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Abstract

Managing and maintaining bridges on a network-scale is directly associated with the
capacity to monitor and forecast the deterioration state of these bridges. Data-driven
models such as state-space models (SSM) has been effectively utilized for modelling the
deterioration behaviour based on visual inspections of bridge network. However, such a
model relies only on the inspection data and does not take into account the structural
attributes of each bridge. In addition, the capacity for estimating the deterioration
speed is limited, especially in cases with limited number of inspections. In this study,
we combine the SSM deterioration model with a kernel regression (KR) method. The
SSM-KR framework improves the estimates of the deterioration speed and reduces the
overall bias in forecasting the deterioration. The role of KR is to model patterns between
the deterioration speed and the structural attributes. Verification and validation of the
SSM-KR model are done using synthetic data and real data respectively, whereby the
real data is taken from a Canadian bridge network. In addition, the performance of
SSM-KR is benchmarked against the existing SSM model using an independent test set
of real inspections.

1 Introduction

Bridge management on a network-scale relies essentially on information about the dete-
rioration state of bridges and their performance over time. There are different types of
monitoring systems that provide such information about structures [1]. Out of these systems,
visual inspections is the most widespread among infrastructure owners [23, 31, 22, 5]. Visual
inspections are hands-on inspections performed on site by teams of inspectors. The upside
of visual inspections is that it provides direct assessment that takes into account all the
information available about the deterioration state of the structure [1]. The downside,
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however, is that the inspections results have high variability over time due to the subjective
nature of the evaluation [1, 27, 6]. The frequency of visual inspections can vary across
bridges due to different factors, but it is commonly performed on a bi-annual basis [5].
This fact limits the amount of data available for modeling the deterioration behaviour,
especially when considering that routine and/or major interventions can take place at
any point in a time window of 5 to 15 years [14]. Different types of data-driven models
have been proposed in the literature to model the deterioration behaviour while relying
on visual inspection data [31, 35, 37]. Discrete Markov models (DMM) are largely utilized
in modeling the deterioration based on visual inspections [31, 17, 18, 16, 8, 10, 33, 38].
In addition to the classical DMM, variations such as the semi-Markov model have been
utilized to compensate for some of the drawbacks in DMM [26, 28, 37]. Several limitations
are associated with the aforementioned Markov models which are briefly discussed in the
work of Zambon et al. [36] and Hamida and Goulet [13]. Regression based-methods have
been also utilized in performing analyses with visual inspections data [35, 15, 20]. However,
the application of regression models is limited in comparison with the DMM models. This
is mainly attributed to difficulties in modeling the temporal dependence from short time
series, selecting attributes, and the offline training and validation processes [12, 13, 21, 9].
Nonetheless, from the small sample of regression-based studies, it is evident that some of
the structural attributes can convey information about the structural deterioration pattern
over time [15].
The main limitation common across all of the aforementioned deterioration modelling
approaches is not taking into account the uncertainty associated with the inspectors [12, 13].
This has a major impact on the predictive capacity of the model, knowing that the amount
of the inspection data is limited and the variability is high. Bayesian approaches such as
state-space models (SSM) have successfully accommodated the inspectors’ uncertainty within
the deterioration model [13]. The SSM model relies on a kinematic model for describing
the deterioration condition, speed and acceleration over time. One of the stated limitations
associated with the SSM deterioration model is that the estimation of the deterioration
speed is limited [13]. This limitation can impact the long-term forecast and in some case
the short-term forecast if there are not enough inspection data. In addition, the SSM
model relies on the inspection data only, and does not take into account the attributes of
the structural elements (i.e. location or material). Structural attributes can be of high
importance because they can be used to explain and learn some of structural deterioration
patterns. For example, different regions may impose different external factors (e.g. cold vs.
warm weather), which can affect the deterioration rate accordingly, not to mention also
that each material has a unique aging process.
The aim of this study is to improve the short and long term forecast of the SSM deterioration
model by taking advantage of the structural similarities across the network of bridges. This
is done by deriving a hybrid framework that combines the SSM deterioration model with
a kernel regression model for handling structural attributes. The proposed framework
improves the estimate of the deterioration speed and reduces the overall bias in forecasting
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the deterioration. The aforementioned improvements can provide a good prior estimate
which compensates for the lack of inspection data in some of the structural elements. The
new model performance is benchmarked against the SSM model using an independent test
set of real inspections from a subset of bridges, in addition to being verified with synthetic
data.

