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Abstract

Rehabilitation of contaminated soils in urban areas is in high demand because
of the appreciation of land value associated with the increased urbanization.
Moreover, there are financial incentives to minimize soil characterization
uncertainties. Minimizing uncertainty is achieved by providing models that
are better representation of the true site characteristics. In this paper, we
propose two new probabilistic formulations compatible with Gaussian Process
Regression (GPR) and enabling (1) to model the experimental conditions
where contaminant concentration is quantified from aggregated soil samples
and (2) to model the effect of physical site discontinuities. The performance
of approaches proposed in this paper are compared using a Leave One
Out Cross-Validation procedure (LOO-CV). Results indicate that the two
new probabilistic formulations proposed outperform the standard Gaussian
Process Regression.

1. Introduction

Rehabilitation of contaminated soils in urban areas is in high demand
because of the appreciation of land value associated with the increased
urbanization. A common technique to rehabilitate a contaminated site is
to remove contaminated soil and either treat or burry it in designated sites.
Because there are important costs associated with this activity, it is essential
to characterize spatial contaminant concentration in order to classify soil as
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either contaminated or non-contaminated based on the applicable legislation.
Any cubic meter unnecessarily removed (i.e. false +) or any cubic meter
wrongly left in place (i.e. false−) will increase the overall rehabilitation
costs. Thus, there are financial incentives to minimize soil characterization
uncertainties.

In the field of geostatistics, several researchers such as Boudreault et al.
[1] and Goovaerts [2, 3] have employed the Kriging theory to characterize the
spatial distribution of contaminant concentration. Historically, Kriging was
proposed by Krige and later formalized by Matheron [4]. More recently, the
research community has turned toward Machine Learning methods [5]. Most
researchers in this field have employed Artificial Neural Networks (ANN)
[6, 7, 8, 9]. ANN is a powerful tool, however it requires lots of data (up to
millions of data points) to perform well [10]. This condition is seldom met
in practice. In the field of Machine learning, other techniques analogous to
Kriging have recently been the object of numerous publications under the
name of Gaussian Process Regression, (GPR) [11]. Authors such as MacKay
[12] and Rasmussen & Williams [13] have presented modern techniques
to calibrate parameters efficiently, process small and large datasets, and
provide enhanced formulations that increase the robustness toward numerical
instabilities. These latest developments are implemented in several open-
source packages such as GPML (Gaussian Process Machine Learning) [14] and
GPStuff [15], both running on the Matlab/Octave language. The motivation
for this paper is that current ANN and GPR formulations cannot handle
two particular situations that are common during site characterization: (1)
experimental conditions where contaminant concentration is quantified from
aggregated soil samples and (2) the effect of physical site discontinuities. Note
that even if geostatistics methods can handle aggregated soil samples using
Block Kriging [16], it cannot handle the effect of physical site discontinuities.

This paper proposes a new unified formulation based on the GPR method
to address the two limitations identified above. The paper is organized
as follows: Section 2 introduces the standard mathematical formulation of
Gaussian Process Regression along with specificities associated with soil
characterization applications. Section 3 presents the two extensions to
the standard GPR formulation that are proposed in this paper. The first
extension account aggregated soil samples by creating virtual points that
are employed to model the average contaminant concentration. The second
extension proposes a new covariance function that can employ discrete
attributes corresponding to physical site discontinuities. The justification
for these two new probabilistic formulations comes from a case study where
both features are present. In section 4, an empirical analysis compares the
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performance of these new extensions with the baseline GPR model.

2. Gaussian Process Regression for Contamination Concentration
Characterization

This Section summarizes the theory behind Gaussian Process Regression
[11, 13]. Subsection 2.1 presents aspects related to the model definition, Sub-
section 2.2 presents the formulation for estimating the conditional probability
of a Gaussian process given observations, and Subsection 2.3 presents the
procedure for calibrating hyper-parameters. All subsections are presented in
the context of soil contamination concentration characterization.

