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Abstract4

Real behavior of existing structures is usually associated with large uncertainty that is often5

covered by the use of conservative models and code practices for the evaluation of remaining fa-6

tigue lives. In order to make better decisions related to retrofit and replacement of existing bridges,7

new techniques that are able to quantify fatigue reserve capacity are required. This paper presents8

a population-based prognosis methodology that takes advantage of in-service behavior measure-9

ments using model-based data interpretation. This approach is combined with advanced traffic10

and fatigue models to refine remaining-fatigue-life predictions. The study of a full-scale bridge11

demonstrates that this methodology provides less conservative estimations of remaining fatigue12

lives. In addition, this approach propagates uncertainties associated with finite-element, traffic and13

fatigue-damage models to quantify their effects on fatigue-damage assessments and shows that14

traffic models and structural model parameters are the most influential sources of uncertainty.15
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INTRODUCTION18

Due to the uncertainty associated with real behavior of existing structures, conservative models19

and code practices are often used to evaluate remaining lives. However, the increasing importance20

of economic and environmental issues related to retrofit and replacement of existing structures21

has led to the need for new techniques that are able to refine evaluations reserve capacity. For22

the case of fatigue evaluations of existing steel bridges, weigh-in-motion data and probabilistic23

tools can now improve traffic-load models. Also, advances in fatigue-damage models of com-24

plex connections are able to enhance the estimation of remaining fatigue life. In order to leverage25

such techniques, model-based data interpretation approaches are required to identify physics-based26

models that are capable of accurately predicting structural behavior. Behavior measurements (e.g.,27

displacements, tilts, strains and accelerations) are thus needed to identify unknown physical pa-28

rameters of such models and reduce uncertainties associated with predictions.29

Several studies have performed fatigue assessments using direct measurements that provide ac-30

curate estimations of stress-ranges occurring during monitoring and using various fatigue-damage31

models (Sweeney 1976; Li et al. 2001; Zhou 2006; Soliman et al. 2013; Kwon et al. 2013). How-32

ever, this information typically falls short when extrapolated for other locations and for other load33

configurations. In practical applications, models are required to predict quantities that are not mea-34

sured directly due to a range of technological, economic and practical reasons. Extrapolation is35

feasible using indirect behavior measurements and physics-based models, such as finite-element36

models. In addition, inferring the correct values of physical parameters is essential for understand-37

ing the true behavior of structures and for enhancing confidence in model extrapolation (Farajpour38

and Atamturktur 2012; Brynjarsdóttir and O’Hagan 2014).39

Many studies have used behavior models to make fatigue assessments of structures using traffic40

simulations (Leander et al. 2010; Leitão et al. 2011; Guo et al. 2012) and advanced fatigue-damage41

models (Siriwardane et al. 2008; Liu et al. 2010). However, these models have been either vali-42

dated or calibrated without accounting for modeling and measurement uncertainties. Verification43

of compatibility of behavior models with measurements does not guarantee accurate predictions,44
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particularly in the presence of systematic modeling uncertainties that are unavoidable when ide-45

alizing complex systems. Model-based data-interpretation techniques that include modeling and46

measurement uncertainties are required in order to infer unknown structural properties, thereby47

improving fatigue assessments (prognosis).48

Model-based data interpretation for complex systems is an ambiguous task that usually leads to49

multiple explannations for measured behavior. Thus, model-based data-interpretation approaches50

leading to a single calibrated model offer limited support for decisions and prognosis (Beven 2006;51

Neumann and Gujer 2008; Beck 2010; Goulet and Smith 2013; Atamturktur et al. 2014). Proba-52

bilistic techniques such as Bayesian inference (Mackay 2003; Yuen 2010) are available for updat-53

ing the knowledge of model parameters and accommodating multiple solutions. Many examples54

have been reported where Bayesian methodologies lead to correct parameter identification and55

extrapolations in situations where information is available for defining the joint probability den-56

sity function (PDF) of modeling and measurement errors and where systematic errors are absent57

(Beck and Katafygiotis 1998; Papadimitriou et al. 2001; Beck and Au 2002; Zhang et al. 2013).58

However, systematic errors are common when modeling complex structures, due to simplifica-59

tions and omissions made in the process of idealization. Goulet and Smith (2013) have proposed60

a population-based data interpretation technique called error-domain model falsification (EDMF).61

This methodology is most appropriate for performing diagnosis and prognosis when knowledge of62

errors is incomplete (Pasquier and Smith 2015).63

Proper consideration of traffic induced loadings is a technical challenge in the fatigue life64

assessment of road bridges. Traffic-load models that are proposed in codes (AASHTO 2007;65

EN1993-1-9 2005; SIA261 Code 2003) can return errors in the calculation of loading stress-range66

spectra resulting in significant errors in remaining-fatigue-life estimations. In addition, local load67

spectrum often varies significantly from the national average (Moses et al. 1987). The combination68

of the weigh-in-motion (WIM) technique with traffic simulation provides a solution to this chal-69

lenge. This technique allows for integrating traffic-loading uncertainties in the fatigue-damage70

assessment. Several studies have used this approach for building suitable traffic-load models71
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(Crespo-Minguillón and Casas 1997; Leahy et al. 2014; Morales-Nápoles and Steenbergen 2015).72

However, no study have been found where traffic simulations and population of finite-element73

models obtained using data interpretation are combined in order to estimate remaining fatigue74

lives of structures.75

Pasquier et al. (2014) proposed a population-based prognosis methodology based on error-76

domain model falsification and code practices that is able to refine remaining-fatigue-life predic-77

tions by taking advantage of in-service behavior measurements. A case study on a hollow-section78

truss bridge has demonstrated that this approach is able to reduce uncertainty associated with79

remaining-fatigue-life predictions. However, the fatigue-damage assessment of hollow section80

joints has been carried out based only on simplified fatigue models.81

Due to the complexity of the stress field in hollow section joints, the hot-spot stress method,82

also known as the geometric stress method, is employed to evaluate the fatigue life of bridges83

made of tubular elements. This method provides Srhs-N curves based on experimental data where84

the Srhs relates to the hot-spot stress range in that joint, rather than the nominal stress range used85

in the conventional fatigue classification method (Maddox 1997; Niemi et al. 2006). The hot-spot86

stress is extrapolated at the weld toe, where potential crack initiation sites (hot spots) are expected.87