1.1 Nomenclature

The transportation network of bridges is defined by B = {b1, b2, . . . , bB}, which includes
the information about each bridge bj . These information include the structure’s attributes
Z = {z1, z2, . . . ,zB}, where zj is a vector representing the structural attributes of the j-th
bridge. The attributes of interest in this study are: z1j the structure’s material, z2j the age

of the structure and z3j the structure’s location represented by the latitude. The structural

elements associated with each bridge bj are represented by the set Ej = {ej1, ej2, . . . , ejEj}. For

each structural element ejp there is a chronological list of inspection data. The inspections
information include the inspection time t, the engineer Ii ∈ I = {I1, I2, . . . , II} responsible
for evaluating the p-th structural element ejp, and the condition of the structural element
ỹ ∈ [l, u], with l representing the worst possible condition that can be assigned to a
structural element and u representing the best condition. The symbol (∼) in ỹ is utilized
to differentiate between observations in the bounded space [l, u] and unbounded space R.

2 Methodology

This section describes the proposed framework for factoring structural attributes in the
deterioration analyses along with visual inspections.

2.1 Modelling Deterioration with State-Space Models

According to the method proposed by Hamida and Goulet [13], state-space model (SSM) is
utilized for estimating the underlying deterioration process based on visual inspection data.
The state-space representation of the deterioration process can be described by two models,
namely the transition model and the observation model, each defined as in,

transition model︷ ︸︸ ︷
xt = Axt−1 +wt, wt : W ∼ N (w; 0,Qt)︸ ︷︷ ︸

process errors

, (1)

observation model︷ ︸︸ ︷
yt = Cxt + vt , vt : V ∼ N (v; 0, σ2V (Ii))︸ ︷︷ ︸

observation errors

. (2)
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The deterioration state at time t is defined by xt : X ∼ N (x,µt,Σt), A is the state
transition matrix, wt is the process error with Qt representing the error covariance matrix.
The transition model utilized is a discretized time-continuous kinematic model [3] which
describes the condition xt, the speed ẋt and acceleration ẍt. In Equation 2, yt represents
the observation, C is the observation matrix and vt : V ∼ N (v; 0, σ2V (Ii)) is the observation
error with σV (Ii) being the standard deviation of the error associated with each inspector
Ii ∈ I performing the inspections. In this study, the estimation of the hidden states is done
using the Kalman filter (KF) [19] expressed in the short form as,

(µt|t,Σt|t,Lt) = Kalman filter(µt−1|t−1,Σt−1|t−1,yt,At,Qt,Ct,Rt), (3)

where µt|t ≡ E[Xt|y1:t] is the posterior expected value and Σt|t ≡ cov[Xt|y1:t] is the posterior
covariance at time t, given observations y1:t. The log-likelihood for each observation in yt
is represented by Lt. In addition to the KF, the Kalman smoother (KS) [29] is utilized to
improve the KF estimates retrospectively based on information from the entire time series.
Appendix 3 provides details about the equations of KF and KS.
The health condition of a structural element, when no interventions are applied, has two
characteristics: 1. monotonically decreasing, 2. changes are occurring within a predefined
range of values. In order to accommodate the aforementioned properties, modifications
are applied on the inspection data and the state-space model [13]. These modifications
include performing space transformation on the inspection data using a transformation
function. Performing space transformation allows the model’s predictions and forecasts to
be restricted within the range of feasible values, in addition, it allows the uncertainty to be
state-dependent. The second modification is to impose monotonicity by ensuring the speed
estimates are always in the negative domain. This is done by using the PDF truncation
method proposed by Simon and Simon [30].

2.2 Kernel Regression (KR)

Kernel methods are well-known and frequently used for pattern detection and discrimination
problems [4]. Kernel regression relies on a kernel function that provides information about
the similarity between pairs of covariates. In this context, the purpose of employing KR is
to incorporate information from the structural attributes z in the deterioration analysis of
structural elements. KR is utilized to estimate the initial deterioration speed ẋj0,p associated

with each structural element ejp. This estimation is based on the Nadaraya-Watson model
[25] described by,

ẋj0,p = (ajp)
ᵀẋz + w0 : W0 ∼ N (w0; 0, σ2w0

), (4)

with the vector ajp obtained by,

ajp =
k
(
zj ,Zc(m), `

)∑M
m=1 k

(
zj ,Zc(m), `

) , m = 1, . . . , M, (5)
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where zj is a vector of Q covariates associated with the j-th bridge and Zc is a matrix
that encodes a Q-dimensional grid of reference points. The Q-dimensional grid is obtained
from discretizing the range of each covariate with an equal number of M reference points,
such that Zc =