2.1. Model definition

The characterization of contaminants concentration is based on the
following fundamental equation

Yi︸︷︷︸
observation

=

true contaminant [ ]︷ ︸︸ ︷
c(l
{Y }
i ) + Vi︸︷︷︸
measurement error

, Vi ∼ N (0, σ2V ) (1)

where Yi is a noise-contaminated observation of the contaminant concen-
tration c(l

{Y }
i ), and where Vi is a zero-mean Gaussian measurement error

such that Vi ⊥⊥ Vj , ∀i 6= j. c(l
{Y }
i ) describes an unknown, yet determinis-

tic function corresponding to the concentration of contaminants across the

tridimensional space. For a location i, l
{Y }
i = [x, y, z]ᵀi describes spatial

coordinates. The model formulation in Equation 1 is defined for any real
number; in practice, it is inconsistent with reality, because contaminant
concentrations are strictly positive numbers. Therefore, it is common to
transform the observations in the logarithmic space [17, 18],

log Yi︸︷︷︸
observation

=

true contaminant [ ] in log space︷ ︸︸ ︷
c(l
{Y }
i ) + Vi︸︷︷︸

measurement error in log space

, Vi ∼ N (0, σ2V ) (2)

This paper only employs the model formulation in the logarithmic space as

described in Equation 2. The true contaminant concentration c(l
{Y }
i ), is

hidden so only realizations of the random variable Yi can be observed. The

set of observation D = {(l{Y }i ,yi), i = 1 : M} corresponds to M pairs of

concentration observations and their associated covariate l
{Y }
i for which the

superscript {Y } refers to observation locations.
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2.2. Model Estimation

Although the true contaminant concentration c(l
{Y }
i ) is a deterministic

function, our knowledge of it is incomplete and it is thus described by a
stochastic process quantifying the probability of contaminant concentration
across space, p(c|l{C}). The probabilistic estimation of contaminants con-
centration C conditional on data D and estimation location l{C} is denoted
p(c|l{C},D). This conditional probability is modelled using a Gaussian Pro-

cess p(c|l{C},D) = N (MC|D,ΣC|D), where l{C} = [l
{C}
1 , l

{C}
2 , · · · , l{C}N ]ᵀ is a

vector containing the coordinates for N tridimensional locations where the
concentration needs to be estimated, and where the superscript {C} refers
to estimation locations. The dependence on the vector of locations l{C} of
the posterior mean vector MC|D and the posterior covariance matrix ΣC|D
are assumed implicitly to simplify the notation. The analytical formulation
for computing MC|D and ΣC|D is obtained from the Gaussian conditional
distribution

MC|D = MC + Σᵀ
YCΣ−1YY(y −MY)

ΣC|D = ΣCC −Σᵀ
YCΣ−1YYΣYC︸ ︷︷ ︸

Posterior knowledge

(3)

In Equations 3, the subscript C and Y respectively refers to estimation and
observation locations and matrices on the right-hand side correspond to the
prior knowledge

M =

{
MY

MC

}
, Σ =

[
ΣYY ΣYC

Σᵀ
YC ΣCC

]
︸ ︷︷ ︸

Prior knowledge

(4)

The prior knowledge for the mean vector is typically defined following the
hypothesis that the prior mean is zero, i.e. M = 0. If additional knowledge
is available to describe the prior mean, more complex functions can be
employed instead of M = 0. The prior knowledge for each sub-component of
the covariance matrix Σ is defined

[ΣYY]ij = ρ(l
{Y }
i , l

{Y }
j )σ2C + σV

2δij , δij = 1 if i = j, else δij = 0

[ΣCC]kl = ρ(l
{C}
k , l

{C}
l )σ2C

[ΣYC]ik = ρ(l
{Y }
i , l

{C}
k )σ2C .

(5)

In Equation 5, subscripts i, j = 1, 2, · · · ,M and k, l = 1, 2, · · · , N , where M
is the number of observations and N is the number of estimation locations. In
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this definition of the covariance matrices, σC is the prior standard deviation
of the concentration C and this one is considered to be constant for all
locations li. ρ(li, lj) is a correlation function which describes the correlation
between the contaminant concentration C(li) and C(lj) at two locations
li and lj . One possible choice for the correlation function is the square
exponential basis function defined by

ρ(li, lj) = exp

(
−1

2
(li − lj)

ᵀdiag(`2)−1(li − lj)

)
(6)

where ` = [`x, `y, `z]
ᵀ is a vector containing the length scale parameter for

each spatial dimension. Each length scale parameter defines how correlation
decays according to an increase in distance with respect to its corresponding
direction. Figure 1 presents examples of unidimensional square-exponential
covariance functions for different length-scale parameters where the corre-
lation ρ(xi, xj) is expressed as a function of the spatial distance xi − xj .
Although many other correlation functions are available [13], only the square

Figure 1: Examples of unidimensional square-exponential covariance functions for different
length-scale parameters.

exponential is employed in this paper.
Note that although the formulation in Equation 3 is analytically accurate,

it is known to be computationally demanding and to suffer from numerical
instability issues. An equivalent formulation that is faster and numerically
more stable is obtained by taking advantage of the Cholesky decomposition
of ΣYY. This formulation is described in detail by Rasmussen and Williams
[13] and is implemented in the packages GPML [14] and GPStuff [15].