Contrary to the nominal stress, the hot-spot stress includes the effect of the joint geometry (stress88

concentration), the type of load and the weld shape being idealized. Therefore, the Srhs-N curve89

presents the advantage of simplifying Snom-N curves given for each detail category into single90

design curve depending on weld type by including the global detail geometry in the hot-spot stress91

calculation (Hobbacher 2007).92

This paper builds on the work by Pasquier et al. (2014) and enhances the population-based93

prognosis methodology by combining advanced traffic and fatigue models with on-site behavior94

measurements in order to further improve predictions of remaining fatigue lives. By propagat-95

ing uncertainties associated with these advanced strategies, the methodology provides insight into96

sources of uncertainty for the prediction of fatigue-reserve capacity as well as support for man-97

agement decisions related to structural retrofit, repair and replacement. The first section describes98
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the enhanced prognosis methodology and the second section presents a full-scale case study that99

illustrates the overall benefits of the approach.100

POPULATION-BASED FATIGUE PROGNOSIS101

This section describes the population-based prognosis methodology for remaining-fatigue-life102

evaluation of tubular K-joints in existing bridges. First, error-domain model falsification, the103

system-identification approach, is presented. Then, the second section explains the process of104

influence-line predictions based on models identified by EDMF. Traffic simulations based on WIM105

data and the hot-spot stress method for tubular K-joints are then described. Finally, the last sec-106

tion explains how uncertainty is propagated throughout the methodology in order to predict the107

remaining fatigue life and how the uncertainty relative importance is determined.108

Figure 1 summarizes each step of the methodology starting from the initial population of109

model instances to the remaining-fatigue-life prediction of a single critical joint. After falsifi-110

cation of inadequate model instances, nSP candidate-model samples are used to predict influence111

lines of member internal forces including modeling uncertainties. Then, the damage index of each112

candidate-model sample is determined through a Monte-Carlo analysis over each nSP samples us-113

ing traffic simulations for computing internal-force spectra, nominal-stress spectra, hot-spot stress114

spectrum, rainflow analysis and Srhs-N curve comparison. Finally, from the damage index, the115

distribution of remaining-fatigue-life predictions is determined.116

Error-domain model falsification117

The goal of system identification is to combine the information provided by model predictions118

and by measurements in order to learn what are possible values for θ, which describe character-119

istic properties of a structure. Estimates for nY characteristic responses Yi of a structure can be120

provided by models as well as by in-situ observations of a constructed system. Let g{m}i (θ) de-121

note model predictions from a model class {m} and taking as input a set of parameter values θ,122

ŷi denotes observations, and {Ui,g, Ui,ŷ} respectively denotes a random variable describing model123

prediction and measurement errors for the ith structural characteristic response. In this paper, the124
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superscript {m} denoting the model class is omitted in order to simplify the notation. The rela-125

tionships between a characteristic response and a model prediction is given by126

Yi = gi(θ) + Ui,g, ∀i = 1, 2, . . . , nY (1)

and between a characteristic response and a measurement is127

Yi = ŷi + Ui,ŷ, ∀i = 1, 2, . . . , nY (2)

The joint probability density function (PDF) fUŷ
(uŷ) describing the measurement error is in com-128

mon cases estimated from repeated calibration experiments performed in controlled conditions.129

In the case of civil structures, such a characterization is usually not possible for the joint PDF130

of model-prediction errors, fUg(ug); instead, fUg(ug) is commonly estimated based on heuris-131

tics and expert knowledge. Examples of sources of modeling uncertainty are idealized support132

and connection conditions, weld geometry, temperature effects, load amplitude and load position,133

Bernoulli-beam hypothesis, geometric variability of the structure, constitutive law of materials,134

etc. For finite-element models, examples are also mesh refinement and interpolation, element-type135

choices, the presence of singularities, etc. Because modeling uncertainty associated with complex136

systems commonly has a larger variance than measurement uncertainty, the joint PDF describing137

the combination of modeling and measurement uncertainties, fUc(uc) ∼ Uŷ −Ug is also domi-138

nated by heuristics and expert knowledge.139

Error-domain model falsification performs system identification by generating an initial popu-140

lation of model instances {θk}, k = 1, 2, · · · , nk and then falsifies those instances that are not com-141

patible with observations given modeling and measurement uncertainties. The candidate model set142

Ω consists in the initial model set minus the falsified models so that143

Ω = {k : Ti,low ≤ gi(θk)− ŷi ≤ Ti,high,∀i} (3)
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where Ti,low and Ti,high are threshold bounds defining the shortest intervals including a probability144

φ
1/nY

d for the marginal PDFs of fUc(uc), where φd ∈ [0, 1] is the target reliability usually set at145

0.95.146

Influence-line prediction147

The population-based fatigue prognosis methodology predicts remaining fatigue lives using148

candidate models obtained as described in the first section, traffic simulations and hot-spot stress-149

range calculations. For the determination of hot-spot stresses of a welded K-joint, internal forces150

of members (braces (br) and chord (ch)) are required to calculate nominal stresses (axial (ax) and151

in-plane-bending (ipb) stresses) acting in the joint. In order to lower the effects of local stress152

concentrations, internal forces are extracted at a distance δ = 1.9 · D and δ = 2.2 · d of the joint153

(Schumacher et al. 2003), with D and d being the chord and the brace outer diameters. Axial154

forces N , in-plane-bending moments M and also shear-forces V are extracted at each of the four155

members of the joint such that in-plane-bending stresses at the joint are calculated using the shear-156

force linear variation. Figure 2 illustrates the internal forces and the nominal stresses involved in157

the calculation of hot-spot stresses.