[
z1c . . . zQc

]
∈ RMQ×Q. The function k(.) is a multivariate kernel function

k : RQ → R representing the multiplicative kernel,

k
(
zj ,Zc(m), `

)
= k

(
z1j − z1c(m)

`1

)
· . . . · k

(
zQj − zQc(m)

`Q

)
, m = 1, . . . , M. (6)

where k(.) is the univariate kernel function and ` = [`1 . . . `Q] represents the bandwidth
parameter associated with each covariate. Estimating the ` parameters as well as the noise
parameter σw0 is done using the parameter estimation framework described in Section 2.4.
An example shown in Figure 1, illustrates the relation between the reference points Zc, the
covariates zj ∈ Z, and the true response ẋ0. In this graph, the true relation between the
covariates z1, z2 and the response ẋ0 is illustrated by the surface on top, while the reference
points are represented by a 2D grid, which is defined by z1c , z2c and the state ẋz represented
by the expected value µ̇z.
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2-Dimensional Grid

(z1c , z
2
c , µ̇z)

Figure 1: Example of the relation between covariates z1, z2 and true response ẋ0, along with
2D grid defined by MQ = 62 reference points with coordinates of z1c , z2c and ẋz represented
by the expected value µ̇z.

Estimating the hidden states ẋz, such that each ẋz matches or approaches the true response
ẋ0 associated with (z1c , z

2
c ), is done using the recursive framework detailed in Section 2.4.1.

2.3 Hybrid Deterioration Model SSM-KR

The full framework for estimating the deterioration state xj
t,p over time is illustrated in

Figure 2. For any structural element ejp in bridge bj ∈ B, the inspection data ỹjt,p and the
structural attributes zj are considered in the analyses. The structural attributes zj are
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utilized in the KR model to obtain an initial estimate for the deterioration speed ẋj0,p, while

the inspection data are transformed from the bounded space ỹjt,p ∈ [l, u] to the unbounded

space yjt,p ∈ R using the transformation function detailed in [13]. Furthermore, the expected

initial deterioration condition is considered as µj0,p = yj1,p with the variance σj0,p
2 = σ20

and the expected initial acceleration is µ̈j0,p = 0 with the variance σ̈j0,p
2 = σ̈20. Following

the initialization step, the Kalman filter is utilized for propagating the initial state xj
0,p

forward in time through the prediction step and the update step up to time T . Similarly,
the Kalman smoother is applied to refine the KF estimates from t = T − 1 to t = 0. At
each time step t in KF and KS, the state estimate is examined with the following constraint
µ̇jt,p + 2σ̇jt,p ≤ 0. The aforementioned constraint ensures the state estimate does not allow
the structural element health to improve over time. If the constraint is violated, the PDF
truncation method is applied [13, 30]. The outcome of the SSM-KR framework is denoted

Start

bj ∈ B

ejp ∈ bj

ỹjt,p

µj
t|T,p,Σ

j
t|T,p

Kalman SmootherKalman Filter

Log. Likelihood

µ̇+ 2σẋ > 0

PDF Truncation

µ̃j
t|T,p, Σ̃

j
t|T,p

End

zj

yjt,p = g(ỹjt,p)ẋj0,p

Figure 2: SSM-KR framework for estimating the deterioration state of structural element
ejp from time t to time T .

by µ̃j
t|T,p ∈ [l, u] which represents the smoothed expected values for the deterioration state

and Σ̃j
t|T,p representing the smoothed variances at each time step t.

6



Hamida, Z. and Goulet, J-A. (Preprint 2020). Network-Scale Deterioration Modelling of
Bridges Based on Visual Inspections and Structural Attributes. Structural Safety.

2.4 Model Parameters & Estimation Framework

In addition to the SSM model parameters [13], the SSM-KR model parameters include
the kernel bandwidth parameters ` and the kernel process error σw0 . The SSM-KR model
parameters are grouped in the set,

θ =

{
σV (I1:I)︸ ︷︷ ︸

Inspectors Std.

,

Process error︷︸︸︷
σW , n︸︷︷︸
Transform. Param.

