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Abstract

Modeling periodic phenomena with accuracy is a key aspect to detect abnormal
behaviour in time series for the context of Structural Health Monitoring. Modeling
complex non-harmonic periodic pattern currently requires sophisticated techniques and
significant computational resources. To overcome these limitations, this paper proposes
a novel approach that combines the existing Bayesian Dynamic Linear Models with
a kernel-based method for handling periodic patterns in time series. The approach is
applied to model the traffic load on the Tamar Bridge and the piezometric pressure
under a dam. The results show that the proposed method succeeds in modeling
the stationary and non-stationary periodic patterns for both case-studies. Also, it is
computationally efficient, versatile, self-adaptive to changing conditions, and capable of
handling observations collected at irregular time intervals.

Keywords: Bayesian, Dynamic Linear Models, Kernel Regression, Structural Health Monitoring,

Kalman Filter, Dam, Bridge.

1 Introduction

In civil engineering, Structural Health Monitoring (SHM) is a field of study that aims at
monitoring the state of a civil structure based on time series data. One key aspect of
SHM is to detect anomalies from the analysis of structural responses, including - but not
limited to - displacement, velocity, acceleration, and strain measurements collected over
time using, for example, laser displacement sensors, velocimeters, accelerometers, or strain
gauges. Monitoring operates under real field conditions and, therefore, SHM must deal with
observations collected at irregular time intervals, missing values, high noise level, sensor
drift, and outliers [8].

One applicable approach for SHM time series analysis and forecasting is to decompose
the observed structural response into a set of generic components including baseline, periodic,
and residual components [8, 10]. The baseline component captures the baseline response of
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the civil structure, which is directly related to the irreversible changes due to the ageing
of a structure over time. The periodic components model the periodic reversible changes
due to the influence of external effects such as temperature, humidity, pressure, and traffic
load. The residual component takes into account the modeling error. Each component
is associated with a set of unknown model parameters which needs to be learned from a
training dataset.

Periodicity in time series data is very common. Periodicity is of major importance in
SHM because the changes in magnitude of the periodic pattern due to external effects are
usually much larger than the magnitude of irreversible changes related to the health of the
structure. It is worth mentioning that modeling external effects, when they are observed, is
of major importance. Therefore, modeling periodic phenomena with accuracy is crucial
to detect abnormal behaviour in the structural responses. The periodicity observed in the
structural responses have many origins: (i) annual cycles due to the seasons, (ii) daily cycles
due to the day/night alternance, and (iii) hourly, weekly, and yearly cycles due to working
days, weekends, and holidays [8]. In this paper, the terms periodicity (period), seasonality
(season), and cyclicity (cycle) are used interchangeably whether or not the observed periodic
patterns are related to well-known seasons. Periodic patterns found in SHM time series
data may exhibit simple harmonic patterns, in the sense that they can be modeled using
a single sinusoidal function. This is often the case for the effects induced by the daily
and yearly air temperature variation. However, other periodic patterns are more complex.
They are usually referred to as non-harmonic patterns because they cannot be modeled
by a single sinusoidal function. For instance, in the field of dam engineering, the ambient
air and water reservoir contribute to the establishment of a thermal gradient through the
structure, which leads to a periodic non-harmonic pattern on the observed displacements
time series [10, 17, 23]. In bridge monitoring, the effects related to traffic load variations
generally display a non-harmonic weekly periodic pattern due to the day/night as well as
the weekdays/weekend alternance [8, 25].

Regression techniques, such as multiple linear regression [5, 10, 23] and artificial neural
networks [11], are widely used to perform time series decomposition in SHM. In the multiple
linear regression approach, a sum of harmonic functions must be used to fit periodic non-
harmonic patterns, whereas in the neural network approach, interconnected hidden layers
are used to achieve such a purpose. Regression techniques have several limitations, as
they are known to be sensitive to the outlier, to be prone to overfitting, and to require a
large amount of available data to learn the model parameters [13]. In addition, regression
approaches are not capable to self-adapt to changing conditions without retraining the
model. This is a considerable downside, as SHM time series are usually non-stationary.
Here, the term stationary can be generally referred to as not evolving through time. For
instance, a change in the trend of the structure baseline response due to a damage, or a
change in the amplitude of the periodic pattern due to an extreme climatic event, lead to
non-stationarity.