+
-

+

+
-

+

Eq. (6-8)

Figure 2. Illustration of the calculation leading to the hot-spot stresses with the
variables involved for a single joint j

158

The knowledge of internal forces in a bridge is based on load models that represent heavy-159

vehicle traffic crossing the structure. To be able to perform traffic simulations, influence lines of160

internal forces acting at critical joints are required. These influence lines are predicted using the161

candidate models and a moving reference axle load.162

Each point of the influence line of an internal force Qj(xl) for nj locations is obtained using163
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Eq. (4), where xl is the location of the axle loading on the bridge.164

Qj(xl) = gj(xl,θK) + Uj,g(xl), ∀j = 1, 2, . . . , nj (4)

In Eq. (4), the candidate models are randomly selected using a discrete random variable K that is165

defined by the PDF:166

fK(k) =

 1/#Ω, ∀k ∈ Ω

0, otherwise
(5)

Thus, Qj(xl) is a random variable described by a PDF obtained by the combination of internal-167

force prediction values for each candidate model gj(xl,θK) and the distribution of modeling un-168

certainties, Uj,g(xl). Then, influence lines are used to generate the spectra of internal forces N(t),169

V (t) and M(t) from a traffic model for each member of each critical joint.170

Traffic model171

In order to determine a realistic spectrum of internal forces, traffic of heavy vehicles crossing172

the bridge is modeled based on measured weigh-in-motion (WIM) data. WIM devices capture173

static vehicle axle weights and provide information on: (1) vehicle arrival time (VAT ); (2) vehicle174

speed (VS ); (3) gross vehicle weight (GVW ); (4) vehicle total length (TVL); (5) vehicle axle load175

(AVW ); and (6) vehicle axle spacing (AVS ). Only heavy vehicles with GVW larger than ten tons176

are taken into account since lighter vehicles lead to a negligible contribution to the bridge fatigue177

damage.178

The traffic simulation tool takes as input the WIM raw data spreadsheet and classifies observed179

heavy vehicles in 13 classes according to GR03-EUR13 classifications (Table A.2 (Meystre and180

Hirt 2006)). A mean value and a covariance matrix are assigned to the random variables GVW ,181

TVL, AVW and AVS of each class based on WIM data. In addition, a normal PDF and a Burr PDF182

(Kleiber and Kotz 2003) are fitted to observed vehicle speeds (VS ) and to observed inter-arrival183

times (VIT ). Inter-arrival times are computed based on the difference between arrival times of184

consecutive vehicles. The distributions for VAT , VS , GVW , TVL, AVW and AVS represent the185
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probabilistic traffic model. In order to determine the spectrum of internal forces N(t), V (t) and186

M(t), a sequence of axle loadings (i.e. trucks being represented by either two or more axles with187

defined AVS ) is randomly generated based on the traffic model for a representative traffic period.188

In this sequence, each axle loading refers to a time t. At each xl along the bridge length, the189

generated axle loading of time t is superimposed to internal-force influence lines for determining190

N(t), V (t) and M(t). Although the influence lines are determined based on a reference axle191

loading, the internal forces related to traffic simulation can be obtained by proportionality of axle-192

loading value since the bridge finite-element model behaves elastically. Thus, knowing the axle-193

load value of the traffic sequence and the reference axle-loading value, the internal forces are194

multiplied by the ratio of these values. This procedure is repeated for each time step of the sequence195

and the spectrum of internal forces is determined for a single lane. The random traffic sequences196

for different lanes are generated individually. Finally, the spectra of individual lanes are summed197

up to obtain the total internal-force spectrum at the critical joint members.198

Hot-spot stress method199

Knowing the spectrum internal forces (N(t), V (t) andM(t)) in the truss members at a distance200

δ of the joint enables calculation of the spectrum of axial and in-plane bending stresses at the weld201

toe (critical point). Axial stresses are constant along members between two joints, whereas in-202

plane-bending stresses vary linearly over the length of members. Therefore, spectra of nominal203

stresses in brace and chord members are generated from spectra of internal forces according to Eq.204

(6):205

σax(t) =
N(t)

A

σipb(t) =
M(t) + V (t) · δ

W

(6)

where A and W are the member cross-section area and the elastic section modulus, respectively,206

and δ is the distance from the weld toe to the position where the shear force V is extracted. At207

weld toes, where fatigue cracks are expected, geometrical discontinuities cause stress deviations208
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and stress concentrations. This effect is taken into account in the calculation of hot-spot stresses209

σhs,i by multiplying the member stress σ away from the joint by the stress concentration factor210

SCF i as shown in Eq. (7):211

σhs,i = σ · SCF i (7)

where index i represents the hot-spot location.212

Since stresses are elastic, the total hot-spot stress σhs,i at hot spot i is the superposition of213

individual hot-spot stress under each load case (Zhao et al. 2000) and thus the hot-spot stress214

spectrum is calculated over time t as follows (axial brace force: ax−br, moment in brace: ipb−br,215

axial chord force: ax− ch, moment in chord: ipb− ch):216

σhs,i(t) = σax−br(t) · SCF i,ax−br + σipb−br(t) · (0.5 · SCF i,ipb1−br + 0.5 · SCF i,ipb2−br)

+ σax−ch(t) · SCF i,ax−ch + σipb−ch(t) · SCF i,ipb−ch

(8)

The stress concentration factors are determined from Schumacher et al. (2003) for K-joints217

defined by geometric parameters β = d
D

, γ = D
2T

and τ = tbr
T

where d is the outer brace diameter,218

D is the outer chord diameter, tbr is the brace wall thickness and T is the chord wall thickness.219

Thus, spectra of hot-spot stresses are generated from spectra of nominal stresses and stress con-220

centration factors at critical joint locations. In tubular K-joints, the most common crack location is221

encountered at hot spot 1 (hs1), which is situated at the weld toe in the chord, and for joints with222

tension in the chord, on the tension brace side (see Figure 3) (Acevedo and Nussbaumer 2012).223

This methodology, which expresses hot-spot stress spectrum from the nominal stress spectrum in

1

Figure 3. Hot-spot location 1 on the critical joint

224
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Eq. (8), is more optimistic than expressing hot-spot stress ranges from nominal stress ranges. In-225

deed, computing the nominal stress ranges before using the hot-spot stress method leads to the loss226

of synchronicity of axial and in-plane-bending nominal stresses that appear in the traffic simula-227

tion. Such procedures lead to unnecessary conservatism in the hot-spot stress-range calculation228

since peaks in axial stresses and their ranges do not necessarily act at the same time as the peaks in229

in-plane-bending stresses. Thus, evaluating hot-spot stress spectra helps preserve the simultaneity230

of stress ranges acting at critical joints.231

Remaining-fatigue-life prediction232

Histograms of hot-spot stress ranges are obtained using the rainflow algorithm (Downing and233

Socie 1982) and are then compared to the Srhs-N curve referring to the joint category under study234

for the determination of the damage index. Srhs-N curves may be either provided by codes (SIA263235

Code 2003; Zhao et al. 2000) or based on experimental data in order to avoid using deterministic236

values in this methodology. Provided that a sufficient number of experimental results are used, a237

regression model can be identified and then used for the comparison of stress ranges. The damage238

index Dperiod is then computed using Miner’s rule (Miner 1945) in Eq. (9) where damage induced239

by each stress range h of the histogram are summed for the period of traffic that is simulated. Hot240

spot 1 is assumed to be the most critical such that the index i for the hot-spot location is omitted in241

the following developments.242

Dperiod =
∑ nh

Nh

=
∑ nh

C ·∆σ−mhs,i,h
(9)

