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Abstract

A key goal in Structural Health Monitoring is to detect abnormal events in a
structure’s behavior by interpreting its observed responses over time. The goal is to
develop an anomaly-detection method that (i) is robust towards false alarm, and (ii)
capable of performing real-time analysis. The majority of anomaly detection approaches
are currently operating over batches of data for which the model parameters are assumed
to be constant over time, and to be equal to the values estimated during a fixed-size
training-period. This assumption is not suited for the real-time anomaly detection
where model parameters need to be treated as time-varying quantities. This paper
presents how this issue is tackled by combining Rao-Blackwellized Particle Filtering
(RBPF) with the Bayesian Dynamic Linear Models (BDLMs). The BDLMs, which is a
special case of state space models, allow decomposing time-series into a vector of hidden
state variables. The RBPF employs the sequential Monte Carlo method to learn model
parameters continuously as the new observations are collected. The potential of the
new approach is illustrated on the displacement data collected from a dam in Canada.
The approach succeeds in detecting the anomaly caused by the refection work on the
dam as well as the artificial anomalies that are introduced on the original dataset. The
new method opens the way for monitoring the structure’s health and conditions in
real-time.

Keywords: Anomaly detection, Online learning, Structural Health Monitoring, Bayesian,
Dynamic linear models, Particle filter

1 Introduction

Structural Health Monitoring (SHM) is a research field studying the state of civil infrastruc-
ture based on sensor responses such as displacements, elongations and accelerations [7, 24].
SHM attempts to gain insightful information about the state of a structure by interpreting
its observed responses over time. The key role of SHM is to detect the changes in behavior
of structures, that is, anomalies, in order to allow for preventive infrastructure maintenance
in time. The improvements in sensor technologies allow civil infrastructure to be monitored

∗Corresponding author: luongha.nguyen@gmail.com

1



NGUYEN and GOULET. Real-time Anomaly Detection with Bayesian Dynamic Linear Models.
Preprint submitted to Structural Control and Health Monitoring

continuously over time. There is a need for anomaly detection methodologies that are
capable of performing real-time analysis, while being robust towards false alarms. Real time
hereby, means performing the data analysis as the new observations become available.

For time-series data, the majority of existing anomaly detection approaches operates
using a batch learning procedure [4, 36] in which the model parameters are assumed to be
constant over time, and are estimated by minimizing a cost function, such as the prediction
error, within a fixed training-period. Several approaches based on the batch learning
procedure have been proposed for anomaly detection such as Autoregressive Integrated
Moving Average [12], Holt-Winters [42], Seasonal-Trend Decomposition [8], Long Short
Term Memory [22,25], and among others. A common limitation of these approaches is that
the assumption of invariant model parameters is no longer suitable for real-time anomaly
detection where the underlying process in stream data can change over time [2,21]. Another
aspect is that these methods are computationally demanding for large datasets because
when a new data point arrives, the entire model needs to be retrained in order to estimate
the new model parameters. To address this limitation, Sejnowski and Rosenberg [41]
has proposed a sliding window technique in which a small dataset from the past is kept
for the learning purpose. This technique enables the batch-learning algorithm to learn
continuously using only the data in the selected window and the new data point. However,
the window length may become an issue because a short window-length might not have
enough information for the learning purpose, while a long window-length can slow down
the learning process. An online learning [10, 19,26] algorithm is needed for estimating the
model parameters of each new observation in order to rapidly adapt to changes. In the field
of machine learning, examples of the online learning are Extreme Learning Machine [20],
Bayesian Online Changepoint Detection [1], and Random Cut Forest [17]. In addition to
these methods, Hierarchical Temporal Memory mimicking the architecture and processes of
cortical neurons shows potential for the real-time anomaly detection [3].

In the field of civil engineering, several studies have adopted machine learning methods
such as Particle-filter-based model [6,9] for the online learning purpose. Existing applications
of such methods typically require specific information about the structure which is not suited
for a widespread deployment across thousands of bridges and dams that are all different
from one to another. More recently, Nguyen and Goulet [32] have proposed an anomaly
detection method based on the theory of Bayesian Dynamic Linear Models (BDLMs) that
decomposes the observed responses into a vector of the hidden state variables. In order to
detect anomalies, this approach considers the prior probability of anomalies, the anomaly’s
kinematic model and the probability to transition from a normal to an abnormal state.
This approach is a promising path towards a deployment on large-scale applications for
civil infrastructure. The challenge remaining to be addressed is that the approach currently
operates using a batch learning procedure.