Bayesian Dynamic Linear Model [24], hereafter referred to as BDLM, is a class of
state-space model (SSM) that allows non-stationary components to be learned without
retraining the model. In the context of SSM, the components are known as hidden states
because they are not directly observed. During the last decades, BDLMs have been used in
many disciplines concerned with time series analysis and forecasting [18,24], and recently,
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it has been shown that BDLM is capable of tracking non-stationary baseline of observed
structural responses for bridge monitoring purposes [7,8,22]. BDLMs have also been used to
detect abnormal behaviour in the response structure of a dam [14]. The Fourier component
representation [24], the autoregressive component representation [16], and the dynamic
regression approach [15] are applicable techniques to handle periodic components in BDLMs.
Such approaches are capable of modeling harmonic and simple non-harmonic pattern, but
they are not well suited for handling complex non-harmonic periodic phenomena. A review
of existing methods capable of modeling non-harmonic periodic phenomena is presented in
§2.4.

Kernel-based methods have gained much attention in recent years, mainly due to the
high performance that they provide in a variety of tasks [1, 19]. Kernel regression is a
non-parametric approach that uses a known function (the kernel function) to fit non-linear
patterns in the data [9]. The use of kernel enables to interpolate between a set of so-called
control points as well as to extrapolate beyond them, which is well suited for handling
non-uniformly spaced observations over time. The periodic kernel regression approach [12]
utilizes periodic kernel function to model periodic patterns. Nevertheless, periodic kernel
regression is a regression approach in which the model cannot evolve over time, and therefore
it cannot be used for processing SHM time series data.

This study proposes to combine the periodic kernel regression and the BDLM approaches
to model complex non-harmonic periodic phenomena in SHM time series data. The new
technique is illustrated on real time series data recorded for bridge and dam monitoring
purposes. The paper is organized as follows. The first section reviews the BDLM theory, by
focusing on the approaches already available in the literature to model periodic phenomena
in the SSM framework. Then, after describing the main features of the kernel regression, the
third section explains how periodic kernel regression can be coupled with the existing BDLM
formulation to model non-harmonic periodic patterns. Section 5 presents two examples of
applications from real case-study.

2 Bayesian Dynamic Linear Models

BDLMs consists in a particular type of SSM where the hidden states of a system are
estimated recursively through time. The estimation combines the information coming from
a linear dynamic model describing the transitions of the states across time as well as the
information coming from empirical observations. The key aspect of BDLM is to provide
a set of generic components which form the building blocks that can be assembled for
modeling a wide variety of time series. The current section reviews the mathematical
formulation for SSM, presents the specific formulation for BDLM periodic components, and
explains how to learn the parameters involved in these formulations.

2.1 Mathematical Formulation

The core of BDLMs like other state-space models is the hidden state variables xt =
[x1, x2, · · · , xX]ᵀ, where the term hidden refers to the fact that these variables are not
directly observed. The evolution over time of hidden state variables is described by the
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linear transition model

xt = Atxt−1 + wt, wt ∼ N (w; 0,Qt), (1)

which is defined by the transition matrix At and process noise Qt. The observation model

yt = Ctxt + vt, vt ∼ N (v; 0,Rt) (2)

is defined by the observation matrix Ct and the observation covariance Rt. The observation
model defines which the hidden variables in xt contribute to the observations yt. In BDLM,
the formulation of {At,Ct,Qt,Rt} matrices is defined for generic model components which
can model behaviour such as a locally constant behaviour, a trend, an acceleration, a
harmonic periodic evolution or an autoregressive behaviour. For a complete review of these
components, the reader should consult references by Goulet [7], West & Harrison [24] and
Murphy [13].

2.2 Hidden State Estimation

The estimation of hidden state variables xt is intrinsically dynamic and sequential, which
requires defining a special shorthand notation. First, y1:t ≡ {y1, y2, · · · , yt} defines a set
of observations ranging from time 1 to t. µt|t ≡ E[Xt|y1:t] defines the expected value of
a vector of hidden states at time t conditioned on all the data available up to time t.
In the case where the data at the current time t is excluded, the notation changes for
µt|t−1 ≡ E[Xt|y1:t−1]. Finally, Σt|t ≡ var[Xt|y1:t] defines the covariance of a vector of hidden
states at time t conditioned on all the data available up to time t. The recursive process of
estimating hidden state variables xt from the knowledge at t− 1 is summarized by

(µt|t,Σt|t,Lt) = Filter(µt−1|t−1,Σt−1|t−1, yt,At,Ct,Qt,Rt), (3)

where Lt is the joint marginal log-likelihood presented in §2.3 and the Filter can be performed
using, for examples, the Kalman or the UD filter [21].