In Eq. (9), the Srhs-N curve is described by C · ∆σ−mhs,i,h, where C is a constant depending on243

the detail category and m is the slope coefficient; for steels, it is usually defined as m = 3. The244

remaining fatigue life RFL in years is then obtained using Eq. (10):245

RFL =
Ryear

Dperiod

(10)
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where Ryear is the portion of traffic simulation period over one year. For example, one week of246

traffic simulations is extrapolated in years using Ryear = 1/52. In Eq. (10), traffic is assumed247

constant during the joint life and failure is assumed to occur when the damage index reaches unity.248

Propagation of uncertainty and sensitivity analysis249

In previous sections, Equations 6 through 10 have been written for a single model instance250

and a single critical joint. In the population-based prognosis methodology, N , V and M are251

random variables, Nbr,j(xl),Vbr,j(xl) and Mbr,j(xl) and are obtained from Eq. (4) (here, for the252

brace internal forces of the j th joint and similarly transposed for the chord internal forces). Using253

the probabilistic traffic model, random samples are generated from the distributions VAT , VS ,254

GVW , TVL, AVW and AVS in order to define a random sequence of axle loadings. After traffic255

simulations, these internal forces are time dependent: Nbr,j(t),Vbr,j(t) and Mbr,j(t). Consecutively,256

axial and in-plane-bending stresses, hot-spot stresses and hot-spot stress ranges are random vari-257

ables, σax,j(t), σipb,j(t), σhs,i,j(t) and ∆σhs,i,j(t). Then, from Eq. (9), Dperiod becomes the random258

variable Dperiod,j and similarly for RFLj from Eq. (10).259

Finally, using a number of samples nSP of random variables in Eq. (4), the probability den-260

sity function of RFLj for the j th joint among the nj joint locations is obtained using Monte-Carlo261

analysis. For each Monte-Carlo step, the influence line of a candidate-model sample K is used to262

calculate the remaining fatigue life from a random traffic sequence and a random Srhs-N curve sam-263

ple. A sufficient number of samples nSP should be generated in order to ensure convergence of the264

remaining-fatigue-life distribution. Using this process, model-parameter uncertainties, modeling265

uncertainties, traffic uncertainties and Srhs-N curve uncertainty are propagated through remaining-266

fatigue-life predictions. Lower and higher remaining-fatigue-life prediction thresholds are then267

evaluated for each distribution RFLj . These thresholds represent the shortest interval includ-268

ing a target probability of prediction φp. Prediction thresholds are a robust representation of the269

remaining-fatigue-life uncertainty when little information is available for defining the true model270

of errors associated with remaining-fatigue-life values. Since the identification reliability is φd,271

and since the process involves independent random variables, the probability of having the true272
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prediction value included between prediction thresholds for each critical joint independently is at273

least φd · φp, given the estimated PDF of uncertainty.274

In this methodology, model-parameter uncertainties, modeling uncertainties, traffic uncertain-275

ties and Srhs-N curve uncertainty are propagated across the process of fatigue prognosis. In order276

to determine the relative importance of each uncertainty source involved in the process, a sensi-277

tivity analysis can be undertaken. Here, the sensitivity analysis is based on the response surface278

methodology (Box and Draper 1959; Fang et al. 2005). Let Y = f(X1, X2, . . . , Xi, . . . , Xn) be279

the response of a model f having random variablesX as parameters. VariablesX are used to build280

a model matrix M whose elements are standardized in the sense of design of experiments. The281

model f can be approximated by a linear function Y ≈Mβ, where β contains the parameters of282

the linear function. This expression can be solved using the least squares method such that:283

β̂ = (MTM )−1(MTY ) (11)

where the vector β̂ = [β̂0, β̂1, β̂2, . . . , β̂i, . . . , β̂n]T represents the least-square estimator of the true284

parameter vector and thus, whose elements represent the importance of each variable Xi on the285

response Y , except β̂0 that is the constant term of the linear function. The relative importance of286

the random variables Xi is then computed over the sum of all importances: β̂i∑n
i=1 β̂i

.287

CASE STUDY: AARWANGEN BRIDGE288

Structure description289

The example under study is a composite-steel-concrete bridge over the Aar river and located in290

the city of Aarwangen (Switzerland). The bridge has two spans of 47.8 m with welded tubular steel291

trusses connected in a composite manner to the concrete deck that is 8.3 m wide. The cross-section292

of the finite-element model and its general overview are displayed in Figure 4. This bridge carries293

the bidirectional traffic with two lanes (west and east) of a main road going from Langenthal to294

an exit on the highway Bern-Zurich and Niederbipp. On average, 2, 572 trucks with an average295

weight of 18 tons cross the bridge in both directions every week.296
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Figure 4. (a) Aarwangen Bridge model cross-section and (b) general overview
[Reprinted from Pasquier et al. 2014]

The purpose of this study is to improve the reserve-capacity estimation of two K-joint connec-297

tions of the truss as shown in Figure 5. Each K-joint has southern and northern welds, leading to298

four critical joints to evaluate overall. The failure location for these four joints is assumed in the299

chord (hot spot 1). This location is defined as the critical hot-spot position for this study in order300

to avoid the increase of complexity related to the evaluation of the other hot-spot locations.