,

Initial state︷ ︸︸ ︷
σ0, σ̈0, p1, p2, σw0︸︷︷︸

KR process error

,

Kernel bandwidth︷︸︸︷
`

}
, (7)

where σV (I1:I) refers to the standard deviations associated with each inspector Ii ∈ I,
σw is the kinematic model process noise, n is the transformation function parameter and
{σ0, σ̈0, p1, p2} are the parameters related to the covariance of the initial state Σj

0,p =

diag
[
σ20 σ̇

2
0 σ̈

2
0

]
with σ̇20 being defined by the following linear function,

σ̇20 = p21(u− µ̃1) + p22, (8)

whereby µ̃1 is the expected value of the condition at t = 1, which is initially considered
µ̃1 = ỹ1, and is updated later with the smoothed expected value as µ̃1 = µ̃1|T [13]. All
model parameters in Equation 7 are estimated using a Maximum Likelihood Estimate (MLE)
which is defined by the network-scale log-likelihood as,

L(θ) =

B∑
j=1

Ej∑
p=1

Tp∑
t=1

ln f(yjt,p|yj1:t−1,p,θ), (9)

The parameters estimation procedure can be formulated as an optimization problem with
the following constraints,

θ∗ = arg max
θ

L(θ),

subject to: σw, σw0 , σ0, σ̈0, p1, p2, ` > 0,

σV (Ii) > 0, ∀Ii ∈ I,
n ∈ {1, 2, 3, 4, 5}.

(10)

The optimization problem above is solved by using a gradient-based optimization framework
for all parameters θ which is detailed in Section 2.4.2. In order to ensure that the
deterioration model is not overfitting, the database is split into a training, validation, and
testing set. The split of the data is done randomly and bridge-wise such that the structural
elements of one bridge can not exist in the training set and the validation/testing set at the
same time.
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2.4.1 Recursive Estimation for the Deterioration Speed

The estimation of the hidden states ẋz is done recursively by relying on the Kalman
smoother estimates. At the beginning, ẋz is initialized with an expected value µ̇z=0 and a
variance Σ̇z = diag(4) so that it represents a weakly informative prior. Estimating ẋz is
done based on the structural elements in the training set as in,

Jz = Σ̇zA
ᵀ
κΣ̇
−1
0|z,

µ̇z|T = µ̇z + Jz(µ̇0|T − µ̇0|z),

Σ̇z|T = Σ̇z + Jz(Σ̇0|T − Σ̇0|z)Jᵀ
z ,

(11)

where Aκ is an array of vectors ajp as in Aκ =
[
a11 · · ·ajp

]ᵀ
, µ̇0|z and Σ̇0|z are the expected

value and the covariance matrix for the speed at time t = 0, as predicted by Equation 4, for
all structural elements. The expected value vector µ̇0|T and the covariance matrix Σ̇0|T
represent the SSM smoothed estimates for the deterioration speed at time t = 0 and for all
structural elements. At the beginning, the SSM estimation of the deterioration speed is
based on the initial values µ̇j0,p = 0 and σ̇j0,p

2 = σ̇20. After each update of ẋz, the expected

value µ̇j0,p of the SSM is updated by Equation 4 with µ̇j0,p = µ̇j0,p|z, while the KR variance

is reinitialized with Σz = diag(4). The SSM variance σ̇j0,p
2 is not updated because the KR

model has a large variance initially which affects the SSM model performance negatively.
The update processes in Equation 11 and in the SSM prior are repeated recursively until
the MLE estimate of the validation set is no longer improving. Thereafter, the KR model is
utilized in providing the full prior estimate of the speed ẋj0,p for any structural element ejp.

2.4.2 Parameters & Hidden State Estimation Framework

The gradient algorithm employed in this framework is the Newton-Raphson algorithm
[11]. The estimation framework starts with optimizing the initial set of parameters θs =
{σw, σV , σx0 , σẍ0 , p1, p2}, where σV is the observation uncertainty parameter common for all
inspectors σV (I1:I) = σV . Following this step, the optimization framework updates the
inspectors parameters by iteratively optimizing each parameter σV (Ii), while keeping the
rest of model parameters θ fixed. The convergence for σV (Ii) parameters is determined by
either having the difference in L (validation set) less than the tolerance ε, or if the stall
limit is reached. The stall is the number of iterations with no significant improvements
in the objective function. Upon the convergence of σV (Ii), the model parameters in
θm = {σw, σx0 , σẍ0 , p1, p2} ⊂ θ are updated by the optimization algorithm. Thereafter,
the recursive estimation for ẋz is carried out using the framework presented in Section
2.4.1. The initial estimation of ẋz is done based on the initial KR model parameters
θκ = {σw0 , `} ⊂ θ. Following the optimization of θκ, the state ẋz is refined in accordance
with the new KR parameters. The estimation procedure for the inspectors’ parameters, the
parameters in {θm,θκ} and the state ẋz is repeated recursively until the global convergence
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criteria is met. Finally, the parameter n ∈ {1, 2, 3, 4, 5} is identified by repeating the full
optimization procedure for each value of n [13]. The pseudo code which illustrate the details
of the aforementioned framework is shown Appendix 1.