This paper proposes a new approach combining the existing BDLMs with the theory
of Rao-Blackwellized Particle Filter (RBPF) [11]. The RBPF is a variant of the Particle
Filter [28] that approximates the posterior Probability Density Function (PDF) for some
hidden state variables using the importance-sampling method. The main idea of RBPF is
to estimate analytically the posterior PDF for hidden state variables using Kalman filter
equations [28] and approximate the posterior PDF for the model parameters using sampling.
The RBPF has been applied to problems such as robot localization [15,16], visual objection
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tracking [40], online parameter estimation [34,35], and anomaly detection for environmental
data [18]. The contribution of this paper is to enable the existing BDLMs (i) to perform
anomaly detection in real-time and (ii) to provide the real-time estimation of the hidden
state variables as well as the model parameters.

The paper is organized as follows. The section 2 presents the state estimation theory
for the BDLMs. Section 3 describes the mathematical formulation for estimating the model
parameters. Section 4 presents the application of the new approach to the displacement
data collected on a dam in Canada. Section 5 discusses about the advantages as well as the
drawbacks of the proposed approach.

2 Bayesian Dynamic Linear Models

The section provides an overview of the theory of the Bayesian Dynamic Linear Models
(BDLMs).

2.1 Hidden State Estimation

BDLMs are a special case of State Space Models which are described by a transition model
and an observation model. The transition model describes the time-dependent relationships
between the hidden state variables so that

xt = Atxt−1 + wt, (1)

where xt is the hidden state variable, At is the transition matrix, and wt is the model error.
The model error is assumed to be a multivariate Gaussian distribution with mean zero
and covariance matrix Qt i.e. wt ∼ N (0,Qt). The dependence of the observations on the
hidden state variables is described by the observation model

yt = Ctxt + vt, (2)

where yt is the observation, Ct is the observation matrix, and vt is the Gaussian observation
noise with mean zero and covariance matrix Rt, i.e. vt ∼ N (0,Rt). The model matrices
{At,Ct,Qt,Rt} involve a vector of unknown parameters θt to be inferred from the data.
The hidden state variables at time t in Equations 1 and 2, are estimated using the Kalman
Filter (KF) algorithm [28]. The KF algorithm separates in two main steps: predicition
step and update step. The prediction step performs the estimation of the prior state
estimate p(xt|θt,y1:t−1) while the update step is employed to estimate the posterior state
estimate p(xt|θt,y1:t). The prior and posterior estimate states at time t are described by
the multivariate Gaussian distribution following

p(xt|θt,y1:t−1) = N (xt;µt|t−1,Σt|t−1)

p(xt|θt,y1:t) = N (xt;µt|t,Σt|t),
(3)

where µt|t−1 is the prior expected value, Σt|t−1 is the prior covariance matrix, µt|t is the
posterior expected value, and Σt|t is the posterior covariance matrix. The KF algorithm is
summarized in its short form as

(µt|t,Σt|t,Lt) = Filter(µt−1|t−1,Σt−1|t−1,yt,At,Ct,Qt,Rt), (4)
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where Lt is the marginal likelihood at time t. The full details for Lt is presented in Section
2.2.

BDLMs decompose the observed structural responses into a vector of hidden state
variables. These hidden state variables can be a baseline component to model the structural
behavior, a local trend component to describe the rate of change in the baseline component, a
periodic component to describe environmental conditions, and an autoregressive component
to capture time-dependent model errors. If changes occur in the local trend component,
a local acceleration component is employed to model its rate of change. Further details
regarding the generic components and their hidden state variables are provided by Goulet [14]
and West & Harrison [43].

