the
superscripts test, FP and test, TP are associated with the datasets built for evaluating the false
positive and true positive detections, respectively. The characteristics of the datasets are
presented in Table 4.4 in Chapter 4.

5.2 Demonstration Set Based on an Expert’s Policy

In order to build a demonstration set Ξ, we choose Z episodes from the training data set Dtrain

presented in Table 4.4 for each sensor. For each episode, we assume that (i) the expert policy
πexpert(s) for a visited state s is to trigger an alarm for the time steps during the anomaly
window defined in Section 4.1.1 and not to trigger an alarm for remaining time steps, and
(ii) the expert policy πexpert(¬s) for a non-visited or out-of-domain state ¬s is to trigger an
alarm for all time steps. Therefore, the expert policy is

πexpert(s) =

a
0, ∀t ∈ (ts, te)

a1, Otherwise
, πexpert(¬s) = a0,∀t, (5.2)

where, ts and te are the anomaly’s start and end time, respectively. Figure 5.1 shows an
example of an abnormal episode used by an expert in order to build a demonstration according
to Equation 5.2. Figure 5.1a illustrates the underlying anomaly function simulated in order
to generate the synthetic time series shown in Figure 5.1c. The two vertical dashed lines
indicate the beginning and the end of the anomaly for which its magnitude ha = 0.011 unit
and its duration wa is a year. For a better illustration, the anomaly duration is indicated
by a shaded area. Note that the units of the anomaly function is the same as the units
of the simulated time series. Figures 5.1b and 5.1d show the trend expected value µT and
the probability of the non-stationary regime πns obtained from the BDLM analysis of the
simulated time series. The blue and red lines in Figure 5.1 indicate the normal and abnormal
time steps, respectively. According to the expert’s decision presented in Equation 5.2, the
action for the normal time steps is to not trigger an alarm, while the action for the abnormal
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Figure 5.1 Example of an abnormal episode used by an expert in order to build a demonstra-
tion. The realization of the anomaly function results in an anomaly magnitude of ha = 0.11
and a duration of wa = 1 year. The shaded area represents the anomaly duration with the
start ts and end te times. The red and blue lines indicate the abnormal and normal time
steps, respectively. Their respective actions according to Equation 5.2 are a0 : trigger an
alarm, and a1 : not trigger an alarm.

time steps is to trigger an alarm. Therefore, for this time series, from a total number of 522
data points, the demonstration set consists in the 56 state-action pairs associated with the
action of triggering an alarm, and 466 ones for the action of not triggering an alarm.

In Equation 5.2, the action of triggering an alarm is only assigned for the time steps associated
with the anomaly window, e.g., the shaded area in Figure 5.1a which corresponds to the time
steps t ∈ (ts, te). This consideration is due to the fact that the anomaly function for t /∈ (ts, te)
is constant and it results in a zero derivative for these values. This implies that the structural
degradation’s speed is zero for these time steps and therefore, the optimal policy is to not
trigger an alarm. Note that, in the reinforcement learning approach we let an agent to make
the decision of triggering an alarm by relying on the reward values. Therefore, an agent might
trigger an alarm with a delay, even trigger an alarm after an anomaly ends. However, in the
imitation learning approach, we ensure that an agent follows the expert’s policy.

We employ the aforementioned procedure on simulated time series with a wide range of
anomalies in order to establish a training dataset and build a classifier. Before training an
agent to imitate the expert’s policy, we reduce the number of samples in order to accelerate
the training procedure. To this end, first we use a grid dM×N, and apply it on the environment’s
state-space in order to create M × N unique regions. An example of such regions is shown
in Figure 4.6 where a grid of 20 × 20 results in 400 unique regions. Afterwards, wherever
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it is possible, we randomly draw 10 samples from each of these regions. This approach
enables building a training dataset for which the demonstrations are collected from the whole
environment’s domain, while reducing the number of samples. The grid characteristics, i.e.,
M and N, are presented in Table 4.5. As it will be shown in Section 5.3, such downsampling
allows the agent to learn the optimal policy with less episodes and consequently at a lower
computational expense. This was already noted in the work of Syed and Schapire [93],
where they proved that imitation learning requires fewer demonstrations than reinforcement
learning in order to imitate an expert. Moreover, we do not use the classifier built in order
to extrapolate the actions predicted for the non-visited or out-of-domain states. Instead, we
force the agent to imitate the expert’s decision for these states that is to trigger an alarm. To
this end, we add a third class for such states when building the classifier, and later directly
assign the action of triggering an alarm for these states. Such non-visited states are shown
by a white color in Figure 4.6. In order to generate data for this new class, we draw one
sample from each non-visited cell. This preprocessing coincides with the actions selected
for the non-visited or out-of-domain states when using the reinforcement learning approach
presented in Chapter 4.

5.3 Results

In this section, we first present the demonstration set Ξ used for the imitation learning
approach and subsequently for building a classifier in order to detect anomalies on the three
instrumented spans of the Jacques Cartier Bridge. Afterwards, we present the anomaly
detectability of the classifier with respect to the annual false positive ratio as well as the
probability of true positive detections.

5.3.1 Jacques Cartier Bridge Training and Test Demonstration Sets

We choose Z = 100000 episodes from the training data set Dtrain for each sensor. This
results in approximately 34 million data points representing the visited states. We follow the
preprocessing procedures explained in Section 5.2 in order to reduce the number of samples
and add samples for the third class corresponding to the non-visited states. This results
in a dataset with a total of approximately 33000 samples, which is further splitted into a
training and test sets such that 70% of the samples are used to train a classifier. Note that
the number of episodes we used to train an agent using the imitation learning approach is
approximately 8% of the number of episodes that were used to train an agent using the
reinforcement learning approach.



93

Figure 5.2 shows the resulting demonstration sets for the inclinometers and extensometers.
Figures 5.2a-5.2d correspond to the training demonstration sets, while Figures 5.2e-5.2h are
associated with the test ones. Note that the process of reducing the number of samples for
the training and test demonstration sets remain the same. The red dots are associated with
the abnormal states which correspond to the time steps during an anomaly.

(a) IL (b) I1 (c) I3 (d) E

(e) IL (f) I1 (g) I3 (h) E

Figure 5.2 Illustrations of (a-d) the training demonstration sets and (e-h) the test demonstra-
tion sets for inclinometers and extensometers. The red dots are associated with the abnormal
visited states corresponding to the time steps during the anomaly for which the expert’s de-
cision is a0 : trigger an alarm. The blue dots are associated with the normal visited states
corresponding to the remaining time steps for which the expert’s decision is a1 : not trigger
an alarm. The yellow dots represent the non-visited states for which the agent is forced to
take the action of triggering an alarm by imitate the expert’s decision. The sensor names are
IL: Lateral inclinometer, I1: Longitudinal inclinometer 1, I3: Longitudinal inclinometer 3,
and E: Extensometer.

5.3.2 Jacques Cartier Bridge Anomaly Detection

We use TAGI [87] in order to build a classifier for each sensor’s demonstration set as presented
in Section 5.1. Figure 5.3 illustrates the policy of each agent for the inclinometers and
extensometers. Applying the policies shown in Figure 5.3 on the corresponding false positive
test datasets Dtest, FP results in different annual false positive ratios ζFP, that is 0.008 false
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(a) IL (b) I1 (c) I3 (d) E

Figure 5.3 The policy maps for the inclinometers and the extensometers. The boundaries
are obtained for the probability of triggering alarms Pr(Y = −1 : a0|s) > 0.5. The red color
indicates that the action is a0: trigger an alarm, and the blue one indicates that the action
is a1: not trigger an alarm. The yellow areas are associated with the non-visited states for
which the action is a0: Trigger an alarm. Also, IL: Lateral inclinometer, I1: Longitudinal
inclinometer 1, I3: Longitudinal inclinometer 3, and E: Extensometer.

positive per year for the lateral inclinometer, 0.006 false positive per year for the longitudinal
inclinometer 1, 0.2 false positive per year for the longitudinal inclinometer 3, and 0.028 false
positive per year for the extensometer. Such an evaluation of the annual false positive ratios
in Figure 5.3 is not acceptable because we are interested in having control over the number
of false positives per year for each sensor. To overcome this issue, we applied a grid search
on an independent test dataset over the alarm triggering probabilities in order to obtain the
target annual false positive ratios.

Table 5.1 summarizes the minimum probability of triggering an alarm Prmin(A = −1 : a0|s)
for the inclinometers and extensometers in order to obtain one false positive detection ev-
ery 5, 10, 20, and 40 years. These values are equivalent to annual false positive ratios
ζFP of 0.2, 0.1, 0.05, and 0.025 false alarms per year. As expected, the probability val-

Table 5.1 The minimum probability of triggering an alarm Prmin(A = −1 : a0|s) for the
annual false positive ratios ζFP of 0.2, 0.1, 0.05, and 0.025 false alarms per year.

Sensor name ζFP

0.2 0.1 0.05 0.025
IL : Lateral inclinometer 0.48017 0.48019 0.48023 0.48055
I1 : Longitudinal inclinometer 1 0.47655 0.47700 0.47770 0.47880
I3 : Longitudinal inclinometer 3 0.50000 0.50350 0.50630 0.51900
E : Extensometer 0.47608 0.48100 0.49000 0.50300
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ues for triggering alarms monotonically increase as the target annual false positive ratio
decreases. Figure 5.4 illustrates the contours for the minimum probability of triggering an
alarm Prmin(Y = −1 : a0|s) associated with Table 5.1 for the inclinometers and extensome-
ters. This particular contour line represents the policy maps presented in Figure 5.3. For a
better illustration, Figures 5.4e-5.4h correspond to the contours from Figures 5.4a-5.4d, but
for a restricted domain with respect to the probability of regime switching, i.e., πns

t ∈ (0, 0.6).
In Figure 5.4, the spacing between some contour lines are so small that in some cases they
are not distinguishable, e.g., Figure 5.4e and Figure 5.4f that correspond to the lateral in-
clinometer and longitudinal inclinometer 1, respectively. This shows the sensitivity of the
imitation learning approach for smaller annual false positive ratios. Therefore, controlling
the number of false positives is difficult in the sense that an engineer needs to try different
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Figure 5.4 The policy map contours for the inclinometers and the extensometers: (a-d) the
policy maps for the probability of the regime switching πns

t ∈ (0, 1), and (a-d) the policy maps
for the probability of the regime switching πns

t ∈ (0, 0.6). The contour lines represent the
annual false positive ratios ζFP of 0.2, 0.1, 0.05, and 0.025. The corresponding probabilities
of triggering an alarm Pr(Y = −1 : a0|s) are provided in Table 5.1. The black contour lines
indicate the probability of triggering alarms Pr(Y = −1 : a0|s) > 0.5 as shown in Figure 5.3.
The corresponding annual false positive ratios are indicated by a superscript ∗. Also, IL:
Lateral inclinometer, I1: Longitudinal inclinometer 1, I3: Longitudinal inclinometer 3, and
E: Extensometer.
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probability values with high accuracy in order to achieve a target annual false positive ra-
tio. On the other hand, reinforcement learning-based anomaly detection relies on selecting
a reward values set and train an agent accordingly. The reinforcement learning approach
results in a more robust approach in order to control the annual false positive ratio as shown
in Figure 4.13; In this figure, the alarm triggering policies associated with different annual
false positive ratios are distinguishable: The blue regions correspond to the action of not
triggering an alarm that are recognizable for the annual false positive ratios ζFP of 0.1 and
0.05 per year.

