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Abstract

Visual inspections of large networks of bridges yield millions of data points scattered across
thousands of structural elements. Alongside visual inspections, structural attributes such as age,
location and traffic load provide contextual information about the deterioration patterns in the
network. Leveraging this network-scale data for modeling deterioration is challenging, especially
when each structural element has few inspections over a long period of time. Moreover, as new
bridge information and inspections are added each year, it is strictly important for deterioration
models to be scalable. This paper addresses these challenges by proposing a scalable probabilistic
approach for modeling deterioration of large networks of bridges. The new framework consists of
state-space models (SSM) for modeling the deterioration based on visual inspections and a Bayesian
neural network (BNN) that factors-in information about structural attributes. The role of the BNN
model is to learn the mapping between the initial distribution of the deterioration speed and the
structural attributes of each bridge. The new framework is shown to be computationally efficient
and can seamlessly incorporate a large number of structural attributes, which alleviates the need for
feature selection. In addition, the proposed framework incorporates a new approach for learning the
inspectors’ uncertainty parameters which is shown to provide better generalization. The experiments
in this study are based on real data from the network of bridges in the province of Quebec, Canada.

1 Introduction

Deterioration of transportation infrastructure due to aging, usage, and environmental exposure is
an issue faced by most industrialized countries [4]. Addressing this issue can be done by making
timely maintenance decisions, which primarily rely on information from structural health monitoring
systems [16]. The predominant approach to monitoring the health of bridges is based on periodic
visual inspections that assess their structural health at the structural element level [1, 20, 3]. Even
though inspections of bridge networks produce millions of inspection data points, they are spread over
thousands of structural components. Effectively, this implies that many structural elements have few
inspections over long periods of time.

The scarcity of inspection data for each structural element is further compounded by the subjective
nature of inspections, which results in highly variable observations [11, 1, 24, 23]. For instance, two
inspectors may assign different condition ratings to the same structural element depending on their
level of experience [21]. Despite these challenges, visual inspection-based deterioration models remain
to be an essential component in decision-making and maintenance planning [22, 15]. Notable examples
include discrete Markov models [25, 2, 33, 35], approaches based on variational inference [5], regression
methods [18, 29, 31], and state-space models (SSM) [11]. Among the existing frameworks, the SSM
model stands out as it provides modelling advantages such as, quantifying the uncertainty associated
with each inspector and the probabilistic estimation of the deterioration speed [21, 13]. Nonetheless,
the SSM model long-term predictive capacity can be limited due to relying only on visual inspection
data [11]. Other approaches in the literature ventured to reduce the reliance on visual inspections by
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integrating physical models like an analytical carbonation-induced corrosion model [34] or an empirical
chloride-induced corrosion model [8]; however, they require extensive knowledge about each structure
(e.g., information from original design documents, various tests and measurements, etc.), thus limiting
their scalability.

Other extensions of deterioration models includes incorporating contextual information such as
material, age and location alongside visual inspection data [18, 29, 31, 27]. Information about the
aforementioned structural attributes can be used in predicting or refining the estimates of the health
condition [18, 12]. Existing examples include the coupling of SSM framework [11] with kernel regression
(KR) to improve the estimated deterioration speed and refine the deterioration model forecast. While
this hybrid model maintains the advantages attained from using the SSM framework, it suffers from
computational inefficiency and limited capacity in incorporating structural attributes [12]. Primarily,
the SSM-KR framework only allows for up to six structural attributes and takes significant computing
resources and time to train [12, 14].

This paper proposes a hybrid deterioration model that couples the SSM with a Bayesian neural
network (BNN) to effectively incorporate the structural attributes in the deterioration analyses. This
new hybrid model provides direct solutions to the highlighted limitations in the SSM-KR framework
by, 1) being computationally efficient and significantly reduce the compute time for training, and
2) being scalable which enables considering all available information about the structural attributes.
Furthermore, the parameters of the proposed deterioration model are estimated using a new estimation
framework, which reduces the total number of model parameters and is shown to improve the model
predictive capacity when evaluated on an independent test set. The numerical analyses in this study
includes comparing the performance of the SSM-BNN model against the existing SSM-KR model. The
validation analyses are performed using data from the network of bridges in the Quebec province,
Canada.

2 Problem Context

A network consists of a set of bridges {B1,B2, . . . ,BB} with each bridge Bj encompassing multiple

structural elements ejp. Each structural elements can be characterized by its health state and its
structural attributes. The health state in this context is evaluated over time using visual inspections,
while the structural attributes encompass attributes directly related to the element (e.g., material)
and attributes that are related to the bridge (e.g., bridge location). Figure 1 provides an illustrative
example about the bridge data considered in this study.

Figure 1, shows that despite variations in the health condition among the structural elements, the
deterioration speed patterns can be similar between structures sharing similar structural attributes.
The main objective in this study is to effectively learn the relationship between structural attributes
and the deterioration speed across multiple bridges, in order to improve the predictive capacity of
deterioration models based on visual inspections.

3 Background

This section provides the theoretical background for the existing methods related to the proposed
probabilistic deterioration model.

3.1 State-space Models

State-space models (SSM) describe the behavior of a system over time using probabilistic transition and
observation models [9]. They have been shown to be effective at modeling infrastructure deterioration on
a network-scale [11], where the transition model describes the physical deterioration process following,

transition model︷ ︸︸ ︷
xt = Axt−1 +wt,

process errors︷ ︸︸ ︷
wt : W ∼ N (w; 0,Q) . (1)
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1

Bridge B2 Beam e2
1

Bridge Bj Beam ej
1

Age: 5, Material: Concrete, Latitude: 52.5
# Lanes: 2, Avg. Daily Traffic: 300, Trucks %: 20

Age: 30, Material: Concrete, Latitude: 45.4
# Lanes: 4, Avg. Daily Traffic: 900, Trucks %: 5

Age: 36, Material: Concrete, Latitude: 45.7
# Lanes: 4, Avg. Daily Traffic: 950, Trucks %: 7

Inspection

Figure 1: Illustrative example for bridge data which shows structural attributes associated with
each structural element (left) alongside the visual inspection data (right, blue points). The example
demonstrates that while the deterioration condition may vary among structural elements, the patterns
of deterioration speed can be similar, especially for structural elements sharing similar structural
attributes. Structural elements with similarities are highlighted with a dashed-line rectangle.