3 Case Studies

This section presents the case studies that are considered in demonstrating the SSM-KR
model performance.

3.1 Visual Inspection Data

The database for the real inspection data is taken from the network of B ≈ 10000 bridges
located in the province of Quebec, Canada. The deterioration state of any structural
element ejp is represented by 4 damage severity categories [22]. Those categories are:
A: Nothing to little, B: Medium, C: Important and D: Very Important. The inspector
have to assign the percentage of the structural element area under each category, such
that 0% ≤ ya, yb, yc, yd ≤ 100% and the sum ya + yb + yc + yd = 100%. For example,
ya = 80%, yb = 10%, yc = 10%, yd = 0% refers to 80% of the structural element area has
no damage, 10% has medium damage, 10% has important damage and no very important
damages. The aforementioned representation of the deterioration state can be aggregated
into a single metric [13] as in,

ỹ = ω1ya + ω2yb + ω3yc + ω4yd, (12)

with ω1:4 represent the utilities defined as: ω1 = 100, ω2 = 75, ω3 = 50, ω4 = 25, and
ỹ represents the aggregated observation [13]. Hence, the deterioration condition of any
structural element is a continuous numerical value within the range ỹ ∈ [25, 100]. For
example, a prefect state (ya = 100%, yb = 0%, yc = 0%, yd = 0%) is equivalent to ỹ = 100
and a very damaged state (ya = 0%, yb = 0%, yc = 0%, yd = 100%) is equivalent to ỹ = 25.

3.2 Synthetic Visual Inspection Data

The main advantage of performing analyses with synthetic data is that the true deterioration
state is known, which allows verifying the deterioration model performance. The generated
synthetic dataset resembles quantitatively and qualitatively the real database of visual
inspections. The true deterioration state for each structural element is generated based
on the transition model in Equation 1, while the observations are generated based on the
observation model in Equation 2. The standard deviation associated with each inspector
Ii is generated based on a Uniform distribution as in σV (Ii) ∼ U(1, 6), and the standard
deviation for the process error of the kinematic model is σw = 5× 10−3. The rest of the
qualitative characteristics of the deterioration process, such as the deterioration condition
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and speed thresholds, are adopted from the criteria defined in Hamida and Goulet [13].
Quantitatively, the deterioration of each synthetic structural element is represented by
a continuous numerical value with ỹ ∈ [25, 100]. The number of inspections per element
varies from 3 to 5 inspections for the majority of elements with few elements having 6 to 8
inspections. The average service life of the synthetic structural element is assumed to be 60
years. In order to generate a structural attribute for the synthetic dataset, it is assumed
that the true deterioration speed exhibit the following relation with zj ,

zj = log(|ẋj0|) + w0 : W0 ∼ N (w0; 0, 0.12), (13)

Generating the synthetic attribute zj allows verifying the performance of the recursive
estimation framework presented in Section 2.4.1.

4 Deterioration Analyses with SSM-KR

This section presents the analyses performed using the SSM-KR framework on synthetic
and real inspection datasets.

4.1 Model Verification Using Synthetic Data

The synthetic training dataset consists of E = 16500 structural elements with a total of
I = 223 inspectors providing the observations in each time-series. The synthetic structural
attribute zj associated with each structural element is illustrated in the histogram shown in
Figure 3, where it can be noticed that the distribution of z values has a long tail with the
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Figure 3: Histogram of synthetic structural attribute z.