5.3.3 Jacques Cartier Bridge Anomaly Detectability

We apply the classifiers associated with the annual false positive ratios ζFP of 0.1 and 0.05
per year on the test dataset Dtest, TP in order to obtain the probability of true detections for
inclinometers and extensometers. Figure 5.5 illustrates the probability of true detections for
the sensors where IL is the lateral inclinometer, I1 is the longitudinal inclinometer 1, I3 is
the longitudinal inclinometer 3, and E is the extensometer. The three axes in each figure
represent the covariates vector x = [|ha| wa Nt>ts ]ᵀ consisting in the absolute value of the
anomaly magnitude |ha|, its duration wa, and the number of time steps after the start of
the anomaly Nt>ts , which determines the delay in the anomaly detection. Figures 5.5a-5.5d
show the probability of true detections for the annual false positive ζFP = 0.05/year, while
Figures 5.5e-5.5h are associated with the ζFP = 0.1/year. The colors indicate the probability
of true detections Pr(Y = +1 : TP|x) ∈ (0, 1).

Figure 5.6 shows the isosurfaces corresponding to a 90% probability of true positive detections
extracted from the results obtained by TAGI and shown in Figure 5.5. The blue plane
quantifies the minimum detectable anomaly magnitude |ha|min. The yellow plane quantifies
the minimum detectable anomaly growth rate per year ψmin = ψ0 × |ha|min as a function of
its corresponding |ha|min.

For a better illustration, we re-draw Figure 5.6 from the top view, i.e., |ha| − wa plane
perspective, and present the results in Figure 5.7. Figures 5.7a-5.7d correspond to the case for
which the annual false positive ratio ζFP = 0.05/year, while Figures 5.7e-5.7h are associated
with ζFP = 0.10/year. Analogously to the results obtained using reinforcement learning
and presented in Section 4.3.3, the comparison between these two annual false positive ratio
cases confirms that increasing the annual false positive ratio results in an increase in the
true positive detections. Moreover, Figures 5.7e-5.7h which have higher annual false positive
ratios, show earlier anomaly detections as opposed to Figures 5.7a-5.7d which has a lower
ζFP. In addition, comparing the red areas for the two cases of ζFP reveals that the higher
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annual false positive ratio results in an increase in the red areas with respect to the anomaly
magnitude and duration. This implies that for the case with ζFP = 0.10/year, the agent is
able to detect anomalies with a lower magnitudes and with longer duration.

Table 5.2 summarizes the minimum detectable anomaly magnitude and its growth rate. The
first column shows the shorthand and complete name of the sensors. The second column is
associated with the agents with the annual false positive ratios of ζFP = 0.05 and 0.1 per
year. The third column identifies the minimum detectable anomaly magnitude |ha|min, and
the fourth column shows the constant ψ0. The fifth column shows the minimum detectable
anomaly growth rates ψmin in years as a function of |ha|min, i.e., ψmin = |ha|min per Nψ years.
For instance, for the agent corresponding to the lateral inclinometer with the annual false
alarm ratio of ζFP = 0.05/year, the minimum anomaly magnitude must be equal or greater
than 0.003◦d per Nψ = 13 years. In other words, an anomaly with a magnitude of 0.003◦d is
detectable, if it develops in less than thirteen years.

Table 5.2 Minimum detectable anomaly magnitudes |ha|min and the the constant ψ0 cor-
responding to the minimum detectable anomaly growth rates in year such that ψmin =
ψ0 × |ha|min. The fifth and last columns show the minimum detectable anomaly growth
rates ψmin in years for both imitation and reinforcement learning approaches as a function of
|ha|min, i.e., ψmin = |ha|min per Nψ years.

Sensor ID and name ζFP
Imitation learning Reinforcement learning

|ha|min ψ0 Nψ [year] |ha|min Nψ [year]

IL: Lateral inclinometer 0.05 0.0030 ◦d 0.08 13 0.0017 ◦d 7
0.10 0.0035 ◦d 0.07 15 0.0020 ◦d 8

I1: Longitudinal inclinometer 1 0.05 0.0013 ◦d 0.19 6 0.0013 ◦d 6
0.10 0.0013 ◦d 0.19 6 0.0013 ◦d 6

I3: Longitudinal inclinometer 3 0.05 0.0011 ◦d 0.23 5 0.0010 ◦d 4
0.10 0.0012 ◦d 0.21 5 0.0010 ◦d 4

E: Extensometer 0.05 0.0100 mm 0.15 7 0.0100 mm 7
0.10 0.0090 mm 0.17 6 0.0090 mm 6

In Table 5.2, the last two columns are associated with the minimum detectable anomaly
magnitude and minimum detectable anomaly growth rates in years obtained from the re-
inforcement learning approach presented in Table 4.7. Comparing these two sets of values
reveals that both approaches result in a similar anomaly detectability for all the sensors ex-
cepted for the lateral inclinometers. In this case, the reinforcement learning approach shows
a better anomaly detectability with respect to the minimum detectable anomaly’s magnitude
|ha|min. This is also confirmed by comparing Figures 5.7a and 5.7e associated with the imita-
tion learning approach with the ones shown in Figures 4.19a and 4.19e corresponding to the
reinforcement learning approach. Note that the comparison is limited out based on the pro-
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posed simplified planes, while more complex functions could be used in order to compare the
performance between two learning approaches. Moreover, comparing the maximum number
of years for developing the minimum anomaly Nψ between the RL and IL approaches reveals
that the IL-based anomaly detection allows detecting anomalies that take a longer time to
develop. In particular, this is the case for the anomaly detectability corresponding to the
lateral inclinometer; The values for Nψ are higher than the ones when the anomaly detection
method is based on the reinforcement learning approach. However, this is at the expense
of detecting anomalies with higher magnitude, where these magnitudes are approximately
doubled when the anomaly detection method is based on the imitation learning approach.

5.4 Discussion

In the context of the anomaly detection problem, the goal of an agent in the imitation learning
(IL) approach is to identify alarm triggering policies by imitating an expert’s policy. IL-based
anomaly detection suffers from few limitations; First, a demonstration set is provided by an
expert that is typically a human for whom the proposed policy could be suboptimal by itself.
As a result, the training of an agent is carried out with suboptimal decisions that will result
in suboptimal solutions [94]. Here, the task of anomaly detection is relatively straightforward
in the sense that an agent requires to make binary decision with respect to the presence of
anomalies based on the expected value of the trend hidden state and the probability of the
non-stationary regime, which form a two dimensional environment. Such a decision making
is formulated according to Equation 5.2, and is applied on all the simulated episodes during
the training of an agent. Therefore, we are confident that the policies issued by the expert
are optimal.

In Section 2.2.5, we presented an example of how relying only on the probabilities of a
non-stationary regime for triggering an alarm is prone to false or missed alarms. Here, we
show such a limitation by quantifying probabilistically the anomaly detectability that would
result from using a threshold on regime switching probabilities. To this end, we identify the
probability threshold value πns, a0

min for the non-stationary regime probabilities πns that would
act as the criterion for triggering an alarm. The superscript a0 indicates that for the non-
stationary probabilities πns > πns, a0

min the action is to trigger an alarm. This threshold value
is selected such that it results in an annual false positive ratio of ζFP = 0.1/year, when it is
applied to the false positive test datasets Dtest, FP presented in Table 4.4. In addition, the
procedure for evaluating the probability of true positive detections using the true positive
test datasets Dtest, TP is presented in Section 5.3.3.

Figure 5.8 illustrates the probability of true positive detections, i.e., Pr(Y = +1 : TP|x) ∈
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(0, 1), for the extensometers E. Figure 5.8a shows the probability of true detections corre-
sponding to an annual false positive ζFP = 0.1/year, where the threshold value is πns, a0

min =
0.105. The three axes represent the same covariates vector x = [|ha| wa Nt>ts ]ᵀ as presented
in Section 5.3.3. Figure 5.8b shows the isosurface corresponding to a 90% probability of true
positive detection extracted from Figure 5.8a.

(a) (b)

Figure 5.8 The anomaly detectability results using a threshold-based anomaly detection for
the extensometers E: (a) probability of true positive detections with respect to prediction
covariates vector x, and (b) the isosurface corresponding to 90% probability of true positive
detections. Figures correspond to an annual false positive ζFP = 0.1/year, where the threshold
value is πns, a0

min = 0.105.

We re-draw Figure 5.8b from the top view, i.e., |ha| −wa plane perspective, and present it in
Figure 5.9, along with the results that are obtained for the extensometer using reinforcement
and imitation learning approaches which were presented in Figures 4.19h and 5.7h. Note that
all the figures correspond to an annual false positive ratio of ζFP = 0.1/year. The comparison
between these three methods confirms that using the structural degradation’s speed increases
the anomaly detectability in the sense that reinforcement or imitation learning approaches
enable detecting anomalies with lower magnitudes and longer durations, i.e., comparing the
red areas in Figure 5.9.
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(a) Reinforcement learning (b) Imitation learning (c) Threshold-based

Figure 5.9 Comparison of the isosurfaces corresponding to 90% probability of true positive
detections. Figures correspond to an annual false positive ζFP = 0.1/year. The threshold
value corresponding to Figure 5.9c is πns, a0

min = 0.105.

5.5 Conclusion

This chapter addressed the problem of detecting anomalies as well as of quantifying the
anomaly detectability using the imitation learning approach. The anomaly detection problem
was formulated in the context of imitation learning for which an agent learns the alarm
triggering policy using a set of demonstrations obtained from an expert’s policy; This led to
a supervised learning configuration where instead of allowing an agent to interact with an
environment in order to collect the rewards, we built a classifier from the demonstrations,
so an agent is able to imitate the expert’s decisions. The demonstrations are obtained by
employing the expert’s decision with regard to the time to trigger an alarm on the same
episodes simulated to train a reinforcement learning (RL) agent as described in Chapter 4.

We built a classifier for each sensor which resulted in a probabilistic classification between
the action of triggering an alarm and not triggering an alarm. The minimum probability used
to trigger an alarm for various annual false positive ratios was obtained using a grid-search
procedure. We showed that the resulting decision boundaries are very close to each other
indicating that the IL-based anomaly detection approach is not as robust as the RL-based
approach on that aspect. Furthermore, we used the same methodologies developed in Chap-
ter 4 in order to quantify the detectability of the anomalies for each sensor type, and present
the corresponding two metrics, i.e., the annual false positive ratio and the probability of true
positive detections; This chapter presented the resulting isosurfaces which identify the prob-
ability of true positive detections with respect to the anomaly magnitude and its duration, as
well as the number of time steps an agent takes in order to detect an anomaly. It is confirmed
that for a higher annual false positive ratio, a 90% probability of true positive detections is
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achieved for an anomaly with lower magnitude and longer duration. Moreover, this chapter
summarized the detectability of each sensor type with respect to two macroscopic quantities
representing the minimum detectable anomaly magnitude and its growth rate. These two
quantities give simple and interpretable information about the anomaly detectability of each
sensor type corresponding to the current measurement system of the Jacques Cartier Bridge.
It was found that the RL-based anomaly detectability yields similar results compared with
the ones obtained from the IL-based one, except for the lateral inclinometer where the RL
agent is able to detect anomalies with lower magnitudes. However, the computational cost
for training an RL agent is higher than for training a classifier in the context of the IL, with
respect to both number of episodes and the time to train the agents; We showed that the
number of episodes required to train a classifier is an order of magnitude lower than the ones
used to train RL agents. In addition, we showed that the total number of samples from the
episodes can be reduced by orders of magnitudes, which accelerates training the classifier.
Moreover, we presented a comparison between the anomaly detectability results obtained
from the RL- and IL-based anomaly detection approaches and the ones based on relying on
defining a threshold value for the probabilities of a non-stationary regime. It is confirmed
that using the structural degradation’s speed enables a better anomaly detection in the sense
that we are able to detect anomalies with lower magnitudes and longer durations.