Here, xt = [xt ẋt ẍt]
ᵀ is the hidden state vector at time t containing the condition xt, speed ẋt, and

acceleration ẍt of a structural element, A is the state transition matrix, wt is the process error, and Q
is the process error covariance matrix. The state transition matrix and its associated process error
covariance matrix are derived assuming a constant-acceleration kinematic model,

A =

 1 ∆t ∆t2

2
0 1 ∆t
0 0 1

 , Q = σ2
W

 ∆t4

4
∆t3

2
∆t2

2
∆t3

2 ∆t2 ∆t
∆t2

2 ∆t 1

 , (2)

where ∆t is the time step between successive states and σ2
W is the variance of the process error [11].

The uncertainty of visual inspections are characterized by the observation model described by,

observation model︷ ︸︸ ︷
yt = Cxt + vt ,

observation errors︷ ︸︸ ︷
vt : V ∼ N (v;µV (i), σ2

V (i)), (3)

where yt represents the observation at time t, C = [1 0 0] is the observation matrix, and vt is the
observation error with µV (i) and σ2

V (i) representing the relative bias and variance of the i-th inspector
[21]. The deterioration state at each time step t is inferred using the Kalman filter (KF) [19] and
Rauch-Tung-Striebel (RTS) smoother [28], which are detailed in B. Using the KF to model deterioration
requires imposing two constraints on the state estimates to ensure the condition xt is monotonically
decreasing over time and to keep the model predictions within a predefined range of values [11]. The
first constraint is enforced at each time step by restricting the deterioration rate ẋt to be negative using
a probability density function (PDF) truncation method [30]. The second constraint is imposed using
space transformation which preserves the hidden states and observations within a predefined range of
health conditions [l, u]. Further details about the space transformation are provided in C. Although
the SSM framework can effectively model deterioration, it solely relies on the visual inspection data
without incorporating information about structural attributes [11].

3.2 State-Space Models with Kernel Regression

Augmenting the SSM framework with a kernel-based regression (KR) model enables taking into account
information about structural attributes. The purpose of KR is to include structural attributes z in
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the deterioration analyses to improve the prior for each element’s initial state x0 = [x0 ẋ0 ẍ0]ᵀ by
sharing information between structures. More precisely, KR predicts the deterioration speed ẋ0 based
on each element’s attributes that are defined for each bridge by a vector zj = [z1

j . . . z
Q
j ]

ᵀ. The KR
method involves discretizing each of the Q covariates’ domains with M reference points, which are then
permuted to form a grid of N ≡ MQ points denoted by G = [g1 . . . gN]

ᵀ ∈ RN×Q. Each i-th grid point in
G corresponds to a unique combination of the reference points and is associated with a deterioration
rate ẋi ∈ ẋz = [ẋ1 . . . ẋN]

ᵀ. KR estimates each element’s deterioration rate ẋ0 based on the proximity
of its attributes zj to different grid points using a weighted sum given by,

ẋ0 = aᵀẋz + w0, w0 : W0 ∼ N
(
0, σ2

W0

)
, (4)

where w0 is the process error and a = [a1 a2 . . . aN]
ᵀ is the vector of weights, which is obtained using a

multivariate kernel function k(·) following

ai =
k
(
zj ,G(i), `

)∑N
n=1 k

(
zj ,G(n), `

) , i = 1, . . . , N, (5)

where ` = [`1 . . . `Q]
ᵀ are the kernel bandwidths and G(i) is the i-th point on the grid. The kernel

function k : RQ → R is defined as a product of univariate kernels k(·) given by

k
(
zj ,G(i), `

)
= k

(
z1
j − g1

i

`1

)
· . . . · k

(
zQj − gQi
`Q

)
. (6)

The parameter estimation of the SSM-KR model is detailed in the work of Hamida and Goulet [12].
Although the use of KR can improve the predictive capacity of the deterioration state, the SSM-KR
model has limitations related to scalability and computationally efficiency. Namely, the KR model can
only incorporate a limited number of structural attributes as its covariates, and it requires significant
computational resources and training time. Additionally, the performance of KR is highly dependent
on the selection of its hyper-parameters, such as kernel types, which can be a lengthy process to identify
[12]. Overcoming the inherent limitations in the SSM-KR model is only possible by replacing KR with
a probabilistic regression approach that is compatible with SSM, scalable and computationally efficient.
Bayesian neural networks (BNN) offer such an alternative, as they provide a flexible framework for
probabilistic regression that aligns well with the aforementioned requirements.

4 Methodology

This section presents a new hybrid framework for modeling infrastructure deterioration based on
state-space models and a Bayesian neural network (BNN) trained via tractable approximate Gaussian
inference (TAGI).