2.3. Hyper-Parameter Estimation

The prior distribution of the Gaussian Process presented in §2.1 has
five unknown hyper-parameters P = {`x, `y, `z, σC , σV }. The term Hyper-
parameters is employed to describe parameters of the prior knowledge. The

5



posterior distribution of hyper-parameters conditioned on observations can
be obtained using Bayes’s theorem

Posterior︷ ︸︸ ︷
p(P| l{Y },y︸ ︷︷ ︸)
Observations

=

Likelihood︷ ︸︸ ︷
p(y|l{Y },P)

Prior︷︸︸︷
p(P)

p(y)︸︷︷︸
Normalization constant

.

In practical situations this posterior distribution is difficult to estimate, in
part because of the computational demand related to the normalization
constant p(y). Instead, a common approximation consists in employing
a Maximum Likelihood Estimate, (MLE) where P∗ designates the set of
hyper-parameters that maximizes the likelihood function

P∗ = arg max
P

likelihood︷ ︸︸ ︷
p(y|l{Y },P) ≡ arg max

P

log-likelihood︷ ︸︸ ︷
log p(y|l{Y },P) .

Because the log function is monotonically increasing, the maximum of the
likelihood function corresponds to the maximum of the logarithm of the
likelihood function. This transformation in the log space is employed be-
cause it improves the numerical stability of calculations [11]. The physical
interpretation of the MLE technique is to find hyper-parameter values that
maximize the prior probability of observations.

One of the convenient features of the Gaussian process is that the log-
likelihood has a computationally efficient analytical formulation

log p(y|l{Y },P) = logN (0,ΣYY) = −1

2
yᵀΣ−1YYy− 1

2
log |ΣYY| −

M

2
log 2π.

The MLE hyper-parameters are found by maximizing the log-likelihood. The
maximum corresponds to the values for which the log-likelihood derivative is
zero

d

dPj
log p(y|l{Y },P) =

1

2
yᵀΣ−1YY

dΣYY

dPj
Σ−1YYy − 1

2
tr(Σ−1YY

dΣYY

dPj
) = 0.

General purpose gradient-based MLE algorithms are implemented in the
packages GPML [14] and GPStuff [15].

3. New extensions to Gaussian Process Regression

This section describes two new extensions to GPR. The first extension
presented in Subsection 3.1 allows modelling observations that are obtained
from aggregated soil samples. The second extension is presented in Subsection
3.2 and allows modelling site featuring discrete physical discontinuities.
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3.1. Gaussian Process Regression Using Aggregated Samples

It is common to perform laboratory analyses for contamination concen-
tration on soil samples obtained from borehole drillings. In order to obtain a
sufficient volume of soil for the purpose of analysis, the soil core extracted
over a vertical length from 0.5 m to 1 m is aggregated as a single sample.
When the vertical length-scale parameter is smaller than the vertical length
of an aggregated sample, it is an indication that different locations comprised
within the same sample have a correlation coefficient close to zero. In that
case, one should expect a high heterogeneity within the sample itself. For
example, one end of a sample could be contaminated while the other end is
not.

The standard Gaussian Process Regression method cannot handle aggre-
gated samples. We propose to extend GPR by employing the formulation
employed in state-space models [11, 19] to provide a formulation that ex-
plicitly consider the effect of aggregated samples. Note that although the
formulation employed already exists in the field of state-space models, it has
not been applied to GPR. The resulting formulation employs an observation
matrix F that allows considering a concentration observation yi as an average
value over a set of virtual covariate locations l{Y ∗} that are discretized over
the vertical soil sample length. The observation matrix F is employed to
compute the covariance matrix, ΣYC and ΣYY, so that

ΣYC = FΣY∗C

and

ΣYY = FΣY∗Y∗F
ᵀ + R

where ΣY∗Y∗ and ΣY∗C are the covariance matrices computed using virtual

covariate locations l{Y ∗}. Note that the matrix ΣY∗Y∗ = ρ(l
{Y }
i , l

{Y }
j )σ2C

does not include measurements noise which comes from the diagonal matrix
R

[R]jj = σ2V , ∀j = 1 : M

This special treatment of the measurement noise is necessary because mea-
surement errors applies to the aggregated sample and not on the individual
virtual locations.