A more general challenge is to maximize the detectability of structural damages as well as
the distinguishability among them. In this regard, a necessary step towards addressing this
challenge is to first associate the magnitudes of anomalies to the severity levels of various
structural damages, and second, to evaluate the performance of different sensor configura-
tions in order to identify the one that maximizes the distinguishability among these damages.
We showed that both anomaly detection methods based on the RL and IL approaches re-
sulted in similar anomaly detectability for all sensors except for the lateral inclinometer. For
this type of sensor RL-based anomaly detection showed better results in the sense that it
enables detecting anomalies with lower magnitudes for both target annual false positive ra-
tios. In Chapter 6 we will introduce additional methodologies in order to leverage minimum
detectable anomaly magnitudes for detecting structural damages and distinguishing among
these damages using different sensor configurations.
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CHAPTER 6 Damage Detectability and Distinguishability

In Chapters 4 and 5, we have introduced methodologies in order to detect anomalies from
structural responses, and to quantify the anomaly detectability with respect to the proba-
bility of true positive detections and the annual false positive ratio. When a damage occurs,
structural responses depart from their normal state. Such a deviation is noticeable in the
hidden state variables estimated from the measurements, and is detected by the reinforce-
ment learning agents as described in Chapter 4 or the imitation learning ones described in
Chapter 5. A more general challenge is to identify the cause of an anomaly’s magnitude by
associating them to the severity levels of structural damages. To this end, this chapter first
presents a method to model structural damage scenarios and detect them using reinforce-
ment learning-based agents described in Section 4.2.3. Furthermore, this chapter introduces
a method in order to use the damage detectability of multiple sensors in order to measure
the performance of a sensor configuration in distinguishing different scenarios. As a result,
we are able to compare the performance of different sensor configurations in order to identify
the one which maximizes the distinguishability between the damage scenarios.

6.1 Structural Damage Scenarios

We use the finite element (FE) method to build a model of a structure in order to study
the changes in structural responses caused by different structural damage scenarios. The
FE analysis quantifies the elements’ deformations subject to various loading types. The de-
formations obtained without the application of damages are referred to as the intact state
of the structure. Applying structural damages on a FE model results in new deformation
values that are referred to as the damaged state of a structure. The corresponding nodal dis-
placements and rotations associated with the deformations can be simulated at the locations
where sensors are installed. The difference in nodal displacements and rotations between the
intact and damaged states determines the change in structural responses due to each dam-
age scenario. This change is associated with an anomaly’s magnitude used in the process of
defining the anomaly function’s characteristics as explained in Section 4.1.1.

Figure 6.1a shows the deformation of an element due to a damage scenario. ∆` represents the
change in structural responses before and after the deformation of an element for an exten-
someter, and ∆θ indicates this change for an inclinometer. The difference between inclina-
tions of the intact θintact and damaged θdamaged state of the structure is ∆θ = θdamaged−θintact.
The extensometer readings are based on the relative displacements between the supports of
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Deformed element
(a)

Deformed element

x

y

(b)

Figure 6.1 Illustration of (a) the deformation of an element and changes in the rotation of
an inclinometer and the elongation of an extensometer, and (b) the displacements associated
with the two nodes at the location of the supports of the extensometer on an structural
element. ∆θ and ∆` are the respective changes in structural responses at the location of
an inclinometer and an extensometer. ∆x2,1 = x2 − x1 and ∆y2,1 = y2 − y1 represent the
nodal coordinates differences in the respective x and y directions. ui and vertical vi are the
respective nodal displacements at the location of the extensometer supports.

the extensometer. The length of the sensor is evaluated for the intact `intact and damaged
`damaged states of the structure, and the difference is calculated as ∆` = `damaged − `intact.
Figure 6.1b shows the displacement for the two nodes corresponding to an extensometer
supports. Each node has a coordinate and the difference between the nodal coordinates are
∆x2,1 = x2 − x1 and ∆y2,1 = y2 − y1. By defining the local horizontal ui and vertical vi dis-
placements for each node i ∈ {1, 2}, the new length of the extensometer due to a deformation
is obtained as ` =

√
[∆x2,1 + (u2 − u1)]2 + [∆y2,1 + (v2 − v1)]2. The horizontal and vertical

displacements are obtained from the FE analysis subject to different damage scenarios.

Table 6.1 shows a generic example of three different damage scenarios and the corresponding
changes in the structural responses, i.e., ∆θ and ∆`, at the location of three sensors, namely
s1, s2, and s3. For each sensor, the minimum detectable damage scenario is obtained from

Table 6.1 Example of the changes in structural responses, i.e, ∆θ and ∆`, associated with
s1, s2, and s3 sensors due to three damage scenarios. The values in red are the ones detected
via the comparison with |ha|min obtained from corresponding agents.

Damage scenario
∆θ ∆`

s1 s2 s3

#1 +0.004 +0.005 −0.005
#2 +0.003 +0.004 −0.020
#3 −0.003 −0.006 +0.010
|ha|min 0.003 0.003 0.01

|ha|min values defined in Section 4.2.3. For instance, given a |ha|min = 0.01 for the exten-
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someter s3, damage scenarios shown in red in the fourth column in Table 6.1 are deemed to
be detectable. In addition, considering that the minimum detectable anomaly magnitude for
inclinometers is |ha|min = 0.003, the sensors s1 and s2 would be able to detect all damage
scenarios.

6.2 Cosine Similarity

In Section 6.1, we presented a method to generate damage scenarios using physics-based
models and compare the induced changes in structural responses with the minimum de-
tectable anomaly magnitude |ha|min obtained from a RL agent. This procedure allows to
draw conclusions on whether or not these changes are detectable when relying on each sensor
separately. A more general challenge is to choose a sensor configuration that maximizes the
damage detectability and that can best distinguish between damage scenarios. To this end,
we use the cosine similarity [95] to quantify the distinguishability between damage scenarios;
It measures the similarity between two vectors in a multidimensional space as the cosine of
the angle between them; If the two vectors are in the same direction, the cosine of the angle
results in the maximum similarity with a value of +1, while if they are in opposite directions
the similarity value is minimum at −1. Therefore, the objective is to choose a sensor config-
uration resulting in minimum cosine similarities between different damage scenarios in order
to maximize the distinguishability between them.

In order to illustrate this point, consider the three sensors s1, s2, and s3 presented in Ta-
ble 6.1. There are seven possible sensor configurations, i.e., {s1}, {s2}, {s3}, {s1, s2}, {s1, s3},
{s2, s3}, and {s1, s2, s3}. Each configuration results in a vector that represents the changes
in structural responses observed by the sensors due to a damage scenario. For instance, if all
three sensors in Table 6.1 are chosen, each row in the table corresponds to a damage scenario
vector in a three dimensional space, where each dimension corresponds to the structural
response at the location of a sensor. These vectors are

d1 = [+0.004 + 0.005 0]ᵀ,

d2 = [+0.003 + 0.004 − 0.020]ᵀ,

d3 = [−0.003 − 0.006 + 0.010]ᵀ,

where the superscripts identify the damage scenarios. Note that the third element of the vec-
tor d1 is zero because this damage scenario is not detectable by the RL agent at the location
of the sensor s3. If the cosine similarity between any pair of these vectors is close to one, the
corresponding damage scenario is least distinguishable, regardless of the minimum detectable
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anomaly magnitude obtained from RL agents. On the other hand, if the cosine similarity is
close to −1, it is an indication that the two damage scenarios are highly distinguishable for
that sensor configuration. Therefore, there is a need to compare these similarity values while
accounting for the anomaly detectability in order to identify the best sensor configuration.

Mathematical Formulation

For a subset % ⊆ {s1, s2, . . . , sNsensor} from a set of Nsensor sensors, a damage vector di from a
set of damage scenarios ϕ = {d1,d2, . . . dQ} is defined as

di =
[
di1 d

i
2 . . . diS

]ᵀ
∈ RS×1, S ≤ Nsensor, (6.1)

where dik, k ∈ {1, 2, . . . S} is a value representing the change in structural responses obtained
at the location of a sensor sk, by applying the damage scenario i on a model of the structure.
Note that an element of a damage vector dik = 0 if the damage i is not detectable by the
corresponding RL agent. Before evaluating cosine similarities, we modify the damage scenario
vector such that

d̂i = sign(di)� b|di � h|c, (6.2)

where, sign(.) extracts the sign of a vector, � is the element-wise vector multiplication, b.c is
the floor operator returning largest integer less than or equal to each element of a vector, and
|.| is the absolute value of a vector. In Equation 6.2, h is a vector consisting in the inverse
of the minimum detectable anomaly magnitude obtained for each sensor. It is obtained from
the anomaly detection analysis described in Section 4.2.3 following

h =
[

1
|ha|min,1

1
|ha|min,2

. . .
1

|ha|min,S

]ᵀ
∈ RS×1. (6.3)

As a result, the modified damage scenario vectors d̂i consists only in integer values such that:
(i) each element of the vector is a damage scenario represented as an integer multiplier of
the corresponding |ha|min, and (ii) for the cases that a damage scenario value |dik| < |ha|min,k,
Equation 6.2 returns a zero value indicating the damage scenario i is not detectable by the
sensor k. For the example presented in Table 6.1, the modified damage scenario vectors are

d̂1 = [+1 + 1 0]ᵀ,

d̂2 = [+1 + 1 − 2]ᵀ,

d̂3 = [−1 − 2 + 1]ᵀ.
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The cosine similarity matrix P ∈ RQ×Q is calculated for all modified damage scenario vector
pairs following

[P]ij = d̂i · d̂j

‖d̂i‖‖d̂j‖
∈ (−1,+1), ∀i, j ∈ {1, 2, . . . , Q}, (6.4)

where, · is the dot product and ‖.‖ is the norm of a vector, i.e., ‖d̂i‖ =
√∑S

k=1

[
d̂i
]2
k
.

We define a metric in order to evaluate the distinguishability between a set of damages that
is associated with a measurement system configuration. This metric is the average of the
cosine similarity matrix values [P]ij excluding the diagonal elements, which is defined as

p̄ =
∑
i

∑
j

[P]ij/(Q
2 − Q), i 6= j. (6.5)

In this setup, the best sensor configuration with respect to the damage distinguishability
corresponds to the configuration %∗ that minimizes p̄. In other words, we evaluate the cosine
similarity matrix for all possible combinations of sensors, and compare the resulting p̄ in
order to select the configuration which can detect all of the damage scenarios and which
has the minimum p̄. Therefore, the optimal sensor configuration with respect to the cosine
similarity matrix can be summarized by

%∗ = arg min
%

p̄. (6.6)

In addition, in this thesis, we discard the cosine similarities corresponding to the same type
of the damage scenario pairs with different severities.