majority of the values concentrated within the range [−2,−0.5]. Factoring the information
from the structural attribute z in the deterioration analyses is done through the KR model.
The kernel function utilized in this case is the radial basis function (RBF) [7]. The total
number of reference points zc is M = 20, which is also equivalent to the total number of
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hidden states in ẋz. The estimation for ẋz in Equation 4 is done based on the recursive
framework presented in Section 2.4.1. Figure 4 illustrates the initial expected value µ̇z and
the updated state ẋz following convergence after 3 iterations in the recursive framework.
In Figure 4, it can be noticed that the ẋz estimates are deviating from the true curve when
z < −2. This is because the range of values z ∈ [−8,−2] is associated with the tail of
the distribution (Figure 3), where few or no data is available. An example for the effect
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Figure 4: Comparison between the updated estimates µ̇z (iteration #3) at each reference
point zc ∈ z and the true relation between the synthetic structural attribute z and the
deterioration speed ẋz.

of the state ẋz convergence on the KR model performance is presented in Figure 5. In
this example, it is shown that after each ẋz update, the expected value from KR µ̇j0,p is

approching the true speed ẋj0,p.
In order to assess the network-scale improvement in estimating the initial deterioration
speed, a comparison between the error histogram of the SSM-KR model and the SSM
model is shown in Figure 6. The errors are determined by the difference between the true
initial speed and the smoothed estimate of the initial speed from each model. From the
two histograms in Figure 6, it is noticed that the new formulation reduces the bias in the
initial speed estimate. The parameter estimation for the SSM-KR model is done using
the gradient-based optimization framework detailed in Section 2.4.2. The estimated model
parameters are shown in Figure 7 for the inspectors parameters and Table 1 for the rest of
model parameters. In Figure 7, the alignment of the scatter with the diagonal verifies the
capacity of the optimization framework in estimating the inspectors’ parameters, where the
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(b) Iteration #2 SSM-KR.
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(c) Iteration #3 SSM-KR.

Figure 5: Recursive estimation of the state ẋj0,p illustrated by the probability density
function (PDF) with the true speed represented by the vertical line and the SSM model
represented by a dashed line.
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Figure 6: Comparison between the SSM-KR model errors histogram (right) and the SSM
model errors histogram (left), with the errors determined by the difference between the true
initial speed and the smoothed estimate of the initial speed.

Table 1: Estimation results of model parameters for synthetic data.

σw σx0 σV σẍ0 p1 p2 n σw0 `RBF

3.787× 10−3 1.001 3.001 0.0498 0.0499 0.1488 4 0.1238 0.1933

dashed line represents the initial estimate σV for all the inspectors’ parameters σV (Ii).
Example of time-series analyses using the SSM-KR model is shown in Figures 8 and 9.
In this example, both SSM-KR and SSM (without factoring the structural attribute) are
utilized in producing the deterioration estimates of the condition and the speed. From
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Figure 7: Estimation results for synthetic inspectors parameters σV (Ii) (total: 223 inspec-
tors) with dashed line referring to the initial estimate for all σV (Ii) parameters.

Figure 8, the condition estimates of SSM-KR and SSM are overlapping initially, however,
these estimates starts to diverge over time due to the difference in the initial speed estimate
of each model. It can be noticed in this example that the true state represented by a
dashed line is within the confidence interval of the SSM-KR model. The speed estimate
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Figure 8: Deterioration condition estimate for synthetic structural element e1911 , with the
circle marker representing the SSM-KR estimates, the square marker representing SSM
estimates and the true condition represented by a dashed line.

associated with the aforementioned example is shown in Figure 9. It can be noticed that
the overall estimate for the speed in the SSM-KR model is better than SSM given the true
deterioration speed.
In order to examine the network-scale improvements, Figure 10 illustrates the average
error in forecast time for the condition and the speed based on the SSM-KR model and
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the SSM model. From Figure 10a, it can be noticed that the average error in SSM-KR
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Figure 10: Average error comparison between SSM-KR & SSM estimates for the condition
and speed in synthetic data.

condition estimate is near zero throughout the time-window of analyses, while the average
error in SSM is diverging monotonically away from zero. From this, it can be concluded
that factoring information about the structural attribute has reduced the overall bias
in estimating the deterioration condition. On the other hand, in Figure 10b, the speed
estimates in both models are changing monotonically with the SSM model speed estimates
diverging similarly to the SSM condition estimates.
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4.2 Model Validation with Real Data