2.3 Parameter estimation

Matrices {At,Ct,Qt,Rt} involve several parameters that needs to be learned using either
a Bayesian or a maximum likelihood estimation (MLE) technique. In this paper, we
focus solely on the MLE approach where the objective is to identify the vector of optimal
parameters

θ∗ = arg max
θ

ln f(y1:T |θ), (4)

which maximizes the joint log-likelihood. The joint likelihood is obtained as the product of
the marginal likelihood at each time t

f(y1:T |θ) =
T∏
t=1

f(yt|y1:t−1,θ). (5)

The marginal likelihood that corresponds to the joint prior probability of observations is
defined as

f(yt|y1:t−1,θ) = N
(
yt; Ct(θ)µt|t−1,Ct(θ)Σt|t−1Ct(θ)ᵀ + Rt(θ)

)
. (6)
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The maximization task in Equation 4 can be performed with a variety of gradient-based
optimization algorithms such as Newton-Raphson or Stochastic Gradient Ascent [3].

2.4 Modeling periodic phenomena

Several generic component formulation defining matrices {At,Ct,Qt,Rt} are already avail-
able for modeling periodic phenomena using BDLM. The following sub-section reviews the
strengths and limitations of the three existing generic components.

2.4.1 Fourier Form

The Fourier Form component allows to model sine-like phenomena. Its mathematical
formulation follows

xS
t =

[
xS1t
xS2t

]
, AS

t =

[
cosω sinω
− sinω cosω

]
, CS

t =

[
1
0

]ᵀ
, QS

t = (σSw)2

[
1 0
0 1

]
,

where ω = 2π·∆t
p is the angular frequency defined by the period p of the phenomena

modeled, and ∆t, the time-step length. Figure 1 presents examples of realizations of a
Fourier process. Although the Fourier form component is computationally efficient, it is

0 5 10 15 20 25
−3

0

3

Time - t

x
S
1

t

0 5 10 15 20 25
−3

0

3

Time - t

x
S
2

t

Figure 1: Examples of realizations of xS for a Fourier Form process with parameters
σSw = 0.01 and p = 10.

limited to modeling simple harmonic periodic phenomena such as the one presented in
Figure 2a. It is possible to model simple non-harmonic periodic phenomena such as the
one presented in Figure 2b using a superposition of Fourier form components each having
a different period. Nevertheless this process is in practice difficult, especially when the
complexity of the periodic pattern increases because it requires a significant increase in
the number of hidden state variables which in turn decreases the overall computationally
efficiency.

t

xt

(a) Harmonic periodic
pattern

t

xt

(b) Non-harmonic peri-
odic pattern

Figure 2: Examples of harmonic and non-harmonic periodic pattern.
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2.4.2 Dynamic Regression

In order to overcome the limitations of the Fourier form component, Nguyen and Goulet [15]
have proposed a new formulation based on the Dynamic Regression component. This
approach employs a cubic spline as depicted in Figure 3 for modeling non-harmonic periodic
phenomena such as the one presented in Figure 2b. The formulation for this component is

ts1 t1 t2 t3 t4 t5 ts2 t-1
h5

h4

h3

h2

1 h1

Spline Master points Slave points Fixed points

p
2p

p/2

Figure 3: Illustration of the spline employed with the Dynamic regression formulation
proposed by Nguyen and Goulet [15].

xDR
t = xDRt , ADR

t = 1, QDR
t = (σDRw )2, CDR

t = g(t,θDR).

With the dynamic regression component, the hidden state variable xDRt acts as a regression
coefficient that is modulating the amplitude of g(t,θDR) which corresponds to the spline
presented in Figure 3. The parameters defining this spline are learned from data are
θDR = [ts1, p,h]ᵀ, h = [h1, · · · , hN]ᵀ. Although this method has been shown to be capable of
modeling complex periodic patterns, its main limitations is that complex periodic patterns
typically require a large number (N) of control-point parameters making the approach
computationally demanding. The reason behind this computational demand is that control
points h need to be estimated with an optimization algorithm (see §2.3) rather than being
treated as hidden state variables that are estimated using the filtering procedure introduced
in §2.2.