4.1 Coupling Bayesian Neural Networks with State-space Models

In the proposed SSM-BNN model, the BNN component is used to enhance the SSM predictions by
learning the relation between the attributes of structural elements (age, location, etc.) and their
deterioration speed. This learned relation is used to define a better prior distribution for the initial
deterioration speed of each structural element. To illustrate this, Figure 2 shows an example of a fully-
trained SSM-BNN model providing the estimates for the deterioration state of a structural element ejp in
the bridge Bj . The estimation of the deterioration state starts with transforming the visual inspection

data ỹjt,p = [ỹj1,p . . . ỹ
j
T,p]

ᵀ ∈ [l, u] into an unbounded domain yjt,p = [yj1,p . . . y
j
T,p]

ᵀ ∈ (−∞,∞) using
the space transformation function o(·) detailed in C. Here, l represents the worst damage condition
and u represents the perfect condition. The transformed observations yjt,p are then passed to the SSM,
which relies on the Kalman filter (KF) to estimate the element’s deterioration state over time. The
KF starts with a guess about the element’s initial state and propagates this prior knowledge forward
in time using the transition model, generating predictions that are updated using the observations.
Defining the initial state of an element xj0,p = [xj0,p ẋ

j
0,p ẍ

j
0,p]

ᵀ is an important aspect that affects the
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quality of the KF predictions, since there are only few observations (or inspections) per element. While
it is possible to derive an estimate for the initial condition using the observation data, the deterioration
speed is not observable, hence it is challenging to define an initial deterioration speed for each structural
element [11]. The BNN model provides an estimate for the initial deterioration speed ẋj0,p ∼ N (µ̇z, σ̇z)
by recursively learning a mapping between the inferred deterioration speed values and the structural
attributes zjp of each structural element. Further details about the recursive learning procedure are
provided in the next section.

After defining the element’s initial state xj0,p, it is passed into the KF, together with the element’s

transformed observations yjt,p. The KF then predicts the deterioration state of the element over time

{xj0,p, . . . ,xjT,p}, where T denotes the time-horizon of the prediction. At each time step of the KF, the

deterioration speed ẋjt,p is ensured to be negative by requiring that µ̇jt,p+2σ̇jt,p ≤ 0 [11]. If this condition
is not satisfied, the deterioration speed constrained to the negative domain by truncating its PDF
[11, 30]. Following the completion of the KF, the RTS smoother is used to refine the KF state estimates.
The smoothed state estimates are then back-transformed to the original space {x̃j0,p, . . . , x̃jT,p} using

the inverse of the transformation function o−1(·) (see C).

ej
p ỹj

t,p yj
t,p SSM xj

t,p

o(·)

l u

x̃j
t,p

o−1(·)

zj
p

ẋj
0,p

BNN

−∞ ∞

−∞ 0

Figure 2: Overview of the procedure for estimating the deterioration state of the p-th element from the
j-th bridge, denoted by ejp, using the proposed SSM-BNN framework. The original visual inspections
of the element ỹjt,p are first transformed into an unbounded domain using the sigmoid function o(·),
yielding the transformed observations yjt,p. The BNN then uses the structural attributes of the element

zjp to define its initial deterioration rate ẋj0,p. The initial state xj0,p and the transformed observations yjt,p
are then passed into SSM to predict the element’s deterioration state over time xjt,p = [xjt,p ẋ

j
t,p ẍ

j
t,p]

ᵀ

for t ∈ {1, 2, . . . , T}, where T denotes the time-horizon of the prediction. These predicted states are
finally back-transformed to the original space using o−1(·), resulting in x̃jt,p = [x̃jt,p

˜̇xjt,p
˜̈xjt,p]

ᵀ.

4.2 Recursive Estimation of the BNN Parameters

The parameters of the BNN are learned using a recursive procedure due to the fact that the response
variable represented by the deterioration speed is not observed but rather is inferred. Figure 3
illustrates the full recursive estimation procedure. Initially, at iteration i = 0, the state vector for
each structural element is defined by xj0,p ∼ N (µj0,p,Σ

j
0,p), with the expected value relying mainly

on the observation yj1,p at time t = 1 such that, µj0,p =
[
yj1,p, 0, 0

]ᵀ
while the covariance is defined as

Σj
0,p = diag

(
(σj0,p)

2, (σ̇j0,p)
2, (σ̈0)2

)
. All the components in the covariance matrix correspond to model

parameters and their estimation is detailed in the next section. The initial state vector xj0,p of each
element is then passed into the SSM framework composed of the Kalman filter and smoother. The SSM

returns the smoothed estimates of the initial deterioration speed f(ẋj0,p|yj1:T,p) = N
(
µ̇j0|T,p, (σ̇

j
0|T,p)

2
)

that correspond to each structural element ejp. The smoothed initial speed estimates are thereafter
used as target variable in training a BNN model with the structural attributes zjp as input covariates.
Training the BNN model is done using tractable approximate Gaussian inference (TAGI) which is a
sampling-free and gradient-free approach to learn the model BNN model parameters [10].

Following the BNN training step, the BNN model is used to provide only the expected value for the

initial speed such that, µj0,p =
[
yj1,p, µ

j
z,p, 0

]ᵀ
, while the initial covariance matrix Σj

0,p remains the same.

This is done to avoid having initial variances of the deterioration speed that are too small during the
recursive learning procedure. The steps of obtaining the smoothed initial speed estimates (µ̇j0|T,p, σ̇

j
0|T,p)
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[xj
0,p ẋ

j
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j
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j
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end
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yesi = i+ 1
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Figure 3: The recursive process of estimating the BNN parameters θBNN. At i = 0, the initial states
[xj0,p ẋ

j
0,p ẍ

j
0,p]i are passed to the SSM to obtain the smoothed initial speeds (µ̇j0|T,p, σ̇

j
0|T,p)i. These are

then used to train the BNN, so that it learns to predict them based on the structural attributes zjp.
The SSM-BNN model then evaluates the log-likelihood of the validation set Li+1 and compares it to
the previous iteration Li. If there is an improvement, the BNN uses the structural attributes zjp to
define the priors for the initial deterioration speeds ẋj0,p, and the recursive loop is continues until no
further improvements in Li.

and re-training the BNN model are repeated until there is no improvement in the log-likelihood L of
the validation set.