6.2.1 Cosine Similarity Application

Figure 6.2 illustrates the cosine similarity matrices associated with Table 6.1 for different
sensor configurations. The matrices are symmetrical, so only their lower triangle part are
taken into account for evaluating p̄. The symbol ∅ in Figure 6.2b indicates that the damage
scenario #1 is not detectable, i.e., |dik| < |ha|min,k, hence the corresponding damage scenario
pairs are discarded. According to Equation 6.6, Figure 6.2e corresponds to the configuration
{s2, s3}, which results in the minimum p̄ = −0.42, while being able to detect all damage
scenarios.

Figure 6.3 illustrates the same three modified damage scenario vectors corresponding to
Figure 6.2 in two and three dimensional spaces. In Figure 6.3a, only choosing the sensors
s1 and s2 results in a two-dimensional space where d̂1 and d̂2 are in the same direction.
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1 1

−1 −1 1

#2

#3

#1

#2#1 #3
(a) % = {s1} or {s2}, p̄ = −0.33

∅

∅ 1

∅ −1 1

#2

#3

#1

#2#1 #3
(b) % = {s3}, p̄ = −1

1

1 1

−0.9 −0.9 1

#2

#3

#1

#2#1 #3
(c) % = {s1, s2}, p̄ = −0.27

1

0.4 1

−0.7 −0.9 1

#2

#3

#1

#2#1 #3
(d) % = {s1, s3}, p̄ = −0.40

1

0.4 1

−0.9 −0.8 1

#2

#3

#1

#2#1 #3
(e) % = {s2, s3}, p̄ = −0.42

1

0.6 1

−0.9 −0.8 1

#2

#3

#1

#2#1 #3
(f) % = {s1, s2, s3}, p̄ = −0.37

Figure 6.2 Illustration of the cosine similarity matrices P for different sensor configuration %.
Each configuration is a subset from {s1, s2, s3} a set consisting in three sensors. There are
three damage scenarios numbered from 1 to 3. Only the lower triangle part of the matrices
are taken into account for evaluating the average similarity metric p̄. The optimal sensor
configuration is correspond to the one with the minimum average similarity of p̄ = −0.42.

Therefore, the cosine similarity value is maximum, which indicates that we cannot distinguish
between these two damage scenarios. In contrast, the damage scenario vector d̂3 is in the
opposite direction from d̂1 and d̂2 resulting in a negative cosine similarity. It indicates
that the damage scenario #3 is distinguishable from #1 and #2. This is confirmed with the
numerical values obtained in Figure 6.2c; The cosine similarity between the damage scenarios
#1 and #2 is +1, while it is −0.9 between #1 and #3 as well as between #2 and #3. Using
sensor s3 in the sensor configurations shown in Figures 6.3b and 6.3c relaxes the limitation
regarding the distinguishability between the damage scenarios #1 and #2. This is due to the
fact that d̂1 and d̂2 vectors do not share the same value in the s3 dimension. However, this is
not the case for damage scenario #3; The comparison between Figure 6.3b and Figure 6.3c
reveals that the distinguishability between d̂1 and d̂3 increases, while it reduces between
d̂2 and d̂3. This is confirmed numerically in Figure 6.2d and 6.2e, for which the cosine
similarity changes from −0.7 to −0.9 for d̂1 and d̂3, while it changes from −0.9 to −0.8 for
d̂2 and d̂3. Figure 6.3d presents the configuration where all three sensors are used. The
corresponding numerical values are presented in Figure 6.2f. The comparison between using
three and two sensors shows that using more sensors can alter the distinguishability between
a pair of damage scenarios; The comparison between Figure 6.2c and Figure 6.2f shows that
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s1

s2

θ

d̂1 d̂2

d̂3

(a) % = {s1, s2}

s1

s3

d̂1

d̂2

d̂3

(b) % = {s1, s3}

s2

s3

d̂1

d̂2

d̂3

(c) % = {s2, s3}

s1

s2

s3

d̂1

d̂2

d̂3

(d) % = {s1, s2, s3}

Figure 6.3 An example of the modified damage vectors d̂1, d̂2, and d̂3 in: (a) two dimensional
space % = {s1, s2}, (b) two dimensional space % = {s1, s3}, (c) two dimensional space % =
{s2, s3}, and (d) three dimensional space % = {s1, s2, s3}. The cosine similarity between each
pair of vectors can be calculated depending on the sensor configuration. In some cases the
vectors are in the same direction resulting in the maximum cosine similarity value of +1,
while in some case it yields the minimum value of −1.

adding a sensor improves the distinguishability between the damage scenarios #1 and #2,
i.e., the cosine similarity changes from +1 to +0.6. On the other hand, the comparison
between Figure 6.2e and Figure 6.2f indicates that the distinguishability between #1 and #2
is reduced as the cosine similarity changes from +0.4 to +0.6. Using the metric p̄ enables
maximizing the distinguishability between different damage scenario pairs. In the next section
we present the results associated with various damage scenarios and the distinguishability of
different sensor configurations on the Jacques Cartier Bridge.
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6.3 Results

In this section, first we present the structural damage scenarios modeled for the Jacques
Cartier Bridge in order to study their effects on the three selected spans. Afterwards, we
use the minimum detectable anomaly magnitude presented in Chapter 4 in order to measure
the capacity of each sensor at detecting structural damages. Finally, we identify the sensor
configuration that maximizes the distinguishability between structural damage scenarios.

6.3.1 Jacques Cartier Bridge Damage Simulation

As explained in Chapter 3, all three spans of the Jacques Cartier Bridge are instrumented
with the same sensor configuration. Figure 6.4 illustrates the FE model that was created
for simulating damage scenarios for a span of the bridge. The extensometer and three in-
clinometers are located on the downstream side of the bridge coinciding with the location
of the sensors on the actual span. Bearing devices are located on both side of the span as
depicted in Figure 6.4.

Extensometer

Inclinometer: Longitudinal 1

Location of the 
bearing devices

Upstream
Downstream

Inclinometer: Longitudinal 3

Inclinometer: Lateral

Figure 6.4 Illustration of the FE model for the spans and the locations of the sensors and
bearing devices.

In this research, we consider that the structural responses for the intact state of the structure
is due to static loading induced from the elements’ self-weight. This is because the quantities
we are interested in are the changes in the structural responses between the intact and
damaged state of a structure, i.e., ∆θ and ∆`.

We consider three categories of structural damage scenarios that are affecting each span
globally. They are corrosion (COR), partial settlement (PST), and bearing device lockage
(BDL). The corrosion of a span is modeled as a reduction in the cross-section area of steel
elements. Partial settlements are modeled as relative vertical displacements of the supports.
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Partial settlements are considered in two setups namely, uniform (U) and non-uniform (NU).
The uniform settlement corresponds to the settlement of one support relative to the others.
The side for which the vertical settlements are applied is the one where the bearing devices
are located as shown in Figure 6.4. The non-uniform settlements are associated with the
relative settlement of only one support that is located on the upstream side of the bridge at
the location of the bearing device. For simulating a bearing device lockage, we use a spring at
the location of the supports in order to connect the fixed horizontal boundary condition and
the bridge members. The stiffness of the spring is bounded between kmin = 0 and kmax. They
represent the situation where they can behave like a roller or a fixed support, respectively.
When the loading is applied on the span, the corresponding horizontal displacements of the
bearing devices change depending on the value of the spring’s stiffness. In order to model
various scenarios, different values of stiffness are selected and the reduction in the average of
the bearing device horizontal displacement is evaluated in percentage. Bearing device lockage
is modeled in two setups namely, uniform and non-uniform. The uniform configuration
corresponds to applying a scenario on both bearing devices. The non-uniform configuration
is associated with applying a damage scenario only on the bearing device located on the
upstream side of the bridge.

Figure 6.5 illustrates an example of the effect caused by a bearing device lockage damage.
Figure 6.5a shows the intact state of the span for which the deformations are due to the
elements’ self-weight. The sensor names are IL: Lateral inclinometer, I1: Longitudinal
inclinometer 1, I3: Longitudinal inclinometer 3, and E: Extensometer. In addition, the
numbers shown beside each sensor name are the value of either ∆θ or ∆`, where the units
depend on the sensor type, that is ◦d for the inclinometers and mm for the extensometer.
Figure 6.5b shows the damaged state of the span for which a 36.3% lockage is applied on
the bearing device located on the upstream side the span. Accordingly, the corresponding
relative rotations and elongation, i.e., ∆θ and ∆`, at the location of the sensors are changed.
As it will be explained in the next section, these relative changes in the structural responses
are the basis for identifying the damage scenarios that are detectable by each sensor.

Figure 6.6 illustrates the effects of the damage scenarios on the changes in structural re-
sponses at the location of the inclinometers and the extensometer. The corresponding nu-
merical values are provided in Appendix C. Despite the interventions associated with the
steel maintenance program described in Section 3.2, our analysis of the damage scenarios
has revealed that the changes in structural responses for the three spans are indistinguish-
able. In Figure 6.6, the uniform damage scenarios are indicated by the red color, while the
blue ones correspond to the non-uniform damage scenarios. Figures 6.6b and 6.6k indicate
that the uniform partial settlement damage scenarios do not have any effect on the struc-
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Figure 6.5 Effects of a 36.3% non-uniform bearing device lockage on the changes in relative
structural responses ∆θ and ∆` at the location of the inclinometers and the extensome-
ter. The numerical values are provided in Appendix C. Also, IL: Lateral inclinometer, I1:
Longitudinal inclinometer 1, I3: Longitudinal inclinometer 3, and E: Extensometer.

tural responses at the location of the lateral inclinometer and extensometer. In addition,
Figure 6.6c shows that for the lateral inclinometer, the effect of a bearing device lockage in
the uniform setup is negligible compared with the non-uniform one. However, this sensor is
the most sensitive inclinometer towards a non-uniform bearing device lockage in the sense
that it yields the maximum rotation for any damage scenario of this type. As it is seen
in Figures 6.6d and 6.6f, the sensor I1 is the most sensitive sensor among inclinometers for
detecting corrosion and uniform bearing device lockage damage scenarios. The sensors I1

and I3 show a similar damage detectability with respect to both uniform and non-uniform
partial settlements damage scenarios as depicted in Figures 6.6e and 6.6h.

The results shown in Figure 6.6 display the effects of changes in structural responses for each
sensor based on the FE model. However, in order to identify the best sensor configuration,
two factors must be accounted for: (i) the damage detectability of each sensor according
to |ha|min, and (ii) the distinguishability between different damage scenarios. The former is
achieved by comparing |ha|min with the results from Figure 6.6, and the latter is addressed
using the cosine similarity metric described in Section 6.2.