2.4.3 Non-parametric periodic component

Another alternative to model periodic phenomena is to employ the non-parametric periodic
component [24]. The mathematical formulation for this component is

xNP
t = [xNPt,1, · · · , xNPt,N]ᵀ, ANP

t =

[
0 IN−1

1 0

]
, QNP

t =

[
(σNPw )2 0

0 0N

]
, CNP

t = [1, 0, · · · , 0],

(7)
where xNP

t is a vector of hidden state variables that are permuted at each time step by the
transition matrix ANP

t . The advantage of this approach in comparison with the dynamic
regression technique is that it can model complex non-harmonic periodic phenomena while
having no parameters to be estimated through optimization. This is possible because the
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signal is modeled using hidden state variables which are estimated recursively. The main
limitation of this approach is that it requires as many hidden state variables as there are
time steps within the period p of the phenomenon studied. For example, if the phenomenon
studied have a period of one year and the data’s acquisition frequency is ∆t = 30 min, it
results in 365× 48 = 17520 hidden state variables which is computationally inefficient.

3 Kernel regression

The new method we are proposing for modeling periodic phenomena while overcoming the
limitations of the methods presented in §2.4 employs the concepts of Kernel regression [9].
This section introduces the theory of Kernel regression on which this paper builds in the
following section.

The kernel measures the similarity between pairs of covariates. In our context where
we are interested in time series, the covariate is time t, and because we are interested in
modeling periodic phenomena, we need to employ a periodic kernel [4] formulated as

k(ti, tj) = exp

[
− 2

`2
sin

(
π
ti − tj
p

)2
]
. (8)

The kernel output k(ti, tj) ∈ (0, 1) measures the similarity between two timestamps ti and
tj as a function of the distance between these, as well as a function of two parameters; the
period and kernel length, θ = {p, `}. Figure 4 presents three examples of periodic kernels
for different sets of parameters θ. With kernel regression we consider we have a set of

−10 −5 0 5 10
0

1

ti − tj

k
(t

i,
t j
)

(a) θ = {p = 5, ` = 1}
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0

1

ti − tj

k
(t

i,
t j
)

(b) θ = {p = 5, ` = 0.5}

−10 −5 0 5 10
0

1

ti − tj

k
(t

i,
t j
)

(c) θ = {p = 10, ` = 1}

Figure 4: Examples of periodic kernels.

observations D = {(ti, yi),∀i = 1 : D} consisting in D pairs of observed system responses yi,
each associated with its time of occurrence ti. The regression model is built using a set of
control points defined using tKR ∈ RN, a vector of time covariates associated with a vector of
hidden control point values x ∈ RN. The observed system responses are modeled following

yi = xᵀ k(ti, t
KR)∑

t k(t, tKR)
+ vi, v : V ∼ N (v; 0, σ2

v),︸ ︷︷ ︸
Observation errors

(9)

where the predictive capacity of the model comes from the product of the hidden control
point values x and the normalized kernel values which measure the similarity between the
time ti and those stored for the control points in tKR. The main challenge here is to estimate
x using the set of observation D. The likelihood describing the conditional probability of D
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given x is

f(D|x) =

D∏
i=1

N
(
yi; x

ᵀ k(ti, t
KR)∑

t k(t, tKR)
, σ2

v

)
. (10)

If like for the case presented in §2.3 one employs a MLE approach to estimate x∗, the
problem consists in maximizing the log-likelihood following

x∗ = arg max
x

ln f(D|x). (11)

Figure 5 presents an example of application of the Kernel regression in order to model a
non-harmonic periodic phenomena. A set of D = 15 simulated observations represented by
+ symbols are generated by adding normal-distributed observation noise on the ground
truth signal presented by the dashed line. Then, an optimization algorithm is employed in
order to identify the optimal values x∗ for a set N = 10 control points represented by the ∗
symbols. This example demonstrates how can a kernel-based method learn to interpolate

0 365 730 1,095
−2
−1
0

1

2

t

x

Ground truth
Kernel regression
Control points - {tKRj , x∗j}Observations - {ti, yi}

Figure 5: Examples of application of kernel regression.

the system response within control points as well as to extrapolate beyond them.
The main limitation of this approach is that it simply employed in a context of regression,

so unlike for the context of BDLMs the model cannot evolve over time. Moreover, like
the Dynamic Regression method presented in §2.4.2, the estimation of x∗ relies on a
maximization algorithm which makes it computationally inefficient when applied to complex
patterns.

4 Using Kernels with BDLM

This section presents the new method proposed in this paper which consists in coupling
the Kernel regression method reviewed in Section 3 with the Dynamic regression method
reviewed in §2.4.2.