2.2 Model Parameter Estimation

The typical primary approach for optimizing model parameters is the Maximum Likelihood
Estimation (MLE). The optimal vector of model parameters θ∗t is obtained by maximizing
the joint prior probability of observations with the assumption that the observations y1:T

are independent of each other so that

p(y1:T|θt) =
T∏
t=1

p(yt|y1:t−1,θt)︸ ︷︷ ︸
Lt

, (5)

where p(yt|y1:t−1,θt), denoted as Lt, is the marginal likelihood at time t. With BDLMs,
the marginal likelihood is a multivariate Gaussian distribution following

p(yt|y1:t−1,θt) = N
(
yt; Ct(θt)µt|t−1,Ct(θt)Σt|t−1Ct(θt)

ᵀ + Rt(θt)
)
. (6)

In order to avoid the zero-underflow issue, the prior probability of observation is transformed
in the natural logarithm space, so that Equation 5 is rewritten as

ln p(y1:T|θt) =
T∑
t=1

ln p(yt|y1:t−1,θt). (7)

The optimal vector of model parameters θ∗t is learned during a specific training-set using the
Newton-Raphson (NR) algorithm [13]. This procedure is called batch learning in which, θt
is assumed to be independent of time. The performance of the NR algorithm is dependent
upon the initial values for the model parameters. Poor guesses for the initial values is prone
to lead to a local maximum.

2.3 Anomaly Detection

The current anomaly-detection methodology in the BDLMs is using the Switching Kalman
Filter (SKF) [27]. The SKF enables BDLMs to model different states (e.g., normal or
abnormal) of a structure over time steps. Each model class has its own model matrices
{At,Ct,Qt,Rt}, and state probability at each time step. Note that the normal and
abnormal states correspond to the stationary and non-stationary regimes, respectively. The
SKF algorithm for the BDLMs includes a filter step and a collapse step.
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SKF-Filter step

The SKF-Filter step employs the same Kalman equations as presented in Equation 4.
Because the Markov-switching variable st ∈ {1, 2, · · · , S} is employed in the SKF, the
notation for the Kalman equations described in Equation 4 must be adapted. Note that
each Markov-switching variable is related to a filtering model defined by its model matrices.
The Markov-switching variables at time t and t− 1 are denoted st and st−1, respectively.
The Kalman filter algorithm described above is summarized in its short form as

(µ
i(j)
t|t ,Σ

i(j)
t|t ,L

i(j)
t ) = Filter(µjt−1|t−1,Σ

i
t−1|t−1,yt,A

j
t ,C

j
t ,Q

i(j)
t ,Rj

t ) (8)

where the superscript inside the parentheses i(j) refers to the current state j at the time t
given the state i at time t− 1.

SKF-Collapse step

In the SKF-collapse step, the mean vector µjt|t and covariance matrix Σj
t|t for the Markov-

switching variables j at time t, are evaluated by collapsing the Gaussian mixture resulting
from Equation 8 into a single Gaussian density [28]. The short-form notation for the collapse
step is

(µjt|t,Σ
j
t|t, π

j
t|t) = Collapse(µ

i(j)
t|t ,Σ

i(j)
t|t ,W

i(j)
t−1|t), (9)

where W
i(j)
t−1|t is the state switching probability i.e. p(st−1 = i|st = j,y1:t). Because of the

presence of the Markov-switching variables, the marginal log-likelihood is defined as

ln p(y1:T|θt) =

T∑
t=1

ln p(yt|y1:t−1,θt)︸ ︷︷ ︸
Lt

=
T∑
t=1

ln

 S∑
j=1

S∑
i=1

Li(j) · p(st = j|st−1 = i)︸ ︷︷ ︸
Zi(j)

· p(st−1 = i|y1:t−1,θt)︸ ︷︷ ︸
πi
t−1|t−1

 ,
(10)

where Zi(j) is the transition probability and πit−1|t−1 is the previous state probability. The
vector of optimal model parameters, θ∗t , is estimated using the MLE as presented in Section
2.2. The full description for the anomaly detection methodology is provided by Nguyen and
Goulet [32]. For the simplicity purpose, SKF-filter and SKF-collapse steps are summarized
in a short form as

(µt|t,Σt|t,Lt,πt|t) = SKF(µt−1|t−1,Σt−1|t−1,yt,At,Ct,Qt,Rt,Zt,πt−1|t−1). (11)

3 Rao-Blackwellized Particle Filter

This section presents the mathematical formulation for Rao-Blackwellized Particle Filter
(RBPF) [11] and a framework architecture for the online learning procedure in BDLMs.
The RBPF employs the analytical Kalman equations for estimating the posterior PDF of
hidden states xt and the Sequential Importance Sampling (SIS) [39] to approximate the
posterior PDF of model parameters, θt. This approach allows learning continuously both
the hidden state variables and the model parameters as new data points are collected.
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3.1 Mathematical Formulation