4.3 Deterioration Model Parameters & Hyper-parameters

The parameters of the SSM-BNN model can be grouped in the set θ which includes, θ = {θV , σW ,θBNN,θ0}.
The set θV corresponds to the observation error parameters, where each inspector has a unique error
term defined by the expected value µVi and standard deviation σVi [21]. The parameter σW represents
the standard deviation of the process noise, and the parameters set θBNN corresponds to the weights and
biases of the BNN model. The set θ0 contains the parameters associated with the initial covariance
matrix Σj

0,p, which are adopted from a previous work by [11]. The parameters in θ0 include the variance

of the initial condition σ2
0, initial acceleration σ̈2

0, and {p1, p2} which define a linear relation between
the variance of the deterioration speed and the deterioration condition as in, σ̇2

0 = p2
1 (u− µ̃1) + p2

2.
The intuition of the linear model is to counteract the low number of observations in the time series by
incorporating an informative prior, so that the elements with a near perfect condition (u− µ̃1 ≈ 0) will
have a lower uncertainty about their deterioration speed compared to worn out elements, where µ̃1

corresponds to the expected value of the condition at time t = 1 [11].
The hyper-parameters of the SSM-BNN include the space transformation parameter n, which

governs the shape of the transformation function o(·) used to bound the hidden states and observations
[11], and the γ scaling factor which affects the variance of the deterioration speed, and is only applied
at the first iteration of the recursive estimation procedure described earlier. The scaling factor can be
determined empirically from the range [1, 10], and is multiplied by the parameter value p1 in order to
provide a broader prior for ẋj0,p, enabling the SSM model to have higher flexibility in updating ẋjt,p
during the initial stage of recursive estimation.

4.4 Estimation of the SSM-BNN Parameters

The computational efficiency of the BNN model enables formulating a new parameters estimation
scheme that offers better generalizability. Unlike the existing parameter estimation framework which
only allows learning the model parameters using data from one structural category at a time (e.g.,
beams only), the new parameters estimation framework enables learning model parameters while
taking into account information from all structural categories at once. This is especially important
when estimating the inspectors parameters, where in a single structural category (e.g., bridge deck) an
inspector may have few data points compared to other structural categories (e.g., beams).

Accordingly, the proposed parameter estimation framework updates the inspectors parameters θV

based on data from all structural categories, while the remaining model parameters are specific to
each structural category. The estimation procedure is divided into three stages: 1) estimation of the
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inspectors’ parameters θV = {µV1:I , σV1:I}, 2) estimation of the process noise σW along with the initial
covariance parameters θ0 = {σ0, σ̈0, p1, p2}, and 3) estimation of the BNN model parameters θBNN. In
each of the aforementioned stages, a maximum log-likelihood estimate (MLE) approach is utilized in
the parameter estimation [11], with the log-likelihood function defined as,

L(θ) =

B∑
j=1

Ej∑
p=1

Tp∑
t=1

ln f(yjt,p|yj1:t−1,p,θ), (7)

where B denotes the total number of bridges in the network, Ej denotes the number of structural
elements in the j-th bridge, and Tp denotes the number of inspections for the p-th element in the j-th
bridge. The full parameter estimation procedure is summarized in Algorithm 1.

Algorithm 1: A pseudocode for the new parameter estimation framework.

for n ∈ {1, 2, 3, 4, 5} do
for Cm ∈ {beams, slabs, columns, ...} do

optimize θ
(m)
0 , σ

(m)
W , σ

(m)
V using NR;

end
while ∆

∑
m L(m) ≥ 0.1% do

optimize θV = {µV1:I , σV1:I} using approximate Gaussian inference;
for Cm ∈ {beams, slabs, columns, ...} do

while ∆L(m) ≥ 0.1% do

optimize θ
(m)
0 , σ

(m)
W using NR;

optimize θ
(m)
BNN using recursive estimation

end

end

end

end

The parameter estimation starts by assigning a value to the hyper-parameter n which is an integer de-
fined in the range n ∈ {1, 2, 3, 4, 5} [11]. For each structural category Cm ∈ {beams, slabs, columns, ...},
a preliminary parameter estimation step is performed to learn the parameters σ

(m)
W ,θ

(m)
0 and σ

(m)
V

which represents to standard deviation of the observation error. Initially, all inspectors are assumed
to have the same observation error defined by Vi ∼ N (0, (σcV )2) [11]. Estimating the aforementioned
parameters is done using the Newton-Raphson (NR) gradient optimization algorithm while relying on
Equation 7.

Following this preliminary step, the observation error is further refined by quantifying the observation
error associated with each inspector defined in the set of parameters θI. The estimation of θV is
performed using the approximate Gaussian variance inference (AGVI), which is adopted from the work
of Blanche et al. [21]. The use of AGVI in this framework remains fundamentally the same, with
the sole distinction being the inclusion of inspector’s inspection data from all structural categories,
as opposed to a singular structural category. This modification allows for a unified set of inspectors’
uncertainty parameters across all structural categories; which is different from previous applications
where each structural category had a distinct set of inspector uncertainty parameters [14, 21]. Further
details about learning the inspectors uncertainties and the AGVI approach are provided in D.

Following the estimation of θV , the BNN model parameters θBNN are estimated using the recursive

estimation approach described earlier. The sequential estimation of θV , θ0, σ
(m)
W , and θBNN is repeated

until the improvement in the overall validation-set log-likelihood is negligible (e.g., ≤ 0.1%). It should
be noted that the validation set is an independent set, where the structural elements of the same
structure are not simultaneously present in the training set and the test set.

7



Fakhri, S.A.K., Hamida, Z. and Goulet, J-A. (Preprint 2024). Scalable Probabilistic Deterioration
Model based on Visual Inspections and Structural Attributes from Large Networks of Bridges.