For the new approach, we consider that a vector of N + 1 hidden control point values
xKR
t = [xKRt,0, x

KR
t,1, · · · , xKRt,N]ᵀ is the vector of hidden state variables to be estimated using the

filtering procedure presented in §2.2. Therefore, the transition matrix is defined as

AKR
t =

[
0 k̃KR(t, tKR)
0 IN

]
,

where k̃KR(t, tKR) corresponds to the normalized kernel, k(t, tKR)/
∑

t k(t, tKR), as presented
in Equation 8. k̃KR(t, tKR) is parameterized by the kernel width `KR, its period pKR, and a
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vector of N timestamps tKR = [tKR1 , · · · , tKRN ], so that

k̃KR(t, tKR) ≡ k̃KR(t, tKR, `KR, pKR) ≡ k̃KRt ,

where each timestamp tKRi is associated with a hidden control point value xKRt,i. The first
hidden state variable xKRt,0 describes the current predicted pattern value which is obtained
by multiplying the remaining N state variables [xKRt,1, · · · , xKRt,N]ᵀ and the normalized kernel
values contained in the first line of AKR

t . From now on, the first and remaining hidden state
variables are called the hidden predicted pattern and hidden control points, respectively.
The N× N identity matrix forming the bottom right corner of AKR

t indicates that each of
the hidden state variables [xKRt,1, · · · , xKRt,N]ᵀ evolves over time following a random walk model.
The temporal evolution of these hidden state variables is controlled by the process noise
covariance matrix

QKR
t =

[
(σKR0 )2 0

0 (σKR1 )2 · IN

]
,

where σKR1 controls the increase in the variance of the hidden control points between successive
time steps and σKR0 controls the time-independent process noise in the hidden predicted
pattern. There are four possible cases: (1: σKR0 = 0, σKR1 = 0) the hidden predicted pattern
is stationary and can be exactly modeled by the kernel regression, (2: σKR0 > 0, σKR1 = 0)
the hidden predicted pattern is stationary yet, the kernel regression is an approximation
of the true process being modeled (3: σKR0 = 0, σKR1 > 0) the hidden predicted pattern is
non-stationary so the hidden control points values evolve over time and it can be exactly
modeled by the kernel regression, (4: σKR0 > 0, σKR1 > 0) the hidden predicted pattern is
non-stationary and it cannot be exactly modeled by the kernel regression. As mentioned,
above only the predicted pattern contributes directly to the observation so the observation
matrix is

CKR
t = [1, 0, · · · , 0].

Because all control points are considered as hidden state variables, the only parameters to
be estimated using the MLE procedure presented in §2.3 are θKR = [σKR0 , σ

KR
1 , `

KR, pKR]ᵀ.

5 Examples of application

This section presents two examples of applications using a stationary and a non-stationary
case. The first one involves traffic data recorded on a bridge and the second one involves
the piezometric pressure recorded under a dam in service.

5.1 Stationary case – Traffic load

5.1.1 Data Description

This case-study is conducted on the traffic loading data collected on the Tamar Bridge from
September 01 to October 21, 2007 with a total of 2409 data points [8]. Figure 6 presents
the entire dataset. Note that the data are collected with a uniform time steps of 30 minutes.
A constant baseline and a periodic pattern with a period of 7 days can be observed from
the raw data. The traffic loading on weekends is much lighter than those on weekdays.
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For most of the day, the traffic load presents a high volume between 8 am and 4 pm, yet it
drops out after 20 pm at night. In order to examine the predictive performance, the data
are divided into a training set (1649 data points) and a test set (760 data points). The
unknown model parameters are learned using the training set. The predictive performance
then is evaluated using the test set. The test set is presented by the shaded region in Figure
6.

09-01 09-11 09-21 10-01 10-11 10-21
0

6

12 2007-10-06 → Test set

Time [2007-MM-DD]

Tr
affi

c
lo
ad

[k
T
]

Figure 6: Traffic load on the Tamar Bridge in the United Kingdom.