The posterior PDF for both the hidden state variables and the model parameters, is
theoretically defined as

p(x1:t,θ0:t|y1:t) = p(x1:t|θ0:t,y1:t) · p(θ0:t|y1:t), (12)

where p(x1:t|θ0:t,y1:t) is evaluated using the filtering equations presented in Section 2.1,
and p(θ0:t|y1:k) is obtained using SIS with a set of particles. According to Bayes theorem,
the posterior PDF for model parameters can be written as follows

p(θ0:t|y1:t) ∝ p(yt|y1:t−1,θ0:t) · p(θt|θ0:t−1,y1:t−1) · p(θ0:t−1|y1:t−1)

∝ p(yt|y1:t−1,θt) · p(θt|θt−1) · p(θ0:t−1|y1:t−1),
(13)

where the second formula takes advantage of Markov’s assumptions for the transition prior
p(θt|θt−1), and p(θ0:t−1|y1:t−1) is the posterior from the previous time step. Equation 13
is written as being proportional to the posterior because the normalization constant is
analytically intractable. The PDF for model parameters can be approximated using the
importance sampling method. If the proposal distribution is chosen following

q(θ0:t|y1:t) = q(θt|θ0:t−1,y1:t) · q(θ0:t−1|y1:t−1), (14)

where the previous sets of particles θ0:t−1 do not depend on future observations yt i.e.
q(θ0:t−1|y1:t−1) ≡ q(θ0:t−1|y1:t). The importance weights can then be defined following

wt =
p(θ0:t|y1:t)

q(θ0:t|y1:t)

∝ p(yt|y1:t−1,θt) · p(θt|θt−1)

q(θt|θ0:t−1,y1:t)
· p(θ0:t−1|y1:t−1)

q(θ0:t−1|y1:t−1)

=
p(yt|y1:t−1,θt) · p(θt|θt−1)

q(θt|θ0:t−1,y1:t)
· wt−1.

(15)

With the additional assumption that the transition PDF for new samples only depend on
the most recent parameters and observations, q(θt|θ0:t−1,y1:t) ≡ q(θt|θt−1,yt), Equation
15 is rewritten as

wt ∝
p(yt|y1:t−1,θt) · p(θt|θt−1)

q(θt|θt−1,yt)
· wt−1. (16)

The choice for the proposal distribution q(θt|θt−1,yt) can be, among other, the prior
sampling or the optimal sampling [37]. The prior sampling can lead to inefficient exploration
because it does not take into account the current observation yt. Contrarily, in the optimal
sampling, the current observation is included for the proposal, yet it is commonly difficult
to sample from this proposal distribution because of its analytical intractability [29]. The
limitation can be addressed using auxiliary sampling method [37] that resamples the
particles using their marginal likelihood. The idea behind this sampling technique consists
in preselecting the particles θt−1, that is, surviving particles that are likely to evolve
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into highly plausible particles θt by considering the current observation. The proposal
distribution is defined as

q(θt|θkt−1,yt) = p(yt|y1:t−1,θ
k
t−1) · p(θt|θkt−1) · wkt−1, (17)

where k ∈ K = {1, 2, . . . , K} is the auxiliary index of the particle at time t− 1. Therefore,
the importance weight wkt in Equation 16 becomes

wkt ∝ p(yt|y1:t−1,θ
k
t )

p(yt|y1:t−1,θkt−1)
. (18)

Because the auxiliary sampling method only prioritizes the surviving particles, it is prone
to the diversity loss in the particles over time. This issue can be tackled by adding artificial
noise to the particles in order to increase the exploration capacity [23]. Assuming that
there is a set of particles at the time t, θKt =

{
θ1
t ,θ

2
t , . . . ,θ

K
t

}
, the transition model for the

particles is defined as
θkt = θkt−1 + ut, (19)

where ut is assumed to be a multivariate Gaussian distribution with mean zero and covariance
matrix Dt. Assuming that the artificial noise associated with each model parameter in the
particle θkt is independent from each other, Dt becomes diagonal matrix following

Dt = diag([σ2
u,1 σ

2
u,2 . . . σ2

u,P]
ᵀ︸ ︷︷ ︸

σ2
u,t

),
(20)

where P is defined as the number of unknown model parameters in the particle θkt and σu,p
corresponds to the standard deviation of the artificial noise for the pth model parameter
of θkt . σu,t, are unknown hyperparameters to be estimated from data. Note that the
introduction of the artificial noise leads to a loss of information [23]. The main steps of the
RBPF are summarized in Algorithm 1.