The validation analyses are performed on the structural element category Beam. A struc-
tural element is considered in the deterioration analyses if it has 3 or more inspections
without interventions [13]. The total number of beam elements that are considered in the
deterioration analyses is: E = 16689 elements taken from B = 2133 bridges. The number
of inspectors involved in this dataset is I = 223. The inspections dataset is divided into
a training set with Etr = 13639 structural elements from Btr = 1915 bridges, validation
set with Ev = 2034 structural elements from Bv = 142 bridges and a testing set having
Et = 1016 structural elements from Bt = 76 bridges.
The structural attributes zj considered in the analyses are: z1j the structure’s material,

z2j the age of the structure and z3j the structure’s location represented by the latitude. In
order to determine the relevance of each attribute to the response, the preliminary analysis
involved a larger number of structural attributes. The selection of attributes is based on the
kernel bandwidth parameters in `, which are estimated based on the inspection data and
using the MLE approach [24, 34]. If an estimated kernel bandwidth ` converges to a large
value relative to the range of the covariate, then the inverse of ` will result in the covariate
z being almost independent of the response [34]. The histogram for each of the selected
attributes is shown in Figure 11. It should be noted that the age of the bridge is determined
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Figure 11: Frequency of each structural attribute from real data

by deducting the date of the first inspection point from the construction date of the bridge.
The multivariate KR analyses involves different types of kernel functions. The selection of
the kernel function is done based on the type of data (i.e. categorical or continuous) and
the MLE estimate. In this case study, the structure’s material is assumed to be unordered
categorical data, which can be modelled using the Aitchison and Aitken [2] (AAK) kernel
function. The kernel bandwidth in the AAK function is bounded by 0 ≤ ` ≤ C−1

C
, where C

is the number of categories [32]. The structure’s age and latitude are analyzed using the
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Matérn 12 (M12) kernel function. In addition to the structural attributes, the condition of
the structural element at the first inspection point is also included as a covariate in the
multivariate KR. The kernel function utilized for the condition is the Matérn 52 (M52).
The equations for each of the aforementioned kernel functions are available in Appendix
2. The estimated SSM-KR model parameters are shown in Table 2, while the inspectors
parameters are shown in Figure 12.

Table 2: Estimation results of SSM-KR parameters for real data.

σw σx0 σV σẍ0 p1 p2 n

5.451× 10−3 1.025 2.220 0.0499 0.1238 0.1933 4

σw0 `AAK `M12 `M12 `M52

0.1292 0.0166 12.6064 1.4309 7.2166
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Figure 12: Histogram for the estimated parameters σV (Ii) of real inspectors (total: 223
inspectors) with the dashed line referring to the initial estimate for all σV (Ii).

In order to demonstrate the performance of SSM-KR in the real case, two examples are
considered from the test set. The first example is for the structural element e24410 from bridge
b244. This bridge was z2244 = 61 years of age at the time of the first inspection, it is located
at a latitude z3244 ≈ 48, and the material of the beam elements is z1244 = steel.
The deterioration analyses for the structural element e24410 from b244 are shown in Figures
13 and 14. Figure 13 illustrates a comparison between the condition estimates of SSM-KR
represented by the circle marker and the SSM represented by the square marker. It can be
noticed that SSM-KR estimates adapt in a better way to the recorded observation compared
to the SSM estimates. Furthermore, the same comparison is performed for the deterioration
speed estimates from each model. From Figure 14, throughout the prediction time, the
speed estimates of SSM-KR shows a consistent progression in comparison to the SSM speed
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Figure 13: Deterioration condition estimate for real structural element e24410 with the circle
marker representing the SSM-KR estimates and the square marker representing SSM
estimates.
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Figure 14: Deterioration speed of structural element e24410 with the circle marker representing
the SSM-KR estimates and the square marker representing SSM estimates.

estimates.
The second example is taken from a bridge b1599 located at z31599 ≈ 46 with z21599 = 65
years of age at the time of the first inspection. The structural element e15991 material is
z11599 = concrete. The inspection data ỹ1599t,1 exhibit a higher variability compared to the first
example as shown in Figure 15. Similarly, the SSM-KR estimates show a better adaption
to the inspection data in comparison with the SSM model estimates. The deterioration
speed estimate associated with e15991 is shown in Figure 16. The steady estimates of the
speed in SSM-KR imply a coherent prior estimate, in comparison to the steep changes in
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Figure 15: Deterioration condition estimate for real structural element e15991 with the
circle marker representing the SSM-KR estimates and the square marker representing SSM
estimates.

the SSM speed estimates.
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Figure 16: Deterioration speed of structural element e15991 with the circle marker representing
the SSM-KR estimates and the square marker representing SSM estimates.