5 Case studies

This section presents case studies highlighting the effectiveness of the parameter estimation and the
performance of the proposed SSM-BNN model. The case studies rely on real data from the network of
bridges in Quebec, Canada, as well as synthetic data generated for verification purposes.

5.1 Data Description

5.1.1 Real Data:

In this paper, infrastructure deterioration is modeled based on visual inspections and structural
attributes from a network of approximately 10000 bridges located in the province of Quebec, Canada.
The hierarchy of the data is illustrated in Figure 4, where each bridge Bj is made up of different structural

categories {Cj1, . . . , Cjm, . . . , CjM}, and each structural category is composed of multiple structural elements,

Cjm = {ej1, . . . , ejp}. The visual inspection data denoted by ỹjt,p correspond to observations of the
elements’s health condition over time t. In this context, ỹ is defined on a continuous domain, where
ỹ = 100 represents a perfect condition and ỹ = 25 signifies the poorest condition. The inspection
frequency differs from one bridge to another, with ranges from once a year to once every five years [26].
In total, the majority of the bridges have four or five inspections performed in the period from 2007 to
2023.

B
j. . .. . . . . . . . .B

1
B
B

. . .. . . . . .
Cj

1
Cj

M

. . .
ej1 ej

E(1)
. . .

ej1 ej
E(M)

Bridge level

Category level

Element level

Inspection level

ỹj
3,1

ỹj
2,1

ỹj
1,1

ỹj
3,E

ỹj
2,E

ỹj
1,E

ỹj
3,1

ỹj
2,1

ỹj
1,1

ỹj
3,E

ỹj
2,E

ỹj
1,E

year

2014

2012

2010

. . . . . .

Figure 4: Graphical illustration of the components making up the bridge database, with each bridge
Bj encompassing multiple structural categories Cjm and each category containing multiple structural

elements. The visual inspections are performed on an element level, whereby an element ejp is assigned
a condition rating of ỹjt,p at the time step t.

The structural attributes associated with each structural element ejp are denoted by zjp and
correspond to the material of the structural element, age, latitude, longitude, total length of the bridge,
slab length, total width of the bridge, surface area, number of lanes, percentage of trucks, annual
average of daily traffic (AADT) and average health condition. A summary for the structural attributes
considered in this study is provided in Table 1.

5.1.2 Synthetic Data:

The synthetic data utilized in this study has comparable quantitative and qualitative characteristics
to the real visual inspection data. The quantitive similarities include similarities in the number of
synthetic structural elements, the number of inspections per structural element, and the total number
of unique observation errors (i.e., number of inspectors). The qualitative similarities on the other hand
equates to similarity in the deterioration curve over time and the average life span of the structural
element [11].
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Table 1: Summary of the structural attributes associated with each structural element.

covariates value ranges unit

zjp,1 : material [0, 1] -

zjp,2 : age [0, 165] years

zjp,3 : latitude [44.99, 58.67] -

zjp,4 : average health condition [28, 100] -

zjp,5 : longitude [−79.51,−57.25] -

zjp,6 : total length [3.674, 1801.4] meters

zjp,7 : slab length [3.674, 1801.4] meters

zjp,8 : total width [3.35, 120] meters

zjp,9 : surface area [17, 52420] square meters

zjp,10 : number of lanes [0, 13] lanes

zjp,11 : percentage of trucks [0, 100] -

zjp,12 : annual average daily traffic [0, 178000] vehicle per day

In this paper, a total of E = 20000 synthetic beam elements are considered, with each element
having 4 to 5 inspections over a time span of 10 years. The elements deterioration curves are designed
to have an average service life of 60 years. The total number of synthetic inspectors is I = 300,
with each inspector’s error defined by vi : Vi ∼ N (µVi , σ

2
Vi

). The true deterioration curves for each
synthetic element are generated using the transition model defined in Equation 1 with the standard
deviation of the process noise set to σW = 5× 10−3. While the synthetic inspection data is generated
using the observation model defined in Equation 3 by sampling synthetic observations from the true
synthetic deterioration states. The parameters associated with the observation errors of inspectors
are sampled from uniform distributions, following µVi ∼ U(−4, 4) and σVi ∼ U(1, 6). To ensure that
the deterioration curves exhibit the same qualitative characteristics of the real deterioration, several
criteria are enforced on the synthetic elements’ states, which are adopted from the work of Hamida
and Goulet [11]. Alongside the synthetic visual inspection data, a synthetic structural attribute zj is
generated using: zj = ln(|ẋj0|) + w0, where w0 is an error term described by w0 : W0 ∼ N (0, 0.12), [12].
This relation results in unevenly distributed synthetic attribute zj with a long-tail distribution (see
Figure 5), allowing to effectively verify the robustness of the proposed framework.
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0

500

1,000

1,500

Synthetic structural attribute z

F
re
q
u
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cy

Figure 5: Histogram of the synthetic structural attribute generated using zj = ln(|ẋj0|) + w0, w0 :
W0 ∼ N (0, 0.12) adopted from the work of Hamida and Goulet [12].

5.2 Verification of the SSM-BNN Model Using Synthetic Data

The SSM-BNN framework is verified on synthetic data using a neural network architecture and
configuration defined in A. In this example, the BNN model is trained with a single input variable
corresponding to the synthetic structural attribute zj , and a single output variable which is the
deterioration speed. The training data is split into training and validation sets using an 85/15 split to
avoid overfitting, and is standardized to have a zero mean and unit variance.
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The parameters of the SSM-BNN model are estimated using the steps described in the pseudocode
in Algorithm 1. While all the steps in the pseudocode are equally important, this section will focus
mainly on the capacity of the BNN model in learning the relationship between the synthetic structural
attribute zj and the deterioration speed. Figure 6 illustrates the latent relation between the synthetic
structural attribute zj and the initial deterioration speed ẋ0 as learned by the BNN model, along with
the training data and the ground truth.