Algorithm 1: Rao-Blackwellized Particle Filter (RBPF)

1 Given θK0 ∼ p(θ0), Dt, K = {1, 2, . . . , K}, w0 = 1
K
, η;

2 for t = 1 : T do
3 for k = 1 : K do

4 (∼,∼, L̃kt ,∼) = SKF(µkt−1|t−1,Σ
k
t−1|t−1,yt,A

k
t−1,C

k
t−1,Q

k
t−1,R

k
t−1,Z

k
t−1,π

k
t−1|t−1);

5 Sample indices P from K with probability proportional to Lt �wt−1;

6 θKt−1 = θPt−1, µKt−1|t−1 = µPt−1|t−1, ΣKt−1|t−1 = ΣPt−1|t−1, πKt−1|t−1 = πPt−1|t−1, L̃Kt = L̃Pt ;

7 for k = 1 : K do
8 θkt = θkt−1 + ut, ut ∼ N (0,Dt);

9 (µkt|t,Σ
k
t|t,Lkt ,πkt|t) = SKF(µkt−1|t−1,Σ

k
t−1|t−1,yt,A

k
t ,C

k
t ,Q

k
t ,R

k
t ,Z

k
t ,π

k
t−1|t−1);

10 Compute weight wkt =
Lkt
L̃kt

;

11 Normalize weights wt = wt∑K
k=1 w

k
t
;
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3.2 Framework Architecture

This section presents the framework architecture for BDLM’s online learning procedure.
Figure 1 illustrates the entire workflow. The framework architecture is separated into three

Data Model

Warm-up

MCMC or LAP

p(θ0|y1:T)

RBPF

p(θt|θ0:t−1,y1:t){
µKt|t,Σ

K
t|t,π

K
t|t

}

yes
t

+
1

no

M
o
d
el

con
stru

ction
W
arm

-u
p

O
n
lin

e
estim

ation
(A

lgorith
m

1,§3.1)

Figure 1: Illustration of the general framework of the online learning for the the Bayesian
Dynamic Linear Models. RBPF: Rao-Blackwellized Particle Filter; MCMC: Markov Chain
Monte Carlo; LAP: Laplace Approximation.

main steps: model construction, warm-up, and online estimation. The model construction
consists in pre-defining a vector of hidden state variables included in the model for interpret-
ing the data. Examples of model construction are illustrated in several case-studies [30, 33].
The warm-up is employed for approximating the initial distribution for each model parame-
ter. For this purpose, it can employ either the Markov Chain Monte Carlo (MCMC) or
Laplace Approximation (LAP). The details for the application of these methods to BDLMs
are described by Nguyen et al. [30]. This step ensures that the algorithm does not waste
particles at places where the model parameter values are unlikely. Note that the warm-up
step is operated in a batch learning procedure with a small training period. The online
estimation is performed by the RBPF, as presented in Algorithm 1 (§3.1). Because each
particle, k ∈ K = {1, 2, 3, . . . , K}, represents a realization of the posterior PDF, there are
K Gaussian PDF of the hidden state variables, as illustrated in Figure 2. Theoretically,
the posterior predictive PDF for hidden state variables is obtained by integrating over the
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x1
t ∼ N (µ1

t|t,Σ
1
t|t)θ1

t

θ2
t

θ3
t

...

θkt

...

θKt

x2
t ∼ N (µ2

t|t,Σ
2
t|t)

x3
t ∼ N (µ3

t|t,Σ
3
t|t)

...

xkt ∼ N (µkt|t,Σ
k
t|t)

...

xK
t ∼ N (µK

t|t,Σ
K
t|t)

x̂t ∼ N (µ̂t|t, Σ̂t|t)

Hidden States
w 1

w 2

w3

w
k

w
K

Figure 2: Illustration of the Gaussian mixture for the hidden state variables.

vector of the model parameters, θt,

p(xt|y1:t) =

∫
p(xt|θt,y1:t) · p(θt|y1:t) dθt. (21)

The vector of hidden state variables is a multivariate Gaussian distribution, as shown in
Equation 3. The Gaussian mixture reduction [38] can be used to approximate the posterior
predictive PDF of the hidden state variables using a single multivariate Gaussian PDF
whose mean and covariance matrix are defined as

µ̂t|t =
∑K

k=1µ
k
t|t · wk

Σ̂t|t =
∑K

k=1 Σk
t|t · wk +

∑K
k=1(µkt|t − µ̂t|t)(µkt|t − µ̂t|t)ᵀ · wk,

(22)

where wkt is the normalized importance weight of the particle θkt . The online-estimation
step is recursively repeated as each new data point arrives. Note that the warm-up step is
optional because in some cases, there are no data available for gaining the prior knowledge
about the model parameters. Hence, the online estimation step can be performed as a new
observation is available.