South North

2-south 2-north

1-south 1-north

Figure 5. Critical truss joint locations under study, focused on hot spot 1 [Adapted
from Pasquier et al. 2014]

301

The structure takes a set of six unknown parameter values θ = [θ1, θ2, . . . , θ6]: the rotational302

stiffness of the truss connections, the longitudinal stiffnesses of the pavement covering expan-303

sion joints, and Young’s moduli of steel, concrete and pavement. In the finite-element model, the304

connection stiffness and the southern and northern expansion-joint stiffnesses are modeled using305

rotational and longitudinal springs. These parameters are illustrated in Figure 6.306
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Figure 6. Uncertain model parameters [Adapted from Pasquier et al. 2014]

Model falsification and influence-line computation307

As presented in Pasquier et al. (2014), the parameter values are identified using behavior mea-308

surements that are determined from static-load tests. From an initial population of 15, 625 model309

instances, a subset of 69 candidate models are compatible with 21 strain measurements made dur-310

ing static-load testing (Pasquier et al. 2014) by following the error-domain model falsification311

approach using a target reliability φd = 0.95.312

The 69 candidate models are used to predict the influence lines of chord and brace internal313

forces for the two K-joints (overall 24 internal forces). A reference axle loading based on codes314

(SIA261 Code 2003) is used to compute the influence lines. The load moves from one end of the315

bridge to the other by step xl of two meters, leading to overall l = 49 load steps. Influence lines316

are determined in turns for west and east lane axle loading.317

The resolution of influence-line discretization obtained through finite-element analysis could318

be too low to be used for simulating traffic due to high demand in computing time for increasing319

the resolution. In such case, a linear interpolation is undertaken for increasing the influence-line320

resolution. The error associated with the interpolation is then quantified and combined with the321

other modeling uncertainties. For Aarwangen Bridge, since 49 load steps do not return a high322

enough influence-line resolution for the traffic-simulation process, a linear interpolation is carried323

out in order to obtain influence lines of 193 points. It would be computationally demanding, and324

not necessarily more accurate, to calculate influence lines of 193 points for each candidate model.325

In order to determine the error induced by the interpolated influence line, the influence line for326

193 points is determined using the finite-element model for the model instance having the mean327

values of parameters θ. Then, the interpolation errors for the 193 points are obtained by comparing328
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this influence line with the interpolated one. The same procedure is carried out for the influence329

lines of modeling uncertainties. In this way, the interpolation error can be combined with the other330

modeling uncertainties at the 193 points.331

Then, the distribution of influence lines of each internal force is determined using Eq. (4),332

including the interpolation error in the modeling uncertainties Uj,g(xl). In order to have a rea-333

sonable computing time during traffic simulation, the number of samples of Qj(xl) is limited to334

nSP = 1, 000. Gathering the 24 internal forces, 1, 000 candidate-model samples and the two traffic335

lanes, the number of influence lines to be processed during traffic simulations is 48, 000.336

The modeling uncertainties Uj,g(xl) are presented in Table 1. Model simplifications, mesh337

refinement and additional uncertainty are sources whose PDF is estimated based on engineering338

judgment and have identical distributions over xl. Influence-line interpolation error is considered339

as a bias that is added to each candidate-model sample such that no PDF is estimated. The other340

sources of uncertainty represent parameters with secondary influence on the structural response341

and their effect on the model predictions is propagated through the finite-element model using a342

thousand Monte-Carlo simulations. Except for the interpolation error, all other sources of modeling343

uncertainty were also used for defining the threshold bounds during model falsification and in344

Pasquier et al. (2014).

Table 1. Sources and probability density functions of modeling uncertainties in-
volved in influence-line prediction

Uncertainty source Unit PDF Mean/Min STD/Max

Model simplifications and FEM % Uniform 0 5
Additional uncertainty % Uniform -1 1

Mesh refinement % Uniform -2 0
Influence-line interpolation error % - -0.36a 1.6a

∆v Poisson’s ratio of concrete - Gaussian 0.19 0.025
∆t1 steel profile thickness % Uniform -10 10
∆t2 steel profile thickness % Uniform -12.5 12.5
∆D1 steel profile diameter % Uniform -1 1
∆D2 steel profile diameter % Uniform -1 1

∆t pavement thickness % Gaussian 0 2.5
aMinimum and maximum values of error from x1 to x193 for Nch,s1.

345

17

Pasquier, R.; D'Angelo, L.; Goulet, J.-A.; Acevedo, C.; Nussbaumer, A. & Smith, I. Measurement, data interpretation 
and uncertainty propagation for fatigue assessments of structures Journal of Bridge Engineering, 2015, in press



Preprint Versio
n

For example, Figure 7 presents the combined parameter and modeling uncertainty associated346

with influence lines of internal forces Nch,s1 and Mch,s1 for the initial model set (IMS) and the347

candidate model set (CMS). At the maximum axial force and moment, the IMS uncertainty ranges348

from 192 to 231 kN and from 2.86 to 3.78 kNm as the CMS uncertainty ranges from 208 to 230 kN349

for the axial force and from 3.07 to 3.54 kNm for the moment. A reduction of uncertainty is ob-350

served between the IMS and CMS uncertainty due to the falsification of inadequate model instances351

by the measurements.
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Figure 7. Combined parameter and modeling uncertainty associated with
influence-line calculation of Nch,s1 and Mch,s1 for the initial model set (IMS) and the
candidate model set (CMS)

352

Traffic simulations and hot-spot stress-range calculation353

Traffic simulations are based on 18 days of continuous traffic measurements on the bridge with354

mobile WIM device ”Golden River”. WIM raw data contain information on VAT , VS , GVW ,355

TVL, AVW , AVS of heavy vehicles crossing the bridge on the west lane (direction Aarwangen)356

and on the east lane (direction Niederbipp) during the period from 9/10/1998 to 27/10/1998. A total357

number of 6, 577 heavy vehicles (3, 655 vehicles on the west lane, 2, 922 vehicles on the east lane)358

are classified using the traffic simulation tool presented in section ”Traffic model”. For each class,359

the multivariate vector [GVW ,TVL,AVW ,AVS ] is described by a mean vector and a covariance360
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matrix. PDFs for VS and VIT are fitted based on the WIM data. Table 2 summarizes their PDFs361

depending on whether heavy-vehicle traffic crosses bridge west lane or east lane. Once the traffic

Table 2. Probability density functions of vehicle speeds and vehicle inter-arrival
time included in the traffic model

VS [km/h] VIT [sec]

West lane ∼ N (50.15, 5.95) ∼ Burr(132.56, 1.10, 1.21)a

East lane ∼ N (50.47, 6.66) ∼ Burr(154.60, 1.12, 1.13)a

aBurr distribution are defined by three parameters: Burr(α, c, k).

362

on the two lanes has been completely defined, random sequences of weekly axle loadings of west363

and east lanes are generated for each of nSP candidate-model samples. Spectra of internal forces364

are determined by superimposing traffic axle-loading samples to the influence lines of N , V and365

M .366

From the internal-force spectra, nominal-stress spectra are calculated at each time t using Eq.367

(6). In this expression, A and W are random variables due to the member geometrical uncertainty.368

Their values vary in relation with diameter and thickness uncertainty displayed in Table 1.369

The SCF values are determined by linear interpolation (and occasionally extrapolation) of370

K-joint SCF table at hot spot 1 obtained experimentally and numerically by Schumacher et al.371

(2003) on similar joint geometry. The interpolation is based on the non-dimensional parameters372

of the joints (β = 0.48, γ = 4.06 and τ = 0.4) for brace angles θ = 45. The SCF values that373

are displayed in Table 3 are used to calculate the hot-spot stress spectra at hs1 based on Eq. (8).374

The hot-spot stress spectra are then transformed into hot-spot stress-range histograms using the375

rainflow algorithm.