The network-scale improvement in the real case is quantified in Table 3, where the log-
likelihood associated with the training, the validation and the testing sets are reported.
From Table 3, SSM-KR shows a better log-likelihood in each dataset compared to the SSM
model.
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Table 3: Comparison between SSM-KR and SSM based on the log-likelihood in the training,
validation and testing sets

Model Training Validation Testing

SSM -121175 -17187 -8822
SSM-KR -116223 -16822 -8482

5 Conclusion

In this study, a hybrid framework based on state-space models and kernel regression is
proposed for modeling the deterioration behaviour of bridge-network. The SSM-KR model
relies on visual inspection data and takes into account the structural attributes of each
bridge. The role of KR is to model patterns between the deterioration speed and the
structural attributes. The performance of SSM-KR is verified with synthetic data and
benchmarked against a SSM model that does not account for structural attributes. The
results have shown that the overall bias in the condition estimates is lower for the SSM-KR,
compared to the SSM, as demonstrated by the average error in the forecast time. In addition,
the SSM-KR does not show any significant bias toward overestimating or underestimating
the initial speed. The analyses also included a validation with real inspections database.
Two test cases are considered to demonstrate the model performance. In both cases, the
SSM-KR showed a better adaption to the inspection data in comparison with the SSM
model. Furthermore, the SSM-KR deterioration speed estimates have a better consistency
throughout the analyses time-window. The SSM and SSM-KR are also compared based
on the log-likelihood in the training, validation, and testing sets. The SSM-KR has an
overall better log-likelihood in each subset of data which emphasizes the importance of
factoring structural attributes. Although SSM-KR has a better performance, the model
can be computationally demanding. When the number of structural attributes increases
Q > 5, the number of reference points required in the KR model becomes large. Nonetheless,
overcoming such problem is possible using dimensionality reduction approaches, or by using
parametric regression methods. Overall, factoring structural attributes has improved the
deterioration model predictive capacity, especially when few inspection points are available,
which enables further future analyses such as quantifying the effect of interventions.
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[28] Goran Puž, Jure Radić, and Irina Stipanovi Oslaković. A new model for stochastic analysis of
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Appendix 1: Pseudo Code

Algorithm 1 Parameter Estimation Framework

Require: θs0: Initial SSM parameters
Require: θκ0 , ẋz: Initial KR parameters and state respectivly

1: L1 ← −1010 (Initial log-likelihood), ε← 10−3 (Convergence tolerance)
2: s1 ← 1, s2 ← 1 (Initial stall),
3: ν1 ← 300, ν2 ← 1 (Iteration limit per parameter)
4: θs1 ← NewtonRaphson(L(θs),θs0, ν1)
5: σV (I1:I) = σV , σV ∈ θs1
6: L2 ← L(θs1)
7:

8: for n := 1 to 5 do
9: while |Lj+1 − Lj | ≤ ε or s1 ≥ ρ1 do

10: while |Lj+1 − Lj | ≤ ε or s2 ≥ ρ2 do
11: Lj ← Lj+1

12: for i := 1 to I do
13: if j = 1 then
14: σV (Ii)← NewtonRaphson(L(σV (Ii)),θj , ν2)
15: else σV (Ii)← NewtonRaphson(L(σV (Ii), ẋz),θj , ν2)

16: Lj+1 ← L(σV (I1:I))
17: if |(Lj+1 − Lj)/Lj | ≤ 0.05 then
18: s2 = s2 + 1

19: if j = 1 then
20: θmj+1 ← NewtonRaphson(L(θmj ),θj , ν1)
21: else θmj+1 ← NewtonRaphson(L(θmj , ẋz),θj , ν1)

22: [θκj+1, ẋz]← NewtonRaphson(L(θκj ,RecursiveEstimation(ẋz)),θj , ν1)
23: Lj ← L(θj+1)
24: s1 = s1 + 1, j = j + 1

return θj+1 and ẋz (Resulting parameters)

Appendix 2: Kernel Functions

- Aitchison and Aitken kernel function:

k(AAK)(zj , zc)=

{
1− `, zj = zc,
`

C−1 , zj 6= zc.
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- Radial basis kernel function:

k(RBF)(zj , zc)= exp
(
− (zj−zc)2

2`2

)
.

- Matérn 12 kernel function:

k(M12)(zj , zc)= exp
(
− (zj−zc)

`

)
.

- Matérn 52 kernel function:

k(M52)(zj , zc)=
(

1 +
√
5(zj−zc)

` + 5
3
(zj−zc)2

`2

)
exp

(
−
√
5(zj−zc)

`

)
.
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