−6 −5 −4 −3 −2 −1 0
−1

−0.8

−0.6

−0.4

−0.2

0

z (structural attribute)

ẋ
0

µ̇0(z) µ̇0(z)±2σ̇0(z) µz µz ± 2σW0 Training data

Figure 6: The latent relation between the synthetic structural attribute z and the deterioration speed
ẋ0 learned by the BNN. The black line represents the expected values predicted by the BNN with
the shaded green area representing uncertainty. The true relation is depicted by the red line with the
shaded red area representing its variability. Having this variability makes the synthetic attributes
resemble reality, where structures with different attributes can deteriorate at the same speed.

From Figure 6, the training data represented by the blue diamond-shapes corresponds to the
smoothed estimates of the initial deterioration speed ẋ0|T for each synthetic structural elements. On the
other hand, the red curve represents the true relation between ẋ0|T and zj . The BNN model inference
for the aforementioned relation is depicted by the black line with the green confidence interval. The
BNN model inference is achieved by relying on the recursive estimation procedure described in Section
4.2. From Figure 6, the true speed lies within two standard deviations of the mean predicted by the
BNN for nearly the full range of inputs, in spite of the input zj having a range of values zj ∈ [−7,−2]
with a lower density of training data.

Following the estimation of the model parameters, the performance of the SSM-BNN model is
compared against the existing SSM-KR model, which is trained and configured based on the work
of Hamida and Goulet [12]. The performance comparison focuses on the predictive capacity of each
model in estimating the initial deterioration speed as well as the total time required for estimating the
model parameters. Figure 7 shows a scatter plot for the model predictions versus the true initial speed
values which is generated based on a random sample of 500 synthetic structural elements.

From Figure 7 it is shown that the estimates of the SSM-BNN model have a better alignment
with the true deterioration speed values, especially for lower deterioration speeds (i.e., ẋ0 < −0.3).
This is demonstrated by the equal spread of the SSM-BNN predictions around the diagonal line. As
for the total training time, the SSM-BNN model required around 29 minutes to learn the full set of
parameters, while the SSM-KR needed approximately 57 minutes.

5.3 Validation of the SSM-BNN Using Real Data

The proposed SSM-BNN model is initially trained using the visual inspection data and the structural
attributes zjp,1:12 of beam structural elements from B = 5998 bridges. The visual inspections in the
aforementioned dataset are performed by I = 311 inspectors. The beams’s dataset encompass a
training set with Etr = 48517 elements, a validation set with Eval = 2178 elements, and a test set with
Ets = 1089. The architecture and configuration of the BNN model are described in A.
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Figure 7: Scatter plot and histogram comparing the true initial deterioration speeds ẋ0 of the synthetic
elements with those predicted by SSM-BNN and SSM-KR.

Similar to the synthetic case, the input covariates and the response variable are standardized to
have zero mean and unit variance. The output of the BNN model is a single variable representing
the deterioration speed ẋj0,p at time t = 0, while the total number of the input covariates is Z = 18.
The input covariates correspond to a one-hot encoded material covariate in addition to 11 structural
attributes zjp,2:12 defined in Table 1. The material in the case of beam elements includes: weathering
steel, regular steel, aluminum, wood, high-performance concrete, prestressed concrete, and regular
concrete. An example that demonstrates the SSM-BNN model performance on a regular steel beam
element is shown in Figure 8, where the model maintains a downward trend despite the upward trend
of the first three inspection points.
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20
10

20
12

20
14

20
16

20
18

20
20

20
22

20
24

20
26

20
28

−20

−15

−10

−5

0
·10−1

Time (Year)

D
et

er
io

ra
ti

on
Sp

ee
d

of
e3

17 3

˜̇µ317t|T Median ±2σ̇Model
±σ̇Model

Figure 8: Estimates of deterioration state for condition (left) and deterioration speed (right) based on
inspection data ỹ317

t,3 ∈ [25, 100] represented by the blue points. Error bars represent the inspectors’
uncertainty estimates, while the black square correspond to a hidden inspection for testing.

From Figure 8, the inspection point represented by the black square is only used for validating the
model predictive capacity and is not used in updating or estimating the model parameters. Figure 8
shows a good alignment between the model prediction and the hidden inspection point which equates
to a good predictive capacity.

The analyses from the previous example can be expanded by evaluating the predictive capacity of
the SSM-BNN model using hidden inspections data points from approximately 1000 beam elements
taken from an independent test set of bridges. The performance metrics considered in this example are
the log-likelihood and training time, which are reported in Table 2.

From Table 2, the SSM-BNN model is nearly two orders of magnitude faster while achieving
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Table 2: The performance and training time of SSM-KR against SSM-BNN using only the beam
elements.

model log-likelihood total training time (hrs)

SSM-KR -14180 189
SSM-BNN -13364 3

approximately 6% improvement in the log-likelihood. Note that the training times for the real and
synthetic data are measured while using a system equipped with an Intel Xeon 6248R CPU, 256GB
memory, and a NVIDIA Quadro RTX 5000 GPU.

5.4 Large-scale Application of the SSM-BNN Model

As mentioned in the methodology section, the SSM-BNN model benefits from a new parameter
estimation procedure that allows having a unified set of inspector’s parameters θV across multiple
structural categories. In this experiment, the scope of the analyses is limited to five structural categories:
C1 : exterior walls, C2 : front walls, C3 : slabs, C4 : beams, and C5 : pavement. In total, there are I = 325
inspectors responsible for performing inspections across all bridges, with each structural category
Cm having approximately Im ≈ 300 inspectors. Accordingly, it is very likely for each inspector Ii to
perform inspections on different structural categories. For example, inspector Ii=3 can be responsible
for performing the inspections on beams, slabs and front walls in different years and on different
bridges.