In the context of anomaly detection, the model parameters in the BDLMs are categorized
into stationary and non-stationary model parameters. The stationary model parameters
denoted as θst , are constant over time. For these model parameters, the introduction of
artificial noise, as presented in Section 3.1, can cause a high variability in the hidden state
estimation. Therefore, the standard deviations of the artificial noise, σsu, t, need to vanish
overtime, so that

σsu, t =
1

α
· σsu, t−1, (23)

where α > 1 is a time-scaling factor. The non-stationary model parameters denoted as θdt ,
are time-varying quantities that allow BDLMs to adapt to the changes of the underlying
process in the data such as the occurrence of an abnormal event. A key challenge is that
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the model parameters θdt struggle to adapt to the situation where the underlying process in
data goes from one regime to another. In such a case, θdt tends to be stuck to the values
of a single regime. This limitation leads to an increase in the variability in the hidden
state estimation. Hence, it can jeopardize the timing as well as the accuracy of anomaly
detection. To address this challenge, an initialization of these model parameters is triggered
when the following conditions are satisfied{

πt−1|t−1(abnormal) ≥ ζ

πt|t(abnormal) < ζ,
(24)

where πt|t(abnormal) is the probability of the abnormal state at the time t and ζ ∈ (0, 1) is
a probability threshold. In addition, the artificial noises of the stationary model parameters
θst need to be increased in order to provide a better exploitation. In this paper, these
artificial noises are set to its initial values, σsu,0, when the conditions in Equation 24 are
met.

In the BDLM online learning framework, the standard deviations for the artificial
noise, σu, 0, are initialized based on the variance of the initial distribution for each model
parameter. Each model-parameter group is defined following

σsu,0 = γs
√

Var(θs0)

σdu,0 = γd
√

Var(θd0),
(25)

where γs, γd are the scaling- factor vectors for the stationary and non-stationary model
parameters, respectively. In practice, the chosen values of γd are usually greater than γs

and are assumed to be constant overtime. By increasing the capacity of exploration for the
non-stationary model parameters, it allows the model to rapidly adapt to the changes in
the observations.

4 Case Studies

The section presents the application of the real-time anomaly detection methodology to two
case-studies. The first case-study employs the raw displacement data recorded on a Dam in
Canada. The second case-study is conducted on the same dataset as the first case-study,
except that two artificial anomalies are introduced to this dataset for the validation purpose.

4.1 Data Description

For the first case-study, the new approach is applied to the X-displacement data measured
using an inverted pendulum. The location of this pendulum is presented in Figure 3. The
entire dataset of the displacement is illustrated in Figure 4. The displacement shows a
non-harmonic periodic pattern as well as a descending trend overtime. This periodic pattern
reaches its maxima during winter and its minima during summer. The displacement data
are recorded from 2002 to 2016 with a total of 8634 data points with a non-uniform time-step
length. Figure 5 shows the time-step length for the entire dataset. The most frequent
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Figure 3: The location of the inverted pendulum.

02-12 06-03 09-07 12-10 16-02−33

−15

4

Time [YY-MM]

D
isp

-X
[m

m
]

Figure 4: Illustration of the raw displacement data in X-direction.
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Figure 5: The time-step length for the X-displacement data.

time-step length is 12 hours. The observation error, σv, provided by the instrumentation
engineers, is fixed to 0.3 mm.

The second case-study studies the same dataset as the first case-study except that two
artificial anomalies are introduced to this dataset. The first anomaly is added from January
10 to February 6, 2009 with a slope of 15 % of the displacement baseline. The second one is
introduced from July 12 to August 1, 2011 with the same slope as the previous one. The
amount of data points for each anomaly-period (≈ 1 month) is 60 data points. Figure 6
shows the superposition of the original and artificial-anomaly dataset.
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Figure 6: The superposition of the original and artificial-anomaly dataset.