Figure 2 presents a comparative example of the discretization procedure
for two boreholes (i.e. M = 2), each employed to represent a 1 m long soil
sample. In Figure 2a, the basic approach is employed and no discretization is
performed. Observed concentrations are assigned to the soil sample centroid.
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1m

1m

(a) Basic approach without sample dis-
cretization

1m

1m

(b) Refined approach with sample dis-
cretization

Figure 2: Comparative example of the discretization procedure for two boreholes, each
employed to obtain a 1m-long soil sample where the blue triangle represents the soil surface.

This corresponds to an observation matrix

F =

[
1 0
0 1

]
where in this special case, ΣYC = ΣY∗C and ΣYY = ΣY∗Y∗+ R. In Figure
2b, each soil sample is discretized vertically into three virtual subsamples.
The observation matrix corresponding to this case is

F =

[
1/3 1/3 1/3 0 0 0
0 0 0 1/3 1/3 1/3

]
where each line corresponds to an observation and each column corresponds
to a virtual subsample. Here, the weight of each virtual subsample is 1

3
because there are three discretization points. In this illustrative example,
the number of discretization subsamples is arbitrarily set to three. In real
situations, the accuracy of the approach increases asymptotically with the
number of discretization subsamples.

3.2. Gaussian Process Regression With Hidden Covariates

The standard GPR formulation presented in Section 2 is unable to capture
the effect of physical discontinuities in a site. We propose a new method to
enhance the standard GPR formulation in order to overcome this limitation.
Physical discontinuities may arise from situations such as when site filling
is performed using different materials, or due to the presence of physical
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barriers that prevent or hinders the migration of contaminants across space.
Figure 3 presents an example of site that is separated in two regions by a
partially permeable physical barrier. In this example we assume that the

S1 S2

Partially
permeable

physical
barrier

Figure 3: Example of site separated in two regions by a partially permeable physical
barrier.

spatial correlation between two locations either within region S1 or S2 is a
function of the spatial distance between the two locations as described in
Equation 6. The correlation between any point in the region S1 and any
point S2 is assumed to be described by

ρ({li, S1}, {lj , S2}) = ρ(li, lj) · ρS1,S2

where ρS1,S2 ∈ (0, 1) is the correlation coefficient between the region S1 and
S2. For the special case where ρS1,S2 = 0, the two regions are completely
independent, and for the other special case where ρS1,S2 = 1, both regions
are linearly correlated, ρ({li, S1}, {lj , S2}) ≡ ρ(li, lj). In order to provide a
correlation function that is applicable to the general case where there can
be Q distinct regions, we propose to model the correlation as a function of
virtual distances drs, ∀{r = 1 : Q, s = r : Q} between each pair of regions
defined by indexes r and s. The new correlation function defined for spatial
distances (i.e. li − lj) and virtual distances (i.e. drs) is

ρ({li, r}, {lj , s}) = exp

(
−1

2

(
(li − lj)

ᵀdiag(`2)−1(li − lj) + d2rs
))

, (7)

where the correlation coefficient between pairs of regions is given by

ρrs = exp

(
−1

2
d2rs

)
.

Each virtual distance drs, ∀r 6= s is now a hyper-parameter. Given that
there are Q distinct regions and considering that drr ≡ 0, there are Q2/2−
Q additional hyper-parameters to be inferred using the MLE formulation
presented in Subsection 2.3.
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In order to be admissible, covariance functions [Σ]ij described in Equa-
tion 5 must be positive semi-definite. This criterion is met for any set
of virtual distance drs, for which it is possible to find the coordinates
wr = [wr,1, wr,2, · · · , wr,Q−1]

ᵀ, ∀{r = 1 : Q} defining a simplex in the real
coordinate space, RQ−1. A simplex is the generalization of a triangle in any
number of dimensions [20]. Figure 4 presents examples of simplex in one,
two and three dimensions, where the length of edges corresponds to virtual
distances drs and vertices are defined by coordinates wr. From examples in

1D 2D 3D

Figure 4: Examples of simplex in one, two and three dimensions, where the length of edges
corresponds to virtual distances drs and vertices are defined by coordinates w.