6.3.2 Jacques Cartier Bridge Damage Detectability

In order to identify damages that are detectable by the RL-based agents, we compare the
minimum detectable anomaly magnitude |ha|min obtained from the Table 4.7 with the values
shown in Figure 6.6. Table 6.2 shows the results of their comparison for all sensors, where the
red color indicates the damage scenarios that are detectable by the agents with an annual false
alarm ratio ζFP of 0.1/year. The second column introduces five damage types used in order
to analyze the changes in structural responses. The third column presents the abbreviation
for damage scenarios names. For instance, BDL− NU− 11% is the damage scenario associated
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with 11% bearing device lockage in the non-uniform setup. The fourth to seventh columns
show the changes in structural responses at the location of the sensors due to each damage
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Figure 6.6 Effects of the damage scenarios on the changes in structural responses ∆θ and
∆` at the location of the inclinometers and the extensometer. The numerical values are
provided in Appendix C. Also, IL: Lateral inclinometer, I1: Longitudinal inclinometer 1, I3:
Longitudinal inclinometer 3, and E: Extensometer
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scenario. For brevity, we use simplified names for the sensors, that is IL for the lateral
inclinometer, I1 for the longitudinal inclinometer 1, I3 for the longitudinal inclinometer 3,
and E for the extensometer.

In Table 6.2, the severity of each damage type has a lower and an upper bound. For example,
these severities are 2% and 5% for the corrosion. The lower bound severity is associated with
the damage scenario that is detectable by at least one sensor; Severities smaller than the
lower bound are not detectable by any sensor. On the other hand, the upper bound severity
corresponds to the damage scenario for which the number and types of sensors that are
able to detect severities larger than the upper bound remain the same. In other words,
the upper bounds indicates the smallest severity level that is detectable by all the sen-
sors. For example, the minimum severity corresponding to the corrosion is detectable by the
inclinometer: Long−1 and extensometer; None of the sensors are able to detect the damages
associated with a corrosion of less than 2%. A corrosion of 5% is the upper bound severity. It
is detectable by the inclinometers Long−1 and Long−3 as well as the extensometer meaning
that a corrosion larger than 5% is detectable with the same sensors. Note that the lateral
inclinometer cannot detect this type of damage.

Table 6.2 Changes in structural responses, i.e, ∆θ and ∆` due to different damage scenarios,
associated with sensors installed on the JCB. The damage scenario names consist in two
or three parts separated by dashes. They represent the damage’s type, setup, and severity
such that COR: corrosion, BDL: bearing device lockage, PST: partial settlement, U: uniform,
and NU: non-uniform. Also, IL: Lateral inclinometer, I1: Longitudinal inclinometer 1, I3:
Longitudinal inclinometer 3, and E: Extensometer.

Damage Scenario ∆θ, ◦d ∆`, mm
ID Type Abbreviation IL I1 I3 E
1 Corrosion COR− 2% +0.0001 +0.0013 +0.0005 +0.0125
2 COR− 5% +0.0003 +0.0033 +0.0013 +0.0321
3 Uniform bearing

device lockage
BDL− U− 5.4% 0.0000 −0.0026 −0.0004 −0.0244

4 BDL− U− 14.6% +0.0001 −0.0072 −0.0012 −0.0660
5 Non-uniform

bearing device
lockage

BDL− NU− 10.2% +0.0013 +0.0002 +0.0003 −0.0135
6 BDL− NU− 22.2% +0.0030 +0.0005 +0.0007 −0.0301
7 BDL− NU− 36.3% +0.0051 +0.0007 +0.0012 −0.0512
8 BDL− NU− 74.1% +0.0116 +0.0017 +0.0026 −0.1164
9 Uniform

partial settlement PST− U− 1 mm 0.0000 −0.0013 −0.0013 0.0000

10 Non-uniform
partial settlement

PST− NU− 1 mm −0.0030 −0.0010 −0.0009 +0.0021
11 PST− NU− 2 mm −0.0059 −0.0020 −0.0018 +0.0041
12 PST− NU− 5 mm −0.0147 −0.0050 −0.0045 +0.0103

|ha|min 0.0020 0.0013 0.0010 0.0090
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From Table 6.2, one can compare the damage detectability of each sensor individually. For
instance, the best sensor is the extensometer as it detects more damage scenarios than any
other. If we want to be able to detect all 12 damage scenarios, we would need to use the
extensometer, the lateral inclinometer, and either the longitudinal inclinometer 1 or 3. In
order to illustrate this point, consider the two scenarios COR− 2% and PST− NU− 5 mm for
the extensometer shown in the first and last row of Table 6.2. If the corresponding agent
triggers an alarm for which the anomaly magnitude is |ha| = 0.02, it is not possible to
identify the cause of this anomaly only from the extensometer. Nevertheless, we can rely on
multiple sensors in order to distinguish between these two scenarios. For example, by using
the lateral inclinometer, one can realize that the PST − NU − 5 mm scenario is the cause of
the anomaly because the lateral sensor cannot detect the COR − 2% scenario. In the next
section, we present a systematic analysis in order to obtain an optimal sensor configuration
that maximizes the distinguishability between the damage scenarios for the Jacques Cartier
Bridge using the cosine similarity metric.

6.3.3 Jacques Cartier Bridge Measurement System Design

We follow the procedure described in Section 6.2 in order to evaluate cosine similarity of
all the sensor configurations for the 12 damage scenarios presented in Table 6.2. Figure 6.7
shows the cosine similarity matrices where the color assigned for each cell in a heat-map
represents a cosine similarity value between two damage scenarios that varies from −1 to
+1. The white cells represent the null values that are related to situations where a damage
scenario is not detected by the sensor configuration. In such cases, the entire corresponding
row and column are null. Figures 6.7a-6.7l are the cases containing null values that are not
considered in our analysis. In addition, we do not consider the cosine similarity values that
either belong to the diagonal of the matrix or are associated with damage scenario pairs that
are of the same type but with different severities. We discarded these cases because once
a damage is detected by a sensor, its severity is always identified by the sensor, while the
usage of the cosine similarity is only to evaluate the capacity to distinguish between damage
scenarios. Among all the heat-maps shown in Figure 6.7, only Figures 6.7m-6.7o correspond
to the sensor configurations that are able to detect all 12 damage scenarios. Therefore, the
evaluation of the average cosine similarity p̄ is limited to these three figures, that is −0.12
for % = {IL, I1, E}, −0.13 for % = {IL, I3, E}, and −0.12 for % = {IL, I1, I3, , E}.

According to Equation 6.6, the best measurement system configuration corresponds to Fig-
ure 6.7n resulting in the minimum average cosine similarity of p̄ = −0.13. This configuration
consists in the lateral inclinometer, the longitudinal inclinometer 3, and the extensometer,
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i.e., %∗ = {IL, I3, E}. Nevertheless, note that since the cosine similarity metric p̄ is similar for
the three sensor configurations, we expect in practice that they will have a similar damage
distinguishability. The difference between the configuration shown in Figure 6.7m and the
optimal one is the usage of the longitudinal inclinometer 1 instead of 3, i.e., using the sensor
I1 instead of I3. In addition, the difference between the configuration shown in Figures 6.7o
and the optimal one is the usage of the four sensors instead of three.

Figure 6.8 shows the cosine similarity matrices corresponding to the three configurations
shown in Figures 6.7m-6.7o. The shaded lower triangle part of the matrices are the elements
taken into account during this new calculation. Changing a measurement system configu-
ration can alter the distinguishability such that it might increase for a subset of damage
scenario pairs at the expense of its reduction for an another subset. In order to show this
point numerically, we have re-calculated the average cosine similarity between the five dam-
age types separately, rather than calculating it for all damage scenarios at once. For a pair
of damage type, we consider the corresponding rows and columns, and take the average of
their values. For instance, rows 5 to 8 and columns 3 and 4 form a new matrix that is asso-
ciated with the non-uniform and uniform bearing device damage types pair. For this pair,
the average cosine similarity metric p̄ is equal to +0.93, +0.73, and +0.70. They respectively
correspond to the matrices shown in Figures 6.8a to 6.8c.

For each measurement system configuration, we obtain ten values, each representing the dis-
tinguishability between a damage type pair as shown in Table 6.3. The first two columns
identify the damage type pairs. The remaining columns are associated with the same config-
urations shown in Figures 6.7m-6.7o. The values in green correspond to the cases for which
there is an improvement in terms of distinguishability for the configuration % = {IL, I3, E}
compared with the other two configurations. For the other damage type pairs, the distin-
guishability is either reduced or not changed.

From a practical point of view, once a cosine similarity value between a damage type pair
[P]ij ≤ 0, the pair is easily distinguishable. This is because the corresponding damage vectors
are either in an opposite direction for [P]ij < 0, or they are perpendicular for [P]ij = 0.
Therefore, we expect that most of the average cosine similarity metrics presented in Table 6.3
will result in a similar distinguishability. However, one particular case in this table is the
uniform and non-uniform bearing device lockage damage type pair as identified by the red
color for the three configurations. Using the longitudinal inclinometer 3 instead of 1, i.e., I3

instead of I1, makes the damage type pair indistinguishable, while other pairs show similar
distinguishability. This situation is also shown by the yellow areas in Figures 6.7m-6.7o.
Moreover, the comparison between using the configuration {IL, I1, E} and {IL, I1, I3, E} shows
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ID Type Abbreviation
1 Corrosion COR− 2%
2 COR− 5%
3 Uniform bearing

device lockage
BDL− U− 5.4%

4 BDL− U− 14.6%
5 Non-uniform

bearing device
lockage

BDL− NU− 10.2%
6 BDL− NU− 22.2%
7 BDL− NU− 36.3%
8 BDL− NU− 74.1%

9 Uniform
partial settlement PST− U− 1 mm

10 Non-uniform
partial settlement

PST− NU− 1 mm
11 PST− NU− 2 mm
12 PST− NU− 5 mm

(d) Damage scenarios

Figure 6.8 Cosine similarity matrices. The lower part of the matrix that are shaded are
considered in evaluating p̄. For a better illustration, we use the damage scenario IDs instead
of their abbreviation as presented in Table 6.2. The simplified name of the sensors are: IL:
Lateral inclinometer, I1: Longitudinal inclinometer 1, I3: Longitudinal inclinometer 3, and
E: Extensometer.

that the distinguishability remains the same from both numerical and practical perspectives,
while the latter configuration uses a larger number of sensors.

For the purpose of instrumenting all the spans from the Jacques Cartier Bridge, we suggest
to use the configuration consisting in the lateral inclinometer, longitudinal inclinometer 1,
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Table 6.3 The average cosine similarity p̄i,j between the five damage types corresponding to
the three measurement system configurations. The green values indicate an improvement
in distinguishability between damage types. The simplified name of the sensors are: IL:
Lateral inclinometer, I1: Longitudinal inclinometer 1, I3: Longitudinal inclinometer 3, and
E: Extensometer. Also, COR: corrosion, BDL: bearing device lockage, PST: partial settlement,
U: uniform, and NU: non-uniform.

Damage type pair (i, j) Measurement system configuration %

i j {IL, I3, E} {IL, I1, E} {IL, I1, I3, E}
COR BDL− U −0.98 −1.00 −0.98
COR BDL− NU −0.89 −0.73 −0.69
COR PST− U −0.15 −0.65 −0.55
COR PST− NU +0.00 −0.13 −0.17
BDL− U BDL− NU +0.93 +0.73 +0.70
BDL− U PST− U +0.05 +0.65 +0.50
BDL− U PST− NU −0.02 +0.15 +0.17
BDL− NU PST− U −0.10 −0.03 −0.08
BDL− NU PST− NU −0.31 −0.30 −0.31
PST− U PST− NU +0.30 +0.27 +0.40

and the extensometer, i.e., % = {IL, I1, E} on each span. Such a configuration is expected
to be able to detect the damages induced from a corrosion of ≥ 2%, a uniform bearing
device lockage of ≥ 5.4%, a non-uniform bearing device lockage of ≥ 10.2%, and uniform
and non-uniform partial settlements of ≥ 1 mm. The damage detectability of the proposed
configuration is based on the corresponding agents presented in Table 4.7.