Table 3. Values for the stress concentration factors SCF obtained according to
Schumacher et al. 2003

SCF Value [-]

SCF i,ax−br 0.975
SCF i,ipb1−br 0.52
SCF i,ipb2−br 0.61
SCF i,ax−ch 1.435
SCF i,ipb−ch 1.51

376

19

Pasquier, R.; D'Angelo, L.; Goulet, J.-A.; Acevedo, C.; Nussbaumer, A. & Smith, I. Measurement, data interpretation 
and uncertainty propagation for fatigue assessments of structures Journal of Bridge Engineering, 2015, in press



Preprint Versio
n

Remaining-fatigue-life evaluation377

The remaining fatigue lives of the four joints are calculated by comparing the hot-spot stress-

range histograms to Srhs-N curves. For this study, 30 experimental data points (Acevedo and

Nussbaumer 2012; Zamiri 2014) are used to build a regression model. This model is a Gaussian

function N (a+ b · log(∆σhs), c
2) with [a, b, c] ∼ N (µ,Σ) and

µ = [26.88,−2.61,−0.90]T , Σ =


1.71 −0.34 0

−034 0.07 0

0 0 0.02


where a and b are parameters of the straight line representing the mean value of the regression378

model and having standard deviation c. In addition, [a, b, c] are random variables that are described379

by a multivariate Gaussian distribution of parameters µ and Σ. The latter includes variances and380

correlation values of [a, b, c].381

In order to be comparable with experimental data that were obtained with various chord thick-382

nesses, hot-spot stress-range resistances Srhs and hot-spot stress ranges ∆σhs obtained from traffic383

simulation are corrected to refer to stress resistance of 20 mm thickness members Srhs,20 using Eq.384

(12), given by Schumacher et al. (2003).385

Srhs,20 =

(
T

20

)0.25

· Srhs,T , ∀T > 20mm (12)

In Eq. (12), Srhs,T refers to the hot-spot stress range of a joint having a chord thickness of T . For386

the joints under study, the chord thickness is T = 50 mm. This fatigue model does not consider a387

fatigue limit for the low stress ranges. The fatigue limit implies that low stress-range values lead to388

an infinite number of cycles, i.e. no damage is induced when no cycles are greater than the limit.389

Since the purpose of this study is to determine the remaining-fatigue-life distribution, a continuous390

Srhs-N curve is thus preferred, which is a strong but conservative assumption.391

The hot-spot stress-range histograms are compared to this regression model in order to obtain392
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the number of cycles and compute the damage index using Eq. (9). The process is repeated ran-393

domly nSN = 1, 000 times until convergence of the damage-index distribution is achieved. This re-394

peated process is necessary since nSP = 1, 000 samples of stress-range histograms are insufficient395

to capture the Srhs-N curve uncertainty associated with the regression model. Finally, the remaining396

fatigue life of each candidate-model sample is calculated using Eq. (10), with Ryear = 1/52 since397

one week of traffic is simulated, in order to determine the distribution of RFLj for each critical398

joint. This distribution is composed of nSP × nSN = 1, 000, 000 samples. The convergence of the399

distribution is verified with a lower value of nSP in order to ensure the correctness of the repeated400

Srhs-N curve comparison process. Based on the distribution of RFLj , prediction thresholds are401

determined using a target reliability φp = 0.95. Since the identification reliability is φd = 0.95, the402

probability of having the true prediction value included between threshold bounds for each critical403

joint independently is at least φd · φp = 0.90.404

Figure 8 presents the remaining-fatigue-life predictions that are determined using the population-405

based prognosis methodology for the four critical joints (see Figure 5). A second axis represents406

the results in term of equivalent number of trucks crossing the bridge in both directions during407

life time. This figure compares predictions made with the initial population of model instances408

(IMS), the candidate model set (CMS) and a design model that is composed of pinned-truss con-409

nections without expansion joints and design values for Young’s moduli of steel (210 GPa) and410

concrete (35 GPa). The design-model remaining fatigue life is calculated using prescriptions of411

Zhao et al. (2000) for the internal-force determination and the same random process for traffic and412

remaining-fatigue-life computation as for IMS and CMS predictions. For the CMS predictions,413

the value displayed in Figure 8 is the lower bound of the confidence intervals including 95% of the414

probability distribution. This value is important since it expresses the lowest acceptable value for415

the remaining-fatigue-life prediction. Uncertainty reduction between IMS and CMS predictions is416

computed based on the percentage of reduction between IMS and CMS ranges defined as the dif-417

ference of upper and lower prediction thresholds. The improvement ratio is obtained by comparing418

the design-model prediction and the CMS lower threshold. The RFL values that are found are very419
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Figure 8. Comparison of remaining-fatigue-life predictions with the initial model
set (IMS), the candidate model set (CMS) and the design model for four critical
joints using the population-based prognosis methodology

high and would be reduced with higher traffic loads. However, this allows for relative comparison420

of design-model prediction and CMS predictions. Note that since a single slope Srhs-N curve re-421

sistance model is used, it is expected that many model instances would lead to an infinite life using422

a fatigue limit.423

These results reveal an uncertainty reduction of up to 57% of the reserve-capacity predictions424

for joint 1-south and joint 2-north. In addition, when compared with the design-model predictions,425

the candidate-model-prediction lower bounds depict an improvement of remaining fatigue life up426

to 170% for joint 2-south. This means that the use of data interpretation combined with an en-427

hanced finite-element analysis lead to less conservative estimates of the fatigue reserve capacity.428

This observation was also made by Pasquier et al. (2014). In addition, this second study of the429

Aarwangen Bridge confirms the good condition of the four tubular joints, whose reserve capacity430
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against fatigue failure is much longer than the bridge service life.431