Figure 4, for Q = 2 distinct regions, one has to infer a single virtual distance
d12 describing a 1D simplex with vertices coordinate [w1, w2]. For Q = 3 dis-
tinct regions, one has to infer three virtual distances {d12, d13, d23}, describing
a 2D simplex with vertex coordinates {[w11, w12], [w21, w22], [w31, w32]}. If
such a simplex exists in the real coordinate space, the correlation function
employing virtual distances drs in Equation 7 is equivalent to the correlation
function in Equation 6 where virtual distances drs would be computed from
coordinates wr.

The backward calculation of vertex coordinates wr from virtual distances
drs can be done by following the recursive method presented by Erlandson
[21]. In the case where a simplex is defined in the complex coordinate space,
the resulting covariance matrices are not admissible. Thus, during each
optimization step, before accepting a virtual distance change drs → drs+∆drs ,
it is necessary to check if the simplex defined by the virtual distances drs+∆drs

lies in the real coordinate space. If this criterion is met, the optimization
continues, otherwise, the log-likelihood corresponding to drs + ∆drs is set
to be equal to the one obtained for drs. This constrains results in rejecting
the parameter change because the gradient-based optimization algorithm
described in Section 2.3 only accept a parameter change if it leads to a
log-likelihood increase. This procedure ensures that the optimization space is
contained to virtual distances drs leading to positive semi-definite covariance
matrices.
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4. Empirical Validation

This section compares the performance of the standard GPR model with
the two improvements proposed. Subsection 4.1 presents the site and dataset
employed for performance comparison purpose, Subsection 4.2 presents the
method employed for quantifying the predictive capacity of each model
configuration, and Subsection 4.3 presents the comparison procedure along
with results. All analyses presented in this section have been performed
using the GPML package [14] in which we implemented the new formulations
presented in section 3.

4.1. Site and Dataset Description

The site studied has been anonymized in order to satisfy confidentiality
agreements. Its size is approximately 475 meters long by 175 meters wide
by 9 meters deep. The site historically consisted in several water channels
delimited by masonry walls and that were employed for industrial purposes.
Around 1950 water channels were filled and the industrial purpose of the site
remained until the end of the century.

The site is heterogeneous and across the different layers of boreholes,
traces of debris such as bricks, coal, wood and coal cinders have been found.
Also, under the canopy or asphalt, there are different layers which are
composed either of sand, gravel, silt, clay or sandy silt. Even though the
overburden above the bedrock have a thickness of about 18 meters, our model
goes up to 9 meters deep as it represents the drilling maximum depth. In this
study, the water flow in the site and the contaminant diffusion are neglected.
The site is assumed to be in a stationary state over the duration of the site
characterization and rehabilitation. The absence of contamination of the
water table justifies the absence of migration by this vector. The location of
land (S) and former water channel (B) regions are represented in Figure 5.

B1 B3B2 S3 B4

475 m

S4S1 S2

17
5 

m

Figure 5: Simplified representation of the site studied. Labels S1-S4 represent land regions
and labels B1-B4 represent locations that are former water channels that were filled around
1950.
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A total of 116 soil samples have been analyzed for the purpose of char-
acterizing lead contamination concentration. Among several contaminants,
such as petroleum hydrocarbons, chrome, copper and zinc, whose level
exceeded the thresholds set by the government at various locations, lead
contamination was chosen for our study. The detection limit of laboratory
analyses is 5 mg/kg. Observations below that threshold are discarded. Each
concentration observation is associated with its longitude and latitude coor-
dinates along with a vertical depth interval corresponding to the boundary
of the aggregated soil sample analyzed in laboratory.

4.2. Cross-Validation Procedure

The goal of the comparison is to identify the model configuration that
has the best capacity at predicting the contaminant concentration. The
log-likelihood is employed as criteria to optimize hyper-parameter values.
However, the likelihood is not an adequate criterion to compare different
model configuration because it is not immune to over-fitting [11, 13]. A robust
criterion for comparing the predictive capacity of model configuration is the
Leave One Out Cross-Validation (LOO-CV) [22]. This procedure consists in
predicting iteratively each observation i without including it in the observa-
tion set D∗ = D \ Di for the purpose of estimating p(ci|l{C},D∗). Assuming
that all observations are independent, the joint probability density of all
predictions is obtained as the product of marginal probabilities p(ci|l{C},D∗).
An equivalent, yet more robust way of performing this calculation is to sum
the logarithm of marginal probabilities

log(p(c|l{C},D)) =

M∑
i=1

log p(Ci|l{C},D∗).