The existing parameter estimation procedure assumes that each structural category has a distinct

set of parameters defined as in, θexist = {θ(1:5)
V , σ

(1:5)
W ,θ

(1:5)
BNN ,θ

(1:5)
0 }, where the superscript (n:m) is a

reference to the structural category index from C1 to C5 [14]. Inherently, this approach assumes a
unique set of inspectors parameters θmV associated with each structural category Cm, which ignores
the fact that the same inspector could be responsible for inspections on other structural categories.
To overcome this limitation, the new parameter estimation procedure learns the parameters of each
inspector Ii based on data from all structural categories, which results in a unified set of inspectors’
parameters θV , where θV = {µV1:I , σV1:I}. Accordingly, the model parameters using the new approach

are defined as in, θ = {θV , σ(1:5)
W ,θ

(1:5)
BNN ,θ

(1:5)
0 }. In order to demonstrate the effectiveness of the new

parameter estimation procedure, the performance of SSM-BNN(θexist) and SSM-BNN(θ) are evaluated
using the log-likelihood. Table 3 shows the log-likelihoods estimates for the validation and test sets.

Table 3: Comparison of the SSM-BNN(θ) versus the SSM-BNN(θexist) using five structural categories.
The log-likelihood of the SSM-BNN(θexist) is denoted by Lexist while the log-likelihood of the joint
approach is denoted by L. Bold numbers indicate better performance.

Validation set Test set
Category Lexist L Lexist L

Exterior walls -1.16E+04 -1.20E+04 -5.47E+03 -5.44E+03
Front walls -5.79E+03 -5.75E+03 -2.94E+03 -2.92E+03
Slabs -8.18E+03 -8.13E+03 -3.02E+03 -2.93E+03
Beams -2.12E+04 -2.10E+04 -1.23E+04 -1.25E+04
Pavement -6.64E+03 -7.02E+03 -4.69E+03 -3.32E+03

From Table 3, the model SSM-BNN(θ) with the parameters estimated using the new approach
performs better on three out of the five structural categories on the validation set and four out of the five
structural categories on the test set. These results indicate that the inspectors’ parameters estimated
with the new approach generalize better on the independent test sets. Furthermore, the results indicates
that training on each structural category independently may induce overfitting (e.g, exterior walls and
pavement have better validation log-likelihood and worse test log-likelihood). Training the SSM-BNN
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model using data from all the structural categories significantly increases the number of observations
per inspector, which contributes to bringing their estimated parameters closer to the true values. This
is supported by the model trained using the unified set θV achieving better log-likelihoods on most of
the validation and test sets (Table 3).

6 Conclusion

This paper proposed a new probabilistic framework for modeling the deterioration of large transportation
infrastructure based on visual inspections and structural attributes. The proposed framework relies on
a state-space model (SSM) coupled with a Bayesian neural network (BNN) that enables incorporating
structural attributes in the deterioration analyses. The SSM-BNN model is trained using a new
estimation approach that significantly reduces the number of model parameters. The performance
of the SSM-BNN model is verified using synthetic data and validated using real inspection from the
network of bridges in Quebec, Canada. The results of the analyses from synthetic data highlights the
capacity of the SSM-BNN model in quantifying the relationship between the inferred deterioration
speed and the structural attributes. In addition, the SSM-BNN model predictions have a better
alignment with the true synthetic speed in comparison to the existing SSM-KR framework. As for
the real data, the comparison with the existing SSM-KR shows that the proposed SSM-BNN model
achieves approximately 6% improvement in the log-likelihood, while requiring significantly lower
training time (3 hours compared to 189 hours). Those advantages have facilitated the implementation
of a new parameter estimation procedure that enabled reducing the total number of model parameters
while improving the overall generalizability of the model. This is demonstrated through comparisons
among the models’ log-likelihood estimates on independent validation and test sets. Despite the
highlighted advantages in the SSM-BNN model, the use of BNN remains limited to quantifying the
initial deterioration speed only. Future work can address this limitation by using frameworks such as
LSTM [32], to provide state estimates for timestamps beyond the initial deterioration speed.
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A BNN Configuration and Training

The architecture employed for the BNN model consists of one hidden layer with 128 units, with a
ReLU activation function. The weights and biases of the BNN are initialized using He’s method [17],
and the batch size during the training is 16 instances. The approach used in learning the BNN model
parameters is tractable approximate Gaussian inference (TAGI) [10, 7]. The use of TAGI in the context
of a fully-connected feedforward neural network (FNN) consists of inputs s ∈ RS and outputs r ∈ RR

connected by L hidden layers, graphically depicted in Figure 9.

These connections are established through matrix-vector multiplication and addition with the
network parameters θNN = {W, b}, followed by a non-linear activation function ϕ(·). Specifically, the
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Figure 9: Graphical representation of a feedforward neural network consisting of L hidden layers with A

hidden units in each one. The network maps the relation between the inputs s = [s1 · · · sS]ᵀ and the unit
at the output layer h(0). To simplify visualization, the output is shown here as one-dimensional. The
observation r is connected to the output layer unit h(0) and the error term v through the observation
model defined in Equation 9. The parameters connecting layer j with layer j + 1 consist of a vector of

biases b(j) and a matrix of weights W(j), such that w
(j)
m,i ∈W(j) represents the weight connecting the

i-th unit in layer j to the m-th unit in layer j + 1.

hidden units h(j) ∈ R|j| in layer j are used to obtain the hidden units in the next layer h(j+1) ∈ R|j+1|

following

h(j+1) = W(j)
(
ϕ(h(j))

)
+ b(j), j = 0, 1, . . . , L, (8)

where W(j) ∈ R|j+1|×|j| and b(j) ∈ R|j+1| are the weights and biases in layer j with |j| and |j + 1|
indicating the number of units in layers j and j + 1, respectively. Note that the activation units in
layer j = 0 simply correspond to the inputs to the network s ≡ ϕ(h(0)).