5.1.2 Model Construction

The model to interpret the traffic load data consists in a vector of hidden states that
includes a baseline (B) component to the average of the traffic load, a kernel regression
(KR) component with 101 hidden state variables to model the periodic pattern, and an
autoregressive (AR) component to capture the time-dependent model errors. The vector of
hidden states is defined as

xt =
[
xBt , x

KR
t,0, x

KR
t,1, · · · , xKRt,100, x

AR
t

]ᵀ
. (12)

The model involves a vector of unknown model parameters θ that are defined following

θ =
[
σBw, σ

KR
w,0, σ

KR
w,1, `

KR, pKR, φAR, σARw , σv
]ᵀ
, (13)

where σBw is the baseline standard deviation, σKRw,0 is the standard deviation of the hidden
predicted pattern, σKRw,1 is the standard deviation for the hidden control points, `KR is the
kernel width, pKR is the kernel period, φAR is the autoregression coefficient, σAR is the
autoregression standard deviation, and σv is the observation noise. The standard deviation,
kernel width, and kernel period are positive real number, R+. The autoregression coefficient
is defined in between 0 and 1. For an efficient optimization, the model parameters are
transformed in the unbounded space [6]. A natural logarithm function is applied to the
standard deviation, kernel width, and kernel period. A sigmoid function is employed for the
autoregression coefficient. The complete model matrices are detailed in Appendix A. The
initial parameter values in the original space are selected using engineering heuristics as

θ0 =
[
10−6, 0.29, 0.029, 0.5, 7, 0.75, 0.075, 1.47

]ᵀ
. (14)
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5.1.3 Parameter & Hidden State Estimation

The optimal model parameters obtained using the MLE technique presented in Section 2.3
are

θ∗ =
[
10−6, 3.3× 10−5, 10−5, 0.0511, 7, 0.78, 0.34, 1.2× 10−5

]ᵀ
, (15)

where the ordering of each model parameter remains identical as in Equation 13. Because
σKRw,0 and σKRw,1, are near to zero, the periodic pattern for this case-study is stationary. Figure
7 presents the hidden state variables and predicted means for the traffic load estimated
using Kalman Smoother [13] for both training set and test set. µt|T and σt|T are the mean

09-01 09-11 09-21 10-01 10-11 10-210.0

2.5

5.0

Time [2007-MM-DD]

x
L
L

[k
T

]

µt|T ± σt|T
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(a) xB
t
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x
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R
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]

(b) xKR
t,0

09-01 09-11 09-21 10-01 10-11 10-21−3.0
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x
A
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[k
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(c) xAR
t
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c
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(d) Traffic load

Figure 7: Illustration of the estimation of hidden state variables for the traffic load data.
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value and standard deviation at time t, respectively, for the hidden state variables. The
mean value µt|T and its uncertainty bounds µt|T ±σt|T , are presented by the solid line and
shaded region. The estimates for the training set and test set are delimited by the dashed
line. The traffic load data is presented by the dash-dot line. The results show that the
autoregressive component, xARt , presented in Figure 7c, is stationary as expected. Because
the hidden predicted pattern is stationary, all cycles of 7 days have the identical pattern, as
illustrated in Figure 7b. The estimates of the traffic load in the test set are visually close
to the corresponding observations, as illustrated in Figure 7d. The Mean Absolute Error
(MAE) and Root Mean Squared Error (RMSE) [20] are employed to measure the forecast
accuracy by comparing the estimates with their corresponding traffic-load data in the test
set. The mathematical formulation for the MAE and RMSE is presented in Appendix C.
These metrics are evaluated on the forecast periods of 1, 3, 7, and 14 days in the test set.
The results are summarized in Table 1. The small forecast errors are found for all three

Table 1: Evaluation of forecast accuracy with respect to the different forecast periods for
the traffic load data.

Forecast period

1 3 7 14

Metric (day) (days) (days) (days)

48 pts 144 pts 336 pts 760 pts

MAE 0.148 0.197 0.365 0.383

RMSE 0.209 0.278 0.551 0.582

metrics in each forecast period where the traffic loadings range from 0.07 to 10.3 kT. The
forecast error increases with respect to the forecast period.

5.2 Non-stationary case – Piezometer under a dam

5.2.1 Data Description

For this case-study, the new approach is applied to the piezometric pressure recorded from
2007 to 2016 under a dam in Canada. Note that the piezometric pressure is measured by
water meters (wm) unit. The entire dataset with a total of 4181 data points, is presented
in Figure 8. The data is recorded with a non-uniform time-step length, as illustrated in
Figure 9. The time-step length varies in the range from 1 to 456 hours, in which the most
frequent time-steps is 12 hours. A descending trend and a periodic pattern can be observed
from the raw data. Note that the data points for the training set and test set are 2538 and
1643, respectively.
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Figure 8: Piezometric pressure under a dam in Canada.
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Figure 9: Time-step length for the piezometric pressure data.