The model configuration which has the highest log(p(c|l{C},D)) has the
highest capacity at predicting unobserved data. Therefore, if the two methods
proposed in this paper improve the predictive capacity of the model, they
must return LOO-CV values that are higher than the standard GPR model.

4.3. Comparative study

4.3.1. Compared scenarios

In this comparative study, 4 sets of regions are considered along with five
maximal lengths for soil sample discretizations. Table 1 presents the 4 sets
of regions employed.

Regarding soil maximal sample length U , five values are considered:
U = {∞, 0.75, 0.5, 0.25, 0.125}m. For any maximal sample length, there
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Table 1: Sets of subregions studied.

Q Subregions Description

1 {B1, B2, B2, B4, S1, S2, S3, S4} All subregions
2 {B1, B2, B2, B4}, {S1, S2, S3, S4} Separation of land and basins
5 {S1, S2, S3, S4}, {B1}, {B2}, {B3}, {B4} Land together and basins separated
8 {S1}, {S2}, {S3}, {S4}, {B1}, {B2}, {B3}, {B4} Everything separated

cannot be two points within a soil sample that are separated by a distance
larger than U without adding a virtual covariate location l{Y ∗}. Virtual
covariate locations are added so that their spread is maximized are uniformly
spaced, and are centred on soil subsamples. For the special case where
U =∞, there is only one covariate location situated at the centroid of the
soil sample. Given that there are four sets of regions and five maximal sample
lengths to be tested, a total of 20 scenarios are compared. Note that the
special case where Q = 1 and U = ∞ corresponds to the standard GPR
model.

Comparisons involving the LOO-CV procedure only employ concentration
data that are above the detection limit of 5mg/kg. Concentration data that
are below the detection limit consists in upper-bound observations [23], which
are not fully consistent with the measurement error structure employed in
this paper.

4.3.2. Parameters Calibration

The GPR hyper-parameters initial values have been selected as follows :
The length scale parameters are `x = `y = 50m and `z = 1m. The Gaussian
process prior standard deviation initial value is σf = 3, the measurement
error prior standard deviation (in the log-space) is assumed to be σV = 0.05
and the initial values for virtual distances drs = 0.45 so that ρrs = 0.9 ∀r 6= s.

All hyper-parameters are calibrated using the entire dataset. The final
hyper-parameter values obtained are only presented for two scenarios: (1)
the standard GPR model, U = ∞ & Q = 1, and (2) the model including
both extensions where U = 0.125m & Q = 8. For the first scenario, length
scale parameters are `x = 51.0m, `y = 53.9m, `z = 0.73m and the standard
deviations are σf = 2.8, σv = 0.15. For the second scenario, the length scale
parameters are `x = 56.4m, `y = 53.7m, `z = 0.64m and the standard
deviations are σf = 2.9, σv = 0.18. In addition to these parameters Table 2
presents the correlation matrix that is computed from the estimated virtual
distances for Q = 8, U = 0.125m. The correlation between the water channels
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Table 2: MLE estimates for correlation coefficient between regions estimated for Q = 8,
U = 0.125m

Regions S1 B1 S2 B2 S3 B3 S4 B4

S1 1 0.90 0.92 0.91 0.91 0.90 0.90 0.90
B1 1 0.87 0.92 0.90 0.90 0.90 0.90
S2 1 0.86 0.95 0.90 0.90 0.90
B2 1 0.84 0.90 0.90 0.90
S3 1 0.84 0.90 0.90
B3 sym. 1 95 0.90
S4 1 0.93
B4 1

is similar to the one between the land regions. Correlation coefficients for
regions that are far apart from each other remain equal to the prior value.
This effect occurs because the influence of a hyper-parameter dij on the
log-likelihood is negligible for regions that are far apart from each other.

4.3.3. Results

The log-likelihood computed using the LOO-CV for each scenario is
presented in Table 3. Results indicate that for a maximal sample length U ,

Table 3: The results correspond to the log-likelihood log(p(c|l{C},D)) computed using the
LOO-CV procedure.