Table 6.4 summarizes the two macroscopic criteria for the recommended sensor configuration;
the third column shows the first criterion that is the minimum detectable anomaly magnitude
|ha|min. The last column shows the second criterion which is the minimum detectable anomaly
growth rate. For instance, for the agent corresponding to the lateral inclinometer with the

Table 6.4 Minimum detectable anomaly magnitudes |ha|min and the minimum detectable
anomaly growth rates ψ in years as a function of |ha|min, i.e., ψ = |ha|min per Nψ years. The
shorthanded name of the sensors are IL for the lateral inclinometer, I1 for the longitudinal
inclinometer on the axis 1, and E for the extensometer.

Sensor ID ζFP |ha|min Nψ [year]

IL
0.05 0.0017 ◦d 7
0.10 0.0020 ◦d 8

I1
0.05 0.0013 ◦d 6
0.10 0.0013 ◦d 6

E 0.05 0.0100 mm 7
0.10 0.0090 mm 6
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annual false alarm ratio of ζFP = 0.05/year, the minimum anomaly magnitude must be equal
or greater than 0.0017◦d per Nψ = 7 years.

6.4 Conclusion

This chapter introduced methodologies in order to associate an anomaly’s magnitude to the
severity levels of structural damages and optimize sensor configurations. Three structural
damage types, namely corrosion, bearing device lockage, and partial settlement were mod-
eled in order to study the effect of damage scenarios on structural responses. Furthermore,
the minimum detectable anomaly magnitudes obtained in Chapter 4 are used along with the
damage scenarios. This chapter used the cosine similarity method in order to introduce a
metric for representing the distinguishability between damage scenarios using multiple sen-
sors. From this metric, we identified that using the configuration consisting in the lateral
inclinometer, longitudinal inclinometer 3, and the extensometer resulted in the maximum
distinguishability across all damage scenarios. In addition, we observed that using a larger
number of sensors does not guarantee a higher distinguishability. We found that using the
configuration consisting in the lateral inclinometer, longitudinal inclinometer 1, and the ex-
tensometer resulted in the better distinguishability across different damage types. Therefore,
we suggest to use this sensor configuration on each span of the Jacques Cartier Bridge. This
sensor configuration along with the agents presented in Chapter 4 are able to detect anomalies
with the minimum magnitude |ha|min and the minimum growth rate ψ according to Table 6.4.
In addition, such a configuration is expected to detect the structural damages caused by a
corrosion of ≥ 2%, a uniform bearing device lockage of ≥ 5.4%, a non-uniform bearing device
lockage of ≥ 10.2%, and uniform and non-uniform partial settlements of ≥ 1 mm.
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CHAPTER 7 Conclusion

This thesis proposed methodologies for detecting anomalies as well as for quantifying the
anomaly detectability and the structural damage distinguishability, and applied those to the
case study of the Jacques Cartier Bridge. The following sections provide the key aspects from
the methodologies developed, the conclusions emanating from the analyses, the limitations
encountered using the proposed methodologies, and the future possible research directions in
order to address these limitations.

7.1 Thesis Conclusions

In the context of structural health monitoring where anomalies are rare events and observed
responses are influenced by external effects, rightfully detecting anomalies plays a key role
within the process of quantifying the anomaly detectability; although detecting anomalies
has been studied in the literature, these studies have not accounted for an anomaly’s charac-
teristics including its magnitude and duration. As a result, existing methods are not able to
quantify probabilistically the anomaly detectability with respect to anomalies’ characteristics
as well as other factors such as the time required to rightfully detect an anomaly and the
number of false alarms that a decision maker expects to encounter. In addition, existing
methods are not able to associate the magnitudes of detected anomalies to the severity levels
of a wide range of structural damages. In order to address these limitations as well as other
limitations identified in the literature, this research work presented an anomaly detection
procedure based on Bayesian dynamic linear models (BDLMs) along with the reinforcement
learning (RL) and imitation learning (IL) approaches.

The formulation of BDLM relies on assembling generic components in order to estimate
the degradation’s kinematics consisting in structural degradation, degradation’s speed, and
degradation’s acceleration. In addition, these components account for the external effects
such as the temperature to remove them from the measurements. As a result, a BDLM
allows decomposing the measurements collected from the sensors in order to obtain the
underlying stationary and non-stationary structural degradation’s speeds as well as their
probabilities. We employed BDLMs on the measurements collected from the inclinometers,
extensometers, and thermometers installed on the Jacques Cartier Bridge. The analysis
of the sensors determined the stationary and non-stationary structural responses and their
probabilities, which are the two criteria during the process of detecting anomalies as it will be
explained later in this section. We observed that relying solely on the probabilities of the non-
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stationary structural degradation’s speed is not sufficient for detecting anomalies; There are
situations for which such probabilities are not high, while the corresponding speeds indicate
the presence of anomalies, and therefore, a decision maker requires to take into account such
speeds.

This research work proposed a stochastic anomaly function that models an anomaly based
on its magnitude, its duration, and the time of occurrence, which have a key role within the
process of detecting anomalies and quantifying the anomaly detectability of the sensors; Used
along with the empirical models obtained from BDLM, we were able to generate abnormal
synthetic time series and the subsequent environment’s state-space consisting in station-
ary and non-stationary structural degradation’s speeds as well as their probabilities. The
resulting environment, with which an agent interact, mimics the degradation’s kinematics
associated with the real measurements, and accounts for the structural degradation’s speeds
and their probabilities as the two sources of information for decision making.

Following the simulation of such an environment, we formulated the problem of detecting
anomalies as a sequential decision making problem for which an agent is required to take
the action within an environment in order to trigger an alarm when an anomaly is present,
and not to trigger an alarm, otherwise. We proposed two methods for treating this problem:
The first method relies on the reinforcement learning approach, while the second one uses
the imitation learning approach as a basis for training an agent. The former uses a reward
function as a feedback signal in order to encourage or prevent an agent to take an action with
regards to the time to trigger an alarm, while the latter uses a demonstration set in order
to imitate an expert’s alarm triggering policy. In addition, in order to quantify the anomaly
detectability for each sensor, we proposed two metrics, namely the annual false positive ratio,
and the probability of true positive detections. The former identifies the number of false alarms
per year that a decision maker expects to encounter. The latter quantifies the probability of
rightfully detecting anomalies as a function of three variables; The first two variables are the
anomaly’s magnitude and its duration that are accessible from the simulated environment.
The third variable is the time required by an agent to detect an anomaly after its starting
time.

We employed both anomaly detection methods for each sensor type on the Jacques Cartier
Bridge in order to obtain alarm triggering policies for the target annual false positives of
one per 10 and 20 years. The resulting alarm triggering policies were examined on real time
series measurements obtained from the Jacques Cartier Bridge. We showed that the anomaly
detection for both annual false positive ratios successfully identified anomalies earlier than
the time when a stationary regime switches to a non-stationary one. A key aspect found is
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that the reward values control the annual false positive ratios: setting a higher true positive
reward value for rightfully detecting anomalies encourages an agent to trigger an alarm more
often, which results in more false alarms. On the other hand, assigning a higher negative
reward value for wrongfully detecting anomalies prevents an agent for triggering an alarm,
and subsequently we to obtain a lower annual false positive ratio.

While succeeding at detecting anomalies using the reinforcement learning method, we showed
that the imitation learning approach requires less data to train an agent, resulting in lower
computational costs. We examined different alarm triggering policies using imitation learning
for the target annual false positive ratios of one per 5, 10, 20, and 40 years. It was found
that, in most cases, the resulting decision boundaries are very close to each other showing a
potential lack of robustness in achieving a target annual false positive ratio.

Furthermore, we used the resulting alarm triggering policies in order to evaluate the probabil-
ity of true positive detections. In addition, we reported the 90% probability of true positive
detections in the form of isosurfaces for the inclinometers and extensometers for both annual
false positive ratios of one false alarm per 10 and 20 years, and for both anomaly detection
methods. We extracted two macroscopic metrics from these isosurfaces, namely the mini-
mum detectable anomaly magnitude and the minimum detectable anomaly growth; These two
metrics are another key aspect to enable quantifying the capacity of each sensor in detecting
anomalies. For both anomaly detection methods, we showed that there is a tradeoff between
the annual false positive ratio and the probability of true positive detections: Lowering the
annual false positive ratio comes at the expense of a decrease in the probability of true posi-
tive detections. Moreover, the results showed that both reinforcement and imitation learning
based anomaly detection methods yield similar anomaly detectability capacities.

Following the quantification of the anomaly detectability, we proposed methodologies based
on physics-based models and the cosine similarity metric for quantifying the structural dam-
age distinguishability, which aims at associating an anomaly’s magnitude to the severity
levels of different structural damages. To this end, the current research work used a physics-
based model in order to simulate structural damages and associate their severity levels to the
minimum detectable anomaly of sensors. We presented three types of structural damages
with various severity; they are corrosion, bearing device lockages, and partial settlements.
Furthermore, the current work used the cosine similarity metric in order to measure the
capacity of different sensor configurations at distinguishing damage scenarios and chose the
configuration that maximizes the distinguishability between them. We showed that using the
configuration consisting in the lateral inclinometer, longitudinal inclinometer on the axis 1,
and the extensometer resulted in the best distinguishability across different damage types.
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This sensor configuration along with the agents presented in Chapter 4 are able to detect
anomalies with the minimum magnitude |ha|min and the minimum growth rate ψ reported
in Table 6.4. In addition, such a configuration is expected to detect the structural damages
caused by a corrosion of ≥ 2%, a uniform bearing device lockage of ≥ 5.4%, a non-uniform
bearing device lockage of ≥ 10.2%, and uniform and non-uniform partial settlements of
≥ 1 mm.

In conclusion, the methodologies proposed in this thesis showed the capacity of reinforcement
and imitation learning approaches to successfully quantify: (i) the anomaly detectability of
different sensor types with respect to the target annual false positive ratio as well as the
probability of true positive detections, and (ii) the structural damage distinguishability in
order to associate an anomaly’s magnitude to the severity levels of structural damages, and to
help determine the sensor configuration that maximizes the distinguishability between these
damages. These methods showed a good performance on different measurements collected
on the Jacques Cartier Bridge; They determined the minimum anomaly detectability, and
quantified the damage detectability of each sensor. Overall, the proposed methods introduced
a novel approach towards detecting anomaly, quantifying the anomaly detectability, and the
structural damage distinguishability, which laid the foundation for further applications for
other civil infrastructures in the context of long-term structural health monitoring.

7.2 Limitations

In this section we present the limitations of the methodologies developed in the current
research work regarding detecting anomalies, quantifying the anomaly detectability, and
quantifying the damage detectability. Resolving these limitations would further improve the
scalability and robustness of the proposed methodologies.