TAGI uses Equation 8 to analytically propagate uncertainty forward by treating the network
parameters as independent Gaussian random variables, so that θNN ∼ N

(
µθ, I · σ2

θ

)
, as well as making

several other assumptions and approximations which are detailed in [10]. The relation between the
network’s outputs h(O) and the observed system responses r is described by the following observation
model,

r = h(0) + v, v : V ∼ N
(
0, I · σ2

V

)
, (9)

where v represents independent zero-mean Gaussian errors. TAGI performs closed-form inference using
the equations for the Gaussian conditional and Rauch-Tung-Striebel (RTS) smoother [28], which are
detailed in B. Given that TAGI initializes the network parameters with a weakly informed prior, the
inference is performed over multiple successive passes over the training set. To prevent overfitting, this
iterative learning process is stopped once the likelihood on the validation set stops improving. The use
of TAGI in this paper enables the analytical inference of the heteroscedastic observation error variance,
the neural network’s parameters and hidden units [7].

B Kalman filter and Rauch-Tung-Striebel Smoother

Kalman filter (KF) [19] estimates the deterioration state at each time step t using the prediction and
update steps. The prediction step estimates the state xt from xt−1 using the transition model from
Equation 1, such that,

µt|t−1 = Aµt−1|t−1,

Σt|t−1 = AΣt−1|t−1A
ᵀ + Q.

(10)

Here, µt|t−1 ≡ E[Xt|y1:t−1] and Σt|t−1 ≡ cov[Xt|y1:t−1] are the expected value and covariance for
the state at time t, given all the observations up to time t − 1, which are denoted by y1:t−1 ≡
{y1, y2, . . . , yt−1}. In the absence of an observation at time t, the prediction step is repeated; otherwise,
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if an observation is available, the update step is applied. The update step finds the posterior knowledge
of xt conditioned on all the observations y1:t using the Gaussian conditional equations.

Once the state estimates are obtained by the KF, they are then refined using the Rauch-Tung-Striebel
(RTS) smoother [28], which is given by the following equations:

f (xt | y1:T) = N
(
xt;µt|T,Σt|T

)
,

µt|T = µt|t + Jt
(
µt+1|T − µt+1|t

)
,

Σt|T = Σt|t + Jt
(
Σt+1|T −Σt+1|T

)
Jᵀ
t ,

Jt = Σt|tA
ᵀΣ−1

t+1|t,

(11)

where µt|T and Σt|T are the posterior mean and covariance of the smoothed state estimates at time t,
given all the observations up to time T, which denotes the time step of the last observation.

C Space transformation

The original observations x̃ ∈ [l, u] are transformed into an unbounded domain x ∈ (−∞,∞) using the
following function,

x = o(x̃) =


[

1
Γ(α)

∫ x̃
0 t

α−1e−tdt
]α
, u+l

2 < x̃ ≤ u,
x̃, x̃ = u+l

2 ,

−
[

1
Γ(α)

∫ x̃
0 t

α−1e−tdt
]α
, l ≤ x̃ < u+l

2 ,

(12)

Here, Γ(·) is the gamma function and α is the shape parameter of the gamma distribution. The shape
parameter is defined as α ≡ 2−n, where n is a positive integer that controls the curvature of the
transformation function near the bounds l and u. After completing the analyses, the predictions of the
deterioration model x ∈ (−∞,∞) are back-transformed into the original space x̃ ∈ [l, u] using

x̃ = o−1(x) =


1

Γ(α)

∫ x 1
α

0 tα−1e−tdt, x > u+l
2 ,

x, x = u+l
2 ,

− 1
Γ(α)

∫ x 1
α

0 tα−1e−tdt, x < u+l
2 .

(13)

Further details about the space transformation function are available in the work of Hamida and Goulet
[11].

D Learning the Uncertainty of Each Inspector

Each inspector Ii has a unique observation error described by vi : Vi ∼ N (µVi , σ
2
Vi

). Estimating µVi
and σ2

Vi
is done by augmenting the state vector with two additional hidden states defined by,

vb(i) : Vb(i) ∼ N
(
vb(i);µb(i), σ

2
b(i)

)
,

vs(i) : Vs(i) ∼ N
(
vs(i); 0, σ2

s(i)

)
,

(14)

where the term vb(Ii) is a hidden state corresponding to µVi , and the term vs(Ii) corresponds to σ2
Vi

[21].
Quantifying these additional hidden states happens concurrently with the inference of the deterioration
states in the SSM framework. Specifically, vb(i) and vs(i) are updated whenever the inspection ỹjt,p is
performed by the inspector Ii. The updates for vb(i) and vs(i) are performed by using the approximate
Gaussian variance inference (AGVI) approach for estimating the variance hidden state vs(i), and a
recursive framework for estimating the hidden state vb(i) associated with the expected value µVi [21].

In principle, AGVI relies on the definition of the variance and the fact that vs(i) has a zero mean
[6], such that,

var [V ] = E
[
V 2
]
−��

��*
0

E [V ]2 = σV
2 ≡ v2. (15)

15



Fakhri, S.A.K., Hamida, Z. and Goulet, J-A. (Preprint 2024). Scalable Probabilistic Deterioration
Model based on Visual Inspections and Structural Attributes from Large Networks of Bridges.

Accordingly, the variance can be estimated by quantifying the hidden state v2 which can be updated
over time based on information from the observations [6]. On the other hand, the hidden state vb(i) is
updated recursively from the observations, which is enabled by applying modifications on the transition
matrix A and the observation matrix C [21]. Further details about the two approaches are provided
in the work of Blanche et al. [21].
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