Number of Max. sample length, U [m]
subregions, Q ∞ 0.75 0.5 0.25 0.125

1 -173.0 -173.3 -173.4 -173.5 -173.6
2 -175.8 -172.3 -171.7 -171.8 -171.8
5 -177.6 -172.6 -172.1 -171.7 -172.3
8 -175.9 -171.5 -171.0 -171.3 -170.9

increasing the number of sub-regions Q tends to increase the log-likelihood
log(p(c|l{C},D)). When using one subregion, i.e. Q = 1, decreasing the
maximal sample length U increases log(p(c|l{C},D)). For Q = 8 subregions,
best results are achieved for the smallest maximal sample length, i.e. U =
0.125m.

One possible cause explaining that results in Table 3 are not monotonically
increasing with Q and decreasing with U , is the usage of a MLE approach
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this estimation method does not consider the uncertainty in the estimation
of hyper-parameters. Nonetheless, LOO-CV results indicate that models
accounting for the effect of physical site discontinuities and aggregated soil
samples have a superior predictive capacity than the baseline GPR model.

Figures 6 and 7 compare the tridimensional iso-surfaces Pr(C > 55mg/kg) >
0.5 for scenarios with respectively {Q = 1, U = ∞} and {Q = 8, U =
0.125m}. Lines in the x-y plane represent the physical discontinuities

(a) Top – x-y (b) Isometric

(c) Elevation – x-z (d) Elevation – y-z

Figure 6: Tridimensional iso-surfaces Pr(C > 55mg/kg) > 0.5 for the scenario with
Q = 1, U = ∞m. Lines in the x-y plane represent the physical discontinuities between
each subregion and dots represent sample locations where the size is proportional to the
observed contaminant concentration.

between each subregion and dots correspond to virtual sample locations
where their size is proportional to the observed contaminant concentrations.
Contrarily to iso-contours in Figure 6, Figure 7 (which include the effect
of physical discontinuities) displays sharp transitions of the contaminant
concentration between sub-regions. In both cases iso-contours indicate that
the contaminant concentration is clustered in layers that have approximately
the same thickness as the soil sample length, i.e. ≈ 1m. This confirms the
relevance to consider the effect of aggregated soil samples.
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(a) Top – x-y (b) Isometric

(c) Elevation – x-z (d) Elevation – y-z

Figure 7: Tridimensional iso-surfaces Pr(C > 55mg/kg) > 0.5 for the scenario with Q = 8,
U = 0.125m. Lines in the x-y plane represent the physical discontinuities between each
subregion and dots represent virtual sample locations where the size is proportional to the
observed contaminant concentration.
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5. Discussion

The results obtained in Section 4.3 demonstrates that two new extensions
to the GPR outperform the standard GPR in the presence of aggregated
soil samples and site discontinuities. This conclusion can be reached based
on the LOO-CV results presented in Table 3. In Figures 6 and 7, the
reader can appreciate the effects of the formulation proposed on results.
Nevertheless, these contaminant iso-surfaces cannot be employed to compare
the performance of model formulations since the true contaminant iso-surfaces
remain unknown. Therefore, the most robust comparison metric remains the
LOO-CV results. Note that the comparison with other techniques such as
ANN remains to be confirmed quantitatively.

The results have shown that the current method is able to treat practical
cases where there are site discontinuities in sites as well as aggregated samples.
The main limitation of the current models is that parameters are estimated
using Maximum Likelihood Estimation (MLE). Future work should quantify
the epistemic uncertainty in model parameters P , which is resulting from the
usage of a small dataset. This task could be achieved by using a Bayesian
approach instead of MLE approach for estimating model parameters.

6. Conclusion

Two improvements to the standard Gaussian Process Regression are
proposed in this paper. The first one can take into account the observation
method employing aggregated samples. The second method allows consider-
ing physical discontinuities between sub-regions within a site. The two new
probabilistic formulations proposed outperformed the standard GPR model.
Although the gain in the prediction performance is small, the fundamental hy-
potheses employed to model site discontinuities and soil sampling techniques
are in better agreement with experimental conditions, as demonstrated by
LOO-CV results.

Acknowledgements

The authors would like to thank Yvon Courchesne from WSP group for
his help in the project and from Denis Marcotte for his comment on the
manuscript preliminary version. The project was funded by the Fonds de
recherche du Quebec - Nature et technologies (FRQNT, Project #2017-NC-
197235).

17



References
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