7.2.1 Environment’s State-Space

In this thesis, we used two explanatory variables forming a two-dimensional environment’s
state-space for the decision making process. They are the structural degradation’s speeds
and the probability of the non-stationary regime. In addition, we discretized the environment
when we applied reinforcement learning approach for detecting anomalies as described in Sec-
tion 4.1.1 in Chapter 4. However, there are two limitations when using such an environment
for with which an agent interacts; First, determining a grid size for the discretization purpose
relies on a grid search in the sense that we need to try different grid size configurations in or-
der to ensure the convergence of the Q-values [85]. Second, using other explanatory variables
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in the decision making process has not been incorporated. Besides, increasing the number
of explanatory variables in simulating an environment increases the number of discretized
regions with O(NS), where S is the number of variables, and N is the number of discretization
in each dimension assuming we use an equal number of divisions. As a result, the com-
putational costs for training an agent becomes more demanding. One potential solution to
relax these limitations, when using the reinforcement learning approach, is to use function
approximation methods presented in Section 2.3.1 in Chapter 2; These methods approximate
the action-value function using an approximator [61,62], so there is no need to discretize the
environment’s state space. In addition, advanced function approximators based on using
deep neural networks [96] can cope with an increase in the number of dimensions, and hence
enable the anomaly detection procedure to account for more explanatory variables.

The next limitation of the current research work is related to the capacity to interpret data
without interruption after anomalies are detected. The challenge lies in the fact that struc-
tural anomalies introduce non-stationary regimes in structural responses. Such a change in
the patterns requires adapting the reinforcement learning structure for operating in a non-
stationary environment. The full-scale operation of a sensor network and of the data analysis
associated with it require being able to operate without interruption even in the case where
anomalies are identified, either following a change in the condition of the structure or fol-
lowing planned events such as maintenance activities. A possible solution to relax such a
limitation is to design additional reward features and allow an agent to keep interacting with
the environment while collecting these reward values.

Another limitation of the current research is related to using a grid dM×N for downsampling pre-
sented in Chapter 5 in regard with the imitation learning approach. Here, we used the same
grid that were using in discretizing an environment in the reinforcement learning approach.
This grid is a non-uniform grid with respect to the probability of the non-stationary regime
πns; The grid size for the probabilities πns < 0.05 differs from the probabilities πns > 0.05.
When drawing samples for the issues region in the imitation learning approach, such a dif-
ference results in changing the density of the acquired samples and hence their probability
samples. In order to overcome this limitation and improve the results, we suggest to use
a uniform grid for the entire environment’s domain and draw samples from, or employ al-
gorithms such a DAgger [80], explained in Section 2.3.2, which copes with the non-uniform
data sampling issue.

Another limitation of the current research relies on the nature of the environment. The
anomaly detection problem was formulated using a Markov decision process (MDP) hypoth-
esizing that an agent observes a true state at each time step; The structural degradation’s
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speed is a hidden-state variable which is obtained from an empirical model and represented
by a normal distribution with a mean µT

t and a standard deviation σT
t for each time step.

However, we simulated the environment using its expected values assuming they represent
the true degradation’s speed. One solution to relax such a limitation is to formulate the
anomaly detection problem as a partially observable Markov decision process (POMDP). In
this configuration, an agent observes the states with uncertainty. As a result, the policy
π(p(s)) is a function of the probability of the state s, rather than being a function of the
state in the case of MDP, i.e., π(s). Solving problems in a POMDP setup is more demand-
ing and require to use approximation methods [97]. The reader is referred to specialized
literature such as Kaelbling et al. [98] and Hauskrecht [97] for detailed review of the subject
matter.

7.2.2 Structural Damage Scenarios and Detectability

The damage scenarios presented in the current research work are limited to three types. How-
ever, a structure could experience other types of damages or there might be specific damages
that are of greatest interest for a decision maker. In addition, the proposed structural dam-
ages in this work represent global damages and the local damages were not considered; For
instance, in the case of corrosion, we considered the effect of the corrosion on all the steel
elements of a span neglecting the situation for which the corrosion would occur on a part
of a span. Moreover, the damage detectability presented in Chapter 6 is deterministic in
the sense that it only identifies the possibility of certain structural damages. However, such
a diagnosis capacity is not quantified probabilistically such that for a detected anomaly we
would be able to assign a probability value for the possible causes. A solution to address
these limitations is to build a joint observations set from the various structural damages,
both locally and globally, and employ the Bayes’ theorem in order to infer the probability of
these damages for when an agent detects anomalies.

7.3 Future Work

This thesis laid the foundation for detecting anomalies in the context of sequential decision
making, and presented the anomaly detectability as well as the structural damage distin-
guishability. This section presents future research directions, which include potential im-
provements on the anomaly detection method as well as the structural damage detectability.
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7.3.1 Detecting Anomalies Using Additional Explanatory Variables

Chapters 4 and 5 showed that using the two explanatory variables improves the decision
making with regard to detecting anomalies compared with solely relying on the probability of
the non-stationary regimes obtained from the Bayesian dynamic linear models. We suggest
to use additional explanatory variables to examine the anomaly detectability of an agent.
These additional variables potentially rely on the relative structural degradation vector x̂L

defined as
x̂L
t = [(xL

t − xL
t−1) (xL

t − xL
t−2) . . . (xL

t − xL
t−k)]ᵀ, t ≥ k, (7.1)

where, at a time t, the vector x̂L consists in k consecutive relative structural degradation
values corresponding to the previous time steps. For instance for k = 1, the relative structural
degradation vector reduces to an explanatory variable representing the difference between the
current degradation and the one associated with the previous time step. i.e, x̂L = xL

t−xL
t−1. In

this setup, an agent takes into account the changes in the degradation patterns for the decision
making process with regard to triggering an alarm. Note that the resulting environment’s
state-space S ∈ Rk+2 is a (k + 2)-dimensional space, where the number 2 corresponds to the
two explanatory variables presented in this thesis.

7.3.2 Enhancing Detecting Anomalies Using Alternative Learning Algorithms

In this work, detecting anomalies relies on using either the reinforcement learning approach in
a discretized environment, or the imitation learning approach performed on a demonstration
set obtained from the expert’s policy. However, the anomaly detection could be enhanced
in two ways; The first improvement is related to employing the reinforcement learning ap-
proaches based on the function approximation, in particular, the ones that are built using
deep neural networks. These methods learns the optimal policy in a continues environment’s
state-space, so there is no need for discretizing an environment. In addition, they are able
to handle high dimensional environments enabling an agent to account for high number of
explanatory variables such as the aforementioned relative structural degradation vector.

The second improvement is associated with using both reinforcement and imitation learning
approaches in a same framework. The imitation learning approach presented in Chapter 5
is, on one hand, faster by orders of magnitudes compared with the reinforcement learning
approach presented in Chapter 4. On the other hand, the imitation learning approach is
not able to provide information about how the expert makes decisions with regard to trig-
gering anomalies, and it is prone to suboptimal policies provided by an expert [82, 99]. We
suggest to apply both reinforcement and imitation learning approaches in a same framework
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in order to improve the learning process. When using the reinforcement learning approach
in a discretized environment, the initial Q-values could be estimated by allowing an agent
to imitate the expert’s policy. To this end, the imitation learning method can be used to
learn the optimal policy for each discretized region. The corresponding Q-values are then
estimated using an independent test dataset containing both normal and abnormal episodes.
Afterwards, a reinforcement learning agent learns the optimal policy using these initialized
Q-values. The same procedure also can be used using the reinforcement learning approach in
a continuous environment; when using a deep neural network, the initial weights and biases
can be estimated using the optimal policy obtained from the imitation learning approach.
Using both reinforcement learning and imitation learning approaches has been examined in
the literature. For instance, Minh et al. [61] used such an approach in the game of Go: they
used demonstrations obtained from the expert Go players to train an agent in the context
of the imitation learning approach, and then applied the reinforcement learning method in
order to improve the optimal policy.

7.3.3 Detecting Anomalies in an Uncertain Environment’s State-Space

The anomaly detection problem presented in Chapter 4 was formulated in a Markov deci-
sion process (MDP) setup. As discussed in the limitation section, this is not an accurate
setup, because we only used the expected values of the degradation’s speed without taking
into account uncertainty around these values. In order to account for the uncertainty, we
suggest to formulate the anomaly detection problem as a partially observable Markov deci-
sion process (POMDP). As such, the resulting environment is presented with uncertainty for
which an agent observe the states with an uncertainty. Although solving POMDP problems
in the context of decision making is more demanding compared with a MDP [97], employ-
ing reinforcement learning methods based on a Bayesian neural network [96] can address
such an issue. These methods have been developed to take uncertain states as an input and
approximate the Q-values in a probabilistic manner.

7.3.4 Probabilistic Models for the Damage Detectability

The diagnostic capacity of the damage detectability presented in Chapter 6 results in only
deterministically associating the magnitude of a detected anomaly to a set of structural
damages with different severity levels. This implies that it is not able to quantify the cause of
each damage within this set, probabilistically. Besides, the occurrence of different structural
damages depends on the characteristics of a civil infrastructure. For instance, it is possible
that the corrosion causes an anomaly with a higher probability for a bridge with a steel truss
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deck compared with a concrete one. Therefore, the uncertainty of the detected damages
ought to be quantified in order to improve the damage detectability. To this end, we suggest
to build a joint observations set from various structural damages, and employ the Bayes’
theorem in order to infer the probability of these damages for when an agent detects them.
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APPENDIX A BDLM MODELS

Model Matrices for the Inclinometers

The model matrices {At,Ct,Qt,Rt} for the stationary and non-stationary model matrices
for the inclinometers I are defined following

Stationary Model Matrices Ms,obs
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Non-Stationary Model Matrices Mns,obs

Ans
t = block diag




1 ∆t ∆t2

2
0 1 ∆t

0 0 1

 ,
 0 k̃KR,I

t

0 I10×10

 , φAR,I, 1,
 0 k̃KR,T

t

0 I10×10

 , φAR,T



Cns
t =

 1 0 0 1 01×10 1 0 βKR,I|T 01×10 βAR,I|T

0 0 0 0 01×10 0 1 1 01×10 1



Rns
t = block diag

(
(σI

v)
2
, (σT

v)
2)

Qs(ns)
t = block diag




(σLA

w )2 · ∆t5
20 0 0

0 (σLTT
w )2 · ∆t3

3 0

0 0 (σLA
w )2 ·∆t

 ,

(
σKR,I
w,0

)2
0

0
(
σKR,I
w,1

)2
· I10×10

 ,

(σAR,I)2
, (σLL

w )2
,


(
σKR,T
w,0

)2
0

0
(
σKR,T
w,1

)2
· I10×10

 , (σAR,T)2



Qns(ns)
t = block diag


(σLA

w )2



∆t5
20

∆t4
8

∆t3
6

∆t4
8

∆t3
3

∆t2
2

∆t3
6

∆t2
2 ∆t


,


(
σKR,I
w,0

)2
0

0
(
σKR,I
w,1

)2
· I10×10

 , (σAR,I)2
,

(σLL
w )2

,


(
σKR,T
w,0

)2
0

0
(
σKR,T
w,1

)2
· I10×10

 , (σAR,T)2



where the superscript I indicates that the matrices belong to the inclinometers, the super-
script T indicates that the matrices belong to the thermometers, and k̃KR

t = [k̃KR
t,1, k̃

KR
t,2, · · · , k̃KR

t,10]
is the normalized kernel values and ∆t is the time step at the time t.
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Model Matrices for the Extensometers

The model matrices {At,Ct,Qt,Rt} for the stationary and non-stationary model matrices
for the extensometers E are defined following

Stationary Model Matrices Ms,obs
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Non-Stationary Model Matrices Mns,obs

Ans
t = block diag
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where the superscript E indicates that the matrices belong to the extensometers, the super-
script T indicates that the matrices belong to the thermometers, and k̃KR

t = [k̃KR
t,1, k̃

KR
t,2, · · · , k̃KR

t,10]
is the normalized kernel values and ∆t is the time step at the time t.
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APPENDIX B REWARD VALUES

This section provides the grid search procedure in order to obtain the target annual false
positive ratios ζFP of 0.05 and 0.1 per year for the reinforcement learning-based agents. In
the process of training the reinforcement learning agents, the only reward value changed
is associated with the false positive one. The remaining reward values are fixed and the
corresponding values are presented in Table 4.6 in Chapter 4. Table B.1 shows the results of
the grid search procedure. The first column is associated with the false positive reward values
rFP for training the agents corresponding to the inclinometers. The following three columns
show the annual false positive ratios ζFP obtained. The first column corresponds to the false
positive reward values rFP for training the agents associated with the extensometers. The
last column shows the resulting annual false positive ratios ζFP. The sensor simplified names
are IL: Lateral inclinometer, I1: Longitudinal inclinometer 1, I3: Longitudinal inclinometer
3, and E: Extensometer. The values in red indicate the annual false positive ratios selected
in this thesis.