5.2.2 Model Construction

The vector of hidden states being used for the model in this case-study includes a baseline
(B) component, a local trend (T) component, a kernel regression components (KR), and
an autoregressive component (AR). The baseline and local trend components are used
for modeling the behaviour of piezometric pressure. The kernel regression component
associated with 21 hidden state variables, is employed to describe the periodic pattern. The
time-dependent errors are modeled by the autoregressive component. The vector of hidden
states are written as

xt =
[
xBt , x

T
t , x

KR
t,0, x

KR
t,1, · · · , xKRt,20, x

AR
t

]ᵀ
. (16)

The unknown model parameters relating to these hidden states are defined as

θ =
[
σTw, σ

KR
w,0, σ

KR
w,1, `

KR, pKR, φAR, σARw , σv
]ᵀ
, (17)

where σTw is the local-trend standard deviation and the remaining model parameters have
the same with the bounds presented in Equation 13. These model parameters are also
transformed in the unconstrained space for the optimization task. The full model matrices
are presented in Appendix B. The initial parameter values in the original space are
regrouped following

θ0 =
[
10−6, 0.37, 0.018, 0.5, 365.24, 0.75, 0.075, 0.018

]ᵀ
. (18)

5.2.3 Parameter & Hidden State Estimation

The vector of optimal model parameters are obtained following

θ∗ =
[
3.6× 10−6, 0.047, 0.015, 0.485, 363.07, 0.91, 0.035, 4.5× 10−5

]ᵀ
, (19)
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where the ordering of each model parameters is the same as in Equation 17. Because σKRw,0
and σKRw,1 are different to zero, the hidden predicted pattern is non-stationary. The hidden
state variables and estimates for the piezometric pressure are shown in Figure 10. The
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Figure 10: Illustration of the estimation of hidden state variables for the piezometric
pressure data.

mean values µt|T and its uncertainty bounds µt|T ± σt|T are presented by the solid line
and shaded region, respectively. The dashed line is used to separate the estimates between
the training set and test set. The dash-dot line presents the piezometric pressure data.
According to the results, the autoregressive component, xARt , presents a stationary behaviour
in the training set, as shown in Figure 10c. The non-stationarity in the hidden predicted
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pattern can be observed in Figure 10b where each cycle of 363 days is different from each
other. Figure 10d shows that the distance between the estimates for the first year in the
test set and their corresponding observation is further than the one for the second year.
Yet, the uncertainty bounds for the first year remain smaller than those for the second
year. In addition, the uncertainty bounds of the estimates in the test set include most of
the corresponding pressure data. The MAE and RMSE are also employed for measuring
the forecast accuracy for such as this case-study. Table 2 shows the forecast error of three
metrics with respect to the forecast periods of 30, 180, 365, and 730 days. The forecast errors

Table 2: Evaluation of forecast accuracy for the different forecast periods on the piezometric
pressure data.

Forecast period

30 180 365 730

Metric (days) (days) (days) (days)

62 pts 357 pts 750 pts 1643 pts

MAE 0.076 0.113 0.124 0.110

RMSE 0.0925 0.136 0.148 0.136

are small for each forecast period in which the piezometric pressure data varies in range
from 147.48 to 148.9 water meters. The forecast error is large as the forecast period grows
from 30 to 365 days. However, it is slightly reduced for the forecast period of 730 days. This
can be explained by the better estimates for the second year in the test set.

6 Discussion

The analysis of the traffic load and pressure time-series data shows that coupling the
periodic kernel regression with BDLM enables to model non-harmonic periodic patterns
recorded in different settings. The results from the traffic-load data allow investigating
the performance of the approach to model a stationary periodic pattern observed regularly
over time, but that exhibits a complex shape. The results from the pressure data allow
interpreting the performance of the approach on a simple non-stationary periodic pattern
observed irregularly over time.

In contrast with the dynamic regression technique presented in §2.4.2, the proposed
approach takes advantage of the Kalman computations to estimate analytically and recur-
sively the periodic pattern. Therefore, the approach is computationally efficient. The use
of Kalman computations also naturally provide uncertainty bound around the prediction,
which is crucial for time series forecasting. The use of a kernel in the proposed approach
enables to process observations collected at irregular time interval, which is not possible with
the non-parametric periodic component, as presented in §2.4.3. In addition, it can handle
non-stationary periodic patterns. The non-stationarity is accommodated by imposing a
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random walk on each hidden control points, which is mainly controlled by the standard
deviation σKRw,1. In common cases, the time series cannot be visually inspected before
analysis, and therefore, the model parameter σKRw,1 is learned from the data using the MLE
procedure. Starting from σKRw,1 values of 0.029 and 0.18 for the traffic load and pressure