Relative importance of uncertainty sources432

The relative importance is determined using the response-surface method. Sources such as433

parameter uncertainty, modeling uncertainty, traffic uncertainty and Srhs-N curve uncertainty are434

varied individually through the Monte-Carlo process while having the other sources constant in435

order to determine the distribution of Xi (Eq. 11). This type of sensitivity analysis is local, i.e.436

it accounts for individual parameter variability and its effect on the model response. Then, using437

the same random samples, all sources are varied to determine Yi. Finally, the relative importance438

is obtained as presented in Figure 9. This bar diagram describes the relative importance of each439

uncertainty source on the remaining fatigue life for the four critical joints before data interpretation440

is undertaken. The traffic uncertainty is the main uncertainty source related to the reserve fatigue
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Figure 9. Relative importance of uncertainty sources on the remaining-fatigue-life
predictions without data interpretation (IMS) for the four critical joints

441

capacity, with 60 to 78% of relative importance between the joints. The second source is the442

parameter uncertainty, with 18 to 38% influence depending on the joints. Modeling uncertainty (see443

Table 1) and uncertainty associated with Srhs-N curve regression model have very low influences444

on remaining-fatigue-life predictions.445

The parameter-uncertainty relative importance is composed of the relative importance of indi-446

vidual model parameters θ. Figure 10 displays their relative importance on the remaining-fatigue-447
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life predictions. The stiffness of the southern expansion joint and the rotational stiffness of truss448

connections are shown to be the most influential depending on the critical joint location. The449

southern expansion joint has more importance than the northern expansion joint since the four crit-450

ical joints are located on the bridge southern span. In addition, the material Young’s moduli have451

a minor influence on predictions, particularly the steel Young’s modulus that has the lowest influ-452

ence. This shows that modeling assumptions associated with boundary conditions and connection453

stiffnesses are important for the accuracy of fatigue assessments. These structural components are454

usually the main sources of systematic errors in the modeling of complex structures such as the455

Aarwangen Bridge. Therefore, special care is required when modeling such components.
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Figure 10. Relative importance of model parameters θ on the remaining-fatigue-life
predictions for the four critical joints

456

The comparison of uncertainty source importance is also carried out after data interpretation457

as shown in Figure 11. In this case, model falsification impacts only the parameter uncertainty458

that is greatly reduced as presented already in Figure 8. Here, the relative importance of param-459

eter uncertainty is decreased to the level of modeling uncertainty and Srhs-N curve uncertainty.460

Consequently, traffic uncertainty has the dominant influence.461

In Figures 9 and 11, the uncertainties associated with the traffic model have a high influence on462

remaining-fatigue-life values. This is due to the large variability of truck weights in the simulated463

traffic, particularly the part of trucks with lower weight, that lead to large variability in the number464
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Figure 11. Relative importance of uncertainty sources on the remaining-fatigue-life
predictions with data interpretation (CMS) for the four critical joints

of stress ranges and, subsequently, to large variability in remaining fatigue life. Such light-truck465

traffic is not of main concern since the most important value is the lower bound of the remaining-466

fatigue-life prediction. However, traffic uncertainty could be reduced by using more accurate WIM467

data during a longer period. Furthermore, this would allow for the consideration of traffic increase468

(weights and volume) over time, which is a parameter that is not taken into account in this study.469

The Aarwangen Bridge study also shows that the uncertainty associated with fatigue models is not470

significant when including the traffic and model-parameter uncertainty.471

DISCUSSION472

The study of the Aarwangen Bridge using the population-based prognosis methodology reveals473

satisfactory fatigue resistance of the four critical joints. Although a constant traffic scenario is474

assumed, a traffic increase could be taken into account in order to consider a heavy-vehicle loading475

increase. Since traffic evolution is unknown, this uncertainty could be taken into account in the476

methodology, and this would increase the uncertainty related to remaining-fatigue-life predictions.477

This uncertainty increase may also be reduced by investing further in the determination of real478

traffic on bridges for longer periods.479

The four joints under study would have a sufficient reserve capacity using design-model predic-480

tions. Considering the design service life of 70 years (based on SIA261 Code (2003)), predicting481
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either 400 years or 1, 200 years has the same impact on decision making related to retrofitting482

these joints. In practice, the fatigue assessment of an existing bridge starts by using conserva-483

tive and simplified models prior to more advanced evaluations (see Figure 12). Population-based484

prognoses become beneficial when design-model predictions are below the required service lives485

and imply intervention. In such situations, model-based data interpretation provide a more so-486

phisticated approach for refining fatigue assessment. First, data interpretation is combined with487

traffic-load model and S-N curve from codes as it was proposed for the Aarwangen Bridge in488

Pasquier et al. (2014). If performance evaluations lead to intervention necessity, traffic-load mod-489

els based on WIM data and advanced fatigue models are used to further increase the refinement of490

the fatigue assessment. If the performance is still not satisfactory, interventions are unavoidable.491

Based on this framework, improvements of 170% in the remaining-fatigue-life prediction, as this492

is determined for the Aarwangen Bridge, compared with design-model predictions that would be493

below the required service lives, would be economically and environmentally significant. Note494

that the process presented in Figure 12 is purposely compatible with AASHTO (2011) that recom-495

mends progressive levels of sophistication including advanced analysis, WIM study and variability496

of fatigue resistance.
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Figure 12. Framework for the fatigue assessment of existing bridges
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Sensitivity analysis shows that traffic uncertainty and model-parameter uncertainty are the most497

important. It should be noted that the extent of traffic uncertainty is not high enough to overwhelm498

the model-parameter uncertainty. Due to the reduction of uncertainty associated with the physical499

parameters using data interpretation, a significant reduction in remaining-fatigue-life predictions500

is observed. In addition, the uncertainty associated with structural components such as boundary501

conditions and connection stiffnesses is important when evaluating the fatigue reserve capacity.502

Special care is thus required when modeling such components. In addition, uncertainties asso-503

ciated with the hot-spot method, including the determination of SCF factors (Table 3) and the504

thickness correction (Eq. 12), are not explicitly included. If one has the possibility to estimate505

them, these uncertainties can be accommodated by the methodology. The approach recommended506

by Schumacher et al. (2003) was preferred over the original proposed by Gurney (1977). Note that507

the uncertainty related to Eq. (12) is included implicitly in Srhs-N curve definition.508