Table B.1 False positive reward values rFP and corresponding annual false positive ratios ζFP

for inclinometers and extensometers.The sensor simplified names are IL: Lateral inclinometer,
I1: Longitudinal inclinometer 1, I3: Longitudinal inclinometer 3, and E: Extensometer.

Reward, rFP ζFP Reward, rFP ζFP

IL I1 I3 E
-27 0.0322 -140 0.0177
-26 0.0323 -120 0.0177
-25 0.0330 -100 0.0230
-24 0.0440 -80 0.0373
-23 0.0477 -60 0.0440
-22 0.0477 -59 0.0527
-21 0.0478 -58 0.0525
-20 0.0427 -57 0.0563
-19 0.0533 -40 0.0635
-18 0.0548 -30 0.0786
-17 0.0762 0.0404 0.0703 -26 0.0988
-16 0.0670 0.0391 0.0504 -25 0.0846
-15 0.0950 0.0468 0.0614 -20 0.1132
-14 0.1085 0.0647 0.0642 -10 0.3062
-13 0.1342 0.0615 0.0769 -5 1.0084
-12 0.1253 0.0737 0.0840
-11 0.1318 0.0831 0.0861
-10 0.1817 0.1086 0.0962
-9 0.1946 0.0968 0.0948
-8 0.2397 0.1311 0.1129
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APPENDIX C SIMULATED STRUCTURAL DAMAGE SCENARIOS

This section provides the changes in structural responses, i.e, ∆θ and ∆` due to differ-
ent damage scenarios, and associated with sensors installed on the Jacques Cartier Bridge
(JCB). In Tables C.1-C.5, the damage scenario abbreviated names consist in two or three
parts separated by dashes. They represent the damage’s type, setup, and severity such that
COR: corrosion, BDL: bearing device lockage, PST: partial settlement, U: uniform, and NU:
non-uniform. The sensor simplified names are IL: Lateral inclinometer, I1: Longitudinal
inclinometer 1, I3: Longitudinal inclinometer 3, and E: Extensometer. The values in red
indicate the minimum severity detected by the corresponding RL agent according to its
minimum detectable anomaly magnitude |ha|min.

Table C.1 Simulated structural-damage scenario for the corrosion.The sensor simplified names
are IL: Lateral inclinometer, I1: Longitudinal inclinometer 1, I3: Longitudinal inclinometer
3, and E: Extensometer.

Corrosion ∆θ, ◦d ∆`, mm
ID Severity, % Abbreviation IL I1 I3 E
1 0.5 COR− 0.5% +0.0000 +0.0003 +0.0001 +0.0031
2 1 COR− 1% +0.0001 +0.0006 +0.0003 +0.0062
3 2 COR− 2% +0.0001 +0.0013 +0.0005 +0.0125
4 2.5 COR− 2.5% +0.0002 +0.0016 +0.0006 +0.0157
5 3 COR− 3% +0.0002 +0.0019 +0.0007 +0.0189
6 3.5 COR− 3.5% +0.0002 +0.0023 +0.0009 +0.0221
7 5 COR− 5% +0.0003 +0.0033 +0.0013 +0.0321
8 5.5 COR− 5.5% +0.0003 +0.0037 +0.0014 +0.0355
9 6 COR− 6% +0.0004 +0.0041 +0.0015 +0.0389
10 8 COR− 8% +0.0005 +0.0056 +0.0021 +0.0529
11 10 COR− 10% +0.0007 +0.0071 +0.0027 +0.0675
12 12 COR− 12% +0.0009 +0.0087 +0.0033 +0.0828
13 15 COR− 15% +0.0011 +0.0114 +0.0042 +0.1070
14 20 COR− 20% +0.0016 +0.0162 +0.0061 +0.1510

|ha|min 0.0020 0.0013 0.0010 0.0090
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Table C.2 Simulated structural-damage scenario for the bearing device lockage in the uniform
setup.The sensor simplified names are IL: Lateral inclinometer, I1: Longitudinal inclinometer
1, I3: Longitudinal inclinometer 3, and E: Extensometer.

Bearing Device Lockage - Uniform ∆θ, ◦d ∆`, mm
ID Severity, % Abbreviation IL I1 I3 E
1 5.4 BDL− U− 5.4% +0.0000 −0.0026 −0.0004 −0.0244
2 10.2 BDL− U− 10.2% +0.0001 −0.0050 −0.0008 −0.0462
3 14.6 BDL− U− 14.6% +0.0001 −0.0072 −0.0012 −0.0660
4 22.2 BDL− U− 22.2% +0.0002 −0.0109 −0.0018 −0.1002
5 36.3 BDL− U− 36.3% +0.0002 −0.0179 −0.0030 −0.1642
6 53.3 BDL− U− 53.3% +0.0003 −0.0263 −0.0045 −0.2412
7 74.1 BDL− U− 74.1% +0.0003 −0.0367 −0.0062 −0.3358
8 85.2 BDL− U− 85.2% +0.0003 −0.0423 −0.0072 −0.3863
9 92 BDL− U− 92% +0.0003 −0.0459 −0.0079 −0.4179
10 96.7 BDL− U− 96.7% +0.0003 −0.0483 −0.0083 −0.4394
11 98.4 BDL− U− 98.4% +0.0003 −0.0491 −0.0084 −0.4471
12 99.7 BDL− U− 99.7% +0.0003 −0.0498 −0.0085 −0.4534
13 99.9 BDL− U− 99.9% +0.0003 −0.0499 −0.0085 −0.4542
14 100 BDL− U− 100% +0.0003 −0.0500 −0.0085 −0.4546

|ha|min 0.0020 0.0013 0.0010 0.0090

Table C.3 Simulated structural-damage scenario for the bearing device lockage in the non-
uniform setup.The sensor simplified names are IL: Lateral inclinometer, I1: Longitudinal
inclinometer 1, I3: Longitudinal inclinometer 3, and E: Extensometer.

Bearing Device Lockage - Non-uniform ∆θ, ◦d ∆`, mm
ID Severity, % Abbreviation IL I1 I3 E
1 5.4 BDL− NU− 5.4% +0.0007 +0.0001 +0.0002 −0.0070
2 10.2 BDL− NU− 10.2% +0.0013 +0.0002 +0.0003 −0.0135
3 14.6 BDL− NU− 14.6% +0.0019 +0.0003 +0.0005 −0.0194
4 22.2 BDL− NU− 22.2% +0.0030 +0.0005 +0.0007 −0.0301
5 36.3 BDL− NU− 36.3% +0.0051 +0.0007 +0.0012 −0.0512
6 53.3 BDL− NU− 53.3% +0.0079 +0.0011 +0.0018 −0.0788
7 74.1 BDL− NU− 74.1% +0.0116 +0.0017 +0.0026 −0.1164
8 85.2 BDL− NU− 85.2% +0.0138 +0.0021 +0.0032 −0.1385
9 92 BDL− NU− 92% +0.0152 +0.0022 +0.0035 −0.1530
10 96.7 BDL− NU− 96.7% +0.0162 +0.0024 +0.0037 −0.1633
11 98.4 BDL− NU− 98.4% +0.0166 +0.0025 +0.0038 −0.1670
12 99.7 BDL− NU− 99.7% +0.0169 +0.0025 +0.0039 −0.1701
13 99.9 BDL− NU− 99.9% +0.0170 +0.0025 +0.0039 −0.1705
14 100 BDL− NU− 100% +0.0170 +0.0025 +0.0039 −0.1707

|ha|min 0.0020 0.0013 0.0010 0.0090
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Table C.4 Simulated structural-damage scenario for partial settlement in the uniform
setup.The sensor simplified names are IL: Lateral inclinometer, I1: Longitudinal inclinometer
1, I3: Longitudinal inclinometer 3, and E: Extensometer.

Partial Settlement - Uniform ∆θ, ◦d ∆`, mm
ID Severity, mm Abbreviation IL I1 I3 E
1 1 PST− U− 1 mm +0.0000 −0.0013 −0.0013 +0.0000
2 2 PST− U− 2 mm +0.0000 −0.0026 −0.0025 +0.0000
3 3 PST− U− 3 mm +0.0000 −0.0038 −0.0038 +0.0000
4 5 PST− U− 5 mm +0.0000 −0.0064 −0.0064 +0.0000
5 10 PST− U− 10 mm +0.0000 −0.0128 −0.0128 +0.0000
6 30 PST− U− 30 mm +0.0000 −0.0384 −0.0384 +0.0004
7 60 PST− U− 60 mm +0.0000 −0.0768 −0.0768 +0.0017
8 100 PST− U− 100 mm +0.0000 −0.1279 −0.1279 +0.0048

|ha|min 0.0020 0.0013 0.0010 0.0090

Table C.5 Simulated structural-damage scenario for the partial settlement in the non-uniform
setup.The sensor simplified names are IL: Lateral inclinometer, I1: Longitudinal inclinometer
1, I3: Longitudinal inclinometer 3, and E: Extensometer.

Partial Settlement - Non-uniform ∆θ, ◦d ∆`, mm
ID Severity, mm Abbreviation IL I1 I3 E
1 1 PST− NU− 1 mm −0.0030 −0.0010 −0.0009 +0.0021
2 2 PST− NU− 2 mm −0.0059 −0.0020 −0.0018 +0.0041
3 3 PST− NU− 3 mm −0.0088 −0.0030 −0.0027 +0.0062
4 5 PST− NU− 5 mm −0.0147 −0.0050 −0.0045 +0.0103
5 10 PST− NU− 10 mm −0.0295 −0.0100 −0.0090 +0.0207
6 30 PST− NU− 30 mm −0.0883 −0.0300 −0.0271 +0.0620
7 60 PST− NU− 60 mm −0.1766 −0.0599 −0.0543 +0.1240
8 100 PST− NU− 100 mm −0.2944 −0.0998 −0.0905 +0.2067

|ha|min 0.0020 0.0013 0.0010 0.0090
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