data, respectively, the MLE procedure is capable to converge to σKRw,1 values of 10−5 and
0.015, respectively, thus highlighting the non-stationarity of the periodic pattern in the
pressure data compared to the one observed in the traffic load data. The process noise
standard deviation σKRw,0 associated with the hidden periodic pattern is also learned from
the data. Initializing at σKRw,0 values of 0.29 and 0.37 for the traffic load and pressure data,

respectively, the MLE procedure is capable to converge to σKRw,0 values of 3.3× 10−5 and
0.047, respectively. The high values for σKRw,0 and σKRw,1 obtained from the pressure training
dataset explain the shift in both amplitude and phase found in the estimates of the pressure
test dataset, as illustrated in Figure 10d.

The kernel period, pKR, is another crucial model parameter. Unlike the model parameters
σKRw,0 and σKRw,1 discussed above, a good initial guess of the period should be provided for
ensuring an efficient optimization. The reason is that the likelihood of the observation
given the period is strongly peaked, and starting at the wrong value can lead to a slow
convergence. Moreover, the likelihood about the period may also have several maxima if the
time series contains several periods, which may lead the MLE procedure to converge towards
a local maximum. The use of a periodogram for identifying the dominant period may be
misleading, because the dominant period may not be the period that is the most suited
for the kernel period. For example, the dominant period in the traffic loading example is 1
day, yet it can be observed that there is a difference in amplitude between the weekdays
and weekends. Therefore, a period of 1 day might yield poor predictive results for such
as case. For practical applications, the visualization of the time-series is the best way for
identifying good starting values for the period prior analysis. In addition, multiple sets of
initial parameter values should be tested during the optimization procedure.

Furthermore, the number of hidden control points is a hyperparameter to be tuned before
the analysis. This hyperparameter can be identified using the cross-validation technique [2].
The cross-validation consists in splitting the data into the training set and validation set in
which the model is trained on the training set. The hyperparameter that minimizes the
error on the validation set is selected. Moreover, it is important to note that the kernel
function allows interpolating between hidden control points, thus enabling simple models
(i.e. with few control points) to fit a large diversity of periodic patterns.

7 Conclusion

This study proposes a novel approach for modeling the non-harmonic periodic patterns in
time-series for the context of Structural Health Monitoring. The technique combines the
formulation of the existing Bayesian dynamic linear models with a kernel-based method.
The application of the method on two case-studies illustrates its potential for interpreting
complex periodic time series. The results show that the proposed approach succeeds in
modeling the stationary and non-stationary periodic patterns for both case-studies. Also, it
is computationally efficient, versatile, self-adaptive to changing conditions, and capable of
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handling observations collected at irregular time intervals.
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Appendix A

The model matrices {At,Ct,Qt,Rt} for the case-study of traffic load data are defined
following

At = block diag

(
1,

[
0 k̃KRt
0 I100

]
, φAR

)

Ct = [1, 1, 01, 02, · · · , 0100, 1]

Rt =
[
(σv)

2
]

Qt = block diag

(σBw)2 ,
 (σKRw,0)2 0

0
(
σKRw,1

)2 · I100

 , (σARw )2


where k̃KRt = [k̃KRt,1, k̃
KR
t,2, · · · , k̃KRt,100] is the normalized kernel values.

Appendix B

The model matrices {At,Ct,Qt,Rt} for the case-study of piezometric pressure data are
defined following

At = block diag

([
1 ∆t
0 1

]
,

[
0 k̃KRt
0 I20

]
, φAR

)

Ct = [1, 0, 1, 01, 02, · · · , 020, 1]

Rt =
[
(σv)

2
]

Qt = block diag

(σBw)2 ·
[

∆t3

3
∆t2

2
∆t2

2 ∆t

]
,

 (σKRw,0)2 0

0
(
σKRw,1

)2 · I20

 , (σARw )2


where k̃KRt = [k̃KRt,1, k̃
KR
t,2, · · · , k̃KRt,20] is the normalized kernel values and ∆t is the time step at

the time t.
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Appendix C

The mathematical formulations for the Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE) are written as following

MAE =
1

T

T∑
t=1

|ŷt − yt|

RMSE =

√√√√√√
T∑
t=1

(ŷt − yt)2

T
,

where ŷt is the forecast value and yt is the observation at time t.
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