This methodology is not intended to be more accurate than direct field observations and specific509

modeling of the joints to determine the remaining fatigue life. However, the number of joints,510

especially the number of hot-spot locations, that can be monitored and modeled are limited in511

practice. In this context, physics-based models are required to predict stresses and fatigue behavior512

at unmeasured locations. Populations of candidate models are less conservative than current design513

models and this paper demonstrates that such populations can be accommodated with advanced514

traffic-load and fatigue-damage models. Nevertheless, future work may include comparison of the515

predictions with field observations in order to evaluate the accuracy of the methodology.516

This methodology is adaptable for other hot-spot locations and other types of joints and also517

for studying fatigue-strength globally. Extraction of internal forces from the finite-element model518

at more locations for influence-line calculations would not lead to additional computing time.519

Conversely, traffic simulations would be more time consuming with the increase in the number520

of joints. However, since the algorithm has a linear computational complexity, this task may be521

computationally feasible using parallel computing. In addition, another development would be522
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the inversion of this methodology into a measurement-system design approach that would deter-523

mine optimal measurement locations either maximizing the lower bound of remaining-fatigue-life524

predictions or minimizing uncertainty related to remaining-fatigue-life predictions.525

CONCLUSION526

This paper presents an enhanced methodology for improving remaining-fatigue-life evaluations527

of existing bridges using data interpretation, traffic simulations and hot-spot fatigue evaluations528

that extends work from Pasquier et al. (2014). A full-scale bridge study is carried out to illus-529

trate the benefits of this methodology and the relative influence of uncertainties associated with530

remaining-fatigue-life predictions. The following conclusions are made:531

• The population-based prognosis reduces uncertainty associated with the fatigue reserve532

capacity evaluation, and provides less conservative estimations of remaining-fatigue-life533

predictions than standard design procedures. Furthermore the methodology proposed in534

this paper is less conservative than that proposed by Pasquier et al. (2014). Although this535

methodology has not been verified against direct experimental remaining-life assessment,536

the methodology quantitatively reduces conservatism associated with model predictions537

using inexpensive measurements of the bridge behavior. While the number of joints, espe-538

cially the number of hot-spot locations that can be monitored and modeled are limited in539

practice, populations of physics-based models can be used to predict conservatively stresses540

and fatigue behavior at unmeasured locations.541

• This methodology allows for the propagation of uncertainty associated with remaining-542

fatigue-life prognosis (finite-element, traffic and fatigue damage) and thus provides support543

for structural management decisions related to retrofit, repair and replacement.544

• Traffic models and structural model parameters are the most important sources of uncer-545

tainties for predicting the remaining fatigue life of K-joint tubular structures. While fatigue546

life might be influenced by other uncertainties, such as those associated with weld geome-547

try and residual stresses, these aspects are difficult to quantify and control. The use of the548
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Srhs-N curve for hollow sections along with its thickness correction in Eq. (12) is assumed549

to provide a conservative bound for these effects. In addition, although the sensitivity of550

traffic models and structural model parameters with respect to remaining-fatigue-life eval-551

uations is quite well known, the population-based prognosis approach is able to explicitly552

quantify them.553
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Morales-Nápoles, O. and Steenbergen, R. (2015). “Large-scale hybrid Bayesian network for traffic load modeling619

from weigh-in-motion system data.” Journal of Bridge Engineering, 20(1), 04014059.620

Moses, F., Schilling, C. G., and Raju, K. (1987). Fatigue evaluation procedures for steel bridges. Number 299.621

Neumann, M. and Gujer, W. (2008). “Underestimation of uncertainty in statistical regression of environmental models:622

influence of model structure uncertainty.” Environmental Science & Technology, 42(11), 4037–4043.623

Niemi, E., Fricke, W., and Maddox, S. (2006). “Fatigue analysis of welded components, designer’s guide to the624

structural hot-spot stress approach, IIW-1430-00.” International Institute of Welding.625

Papadimitriou, C., Beck, J., and Katafygiotis, L. (2001). “Updating robust reliability using structural test data.” Prob-626

abilistic Engineering Mechanics, 16(2), 103–113.627

Pasquier, R., Goulet, J.-A., Acevedo, C., and Smith, I. (2014). “Improving fatigue evaluations of structures using628

in-service behavior measurement data.” Journal of Bridge Engineering, 19 (11), 04014045.629

Pasquier, R. and Smith, I. (2015). “Robust system identification and model predictions in the presence of systematic630

uncertainty.” Advanced Engineering Informatics, in press.631

Schumacher, A., Sturm, S., Walbridge, S., Nussbaumer, A., and Hirt, M. (2003). “Fatigue design of bridges with632

welded circular hollow sections.” Report ICOM 489E, Swiss Federal Institute of Technology (EPFL), Lausanne.633

SIA261 Code (2003). Norme SIA 261: Actions on Structures. SIA Zurich.634

SIA263 Code (2003). Norme SIA 263 : Steel structures. SIA Zurich.635

Siriwardane, S., Ohga, M., Dissanayake, R., and Taniwaki, K. (2008). “Application of new damage indicator-based636

sequential law for remaining fatigue life estimation of railway bridges.” Journal of Constructional Steel Research,637

64(2), 228–237.638

Soliman, M., Frangopol, D., and Kown, K. (2013). “Fatigue assessment and service life prediction of existing steel639

bridges by integrating SHM into a probabilistic bilinear S-N approach.” Journal of Structural Engineering, 139(10),640

1728–1740.641

Sweeney, R. (1976). “The load spectrum for the Fraser River Bridge at New Westminster, BC.” Presented at the 75th642

Technical Conference, AREA, Chicago, Illinois, Vol. 77.643

Yuen, K.-V. (2010). Bayesian methods for structural dynamics and civil engineering. Wiley.644

31

Pasquier, R.; D'Angelo, L.; Goulet, J.-A.; Acevedo, C.; Nussbaumer, A. & Smith, I. Measurement, data interpretation 
and uncertainty propagation for fatigue assessments of structures Journal of Bridge Engineering, 2015, in press



Preprint Versio
n

Zamiri, F. (2014). “Welding simulation and fatigue assessment of tubular K-joints in high-strength steel.” Ph.D. thesis,645

# 6158, Swiss Federal Institute of Technology (EPFL), # 6158, Swiss Federal Institute of Technology (EPFL).646

Zhang, J., Wan, C., and Sato, T. (2013). “Advanced Markov chain Monte Carlo approach for finite element calibration647

under uncertainty.” Computer-Aided Civil and Infrastructure Engineering, 28(7), 522–530.648

Zhao, X., Herion, S., Packer, J., et al. (2000). “Design guide for circular and rectangular hollow section joints under649
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