4.2 Model Construction

The model of both case-studies consists in a vector of hidden state variables that includes a
baseline (B), a local trend (LT), a local acceleration (LA), a kernel-regression (KR) component
[31] with a period of 365.24 days, and an autoregressive (AR) component. The structural
behavior over time is described by the baseline. The local trend is employed to model the
rate of changes in the baseline. The local acceleration is used to model the rate of changes
in the local trend. The kernel-regression component including 11 hidden state variables,
describes the non-harmonic periodic pattern. The autoregressive component is used to
capture the time-dependent model errors. The vector of hidden state variables is written as

xt =
[
xBt x

LT
t xLAt xKRt,0 x

KR
t,1 . . . xKRt,10 x

AR
t

]ᵀ
. (26)

Because the main interest here is to detect anomalies for the displacement data, two model
classes representing the normal and abnormal states (see §2.3) are defined for this model.
These two model classes use the same vector of hidden state variables presented in Equation
26, except that the local acceleration of the normal model-class is set to zero.

The unknown model parameters relating to the hidden state variables are defined as

θt =

`KR φAR σARw Z11︸ ︷︷ ︸
θs
t

σLAw Z22︸ ︷︷ ︸
θd
t


ᵀ

, (27)

where `KR is the kernel lengthscale, φAR is the autoregression coefficient, σARw is the autoregres-
sion standard deviation, Zii is the transition probability, and σLAw is the local acceleration
standard deviation. In this model,

{
`KR, φAR, σARw , Z

11
}

and {σLAw , Z22} are defined as the
stationary and non-stationary model parameters, respectively. The kernel length-scale,
standard deviation, are real number, R+. The transition probability and autoregression
coefficient are constrained to the interval [0, 1]. For an efficient learning procedure, the
model parameters are transformed into the unbounded space. The standard deviations
and kernel length-scale employs the natural logarithm as the transformation function. The
sigmoid function is applied to the transition probabilities and autoregression coefficient.

In both case-studies, the Laplace Approximation (LAP) is employed for estimating the
initial distribution for each model parameter with a training period of 1024 days (1004 data
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points). The initial values for model parameter are defined using expert judgment and
experience as well as prior data analysis

θ0 =

 0.5︸︷︷︸
`KR

0.95︸︷︷︸
φAR

0.095︸ ︷︷ ︸
σARw

0.9999︸ ︷︷ ︸
Z11

10−7︸︷︷︸
σLAw

0.95︸︷︷︸
Z22

ᵀ

, (28)

The complete model matrices are detailed in Appendix A. The hyperparameters, as pre-
sented in Section 3.2, are tuned as follows α = 1.01, ζ = 0.5, γs = 0.01, γd = 0.1. These
hyperparameter are obtained using the empirical study where the different values of the hy-
perparameter are tested on multiple datasets. The number of particles for both case-studies
is 60 000. The computing task is accelerated with Graphics Processing Unit (GPU).

4.3 Results

This section provides the results of anomaly detection and the estimation of hidden state
variables as well as model parameters in for both case-studies.

4.3.1 Case-study #1

The new approach identifies that there was an anomaly occurring on July 9, 2010. This
anomaly was due to the refection work on the dam in early July. Figure 7 presents the
probabilities of the abnormal state for the displacement data over time. The solid line
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m
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π̃t|t
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Figure 7: Probability of abnormal state for the displacement data in the case study #1.

presents the median values of the abnormal state probability, π̃t|t. The shaded region
presents its CI(68 %). The displacement behavior returns to the normal state once the work
is completed. The estimation of the hidden state variables is presented in Figure 8. The
mean values, µ̂t|t, and its uncertainty bound, µ̂t|t ± σ̂t|t, are presented by the solid line and
shaded region, respectively. The anomaly causes a abrupt change in the baseline (xB), local
trend (xLT), and local acceleration (xLA), as illustrated in Figure 8a, b, and c, respectively.
The lack of information at an early stage causes a large variability in the hidden state
variables. This variability vanishes over time as more data are collected. Figure 8d shows
that the model succeeds in separating the structural behavior from the periodic external
effect. The autoregressive component presented in Figure 8e, shows a stationary process, as
expected.

Figure 9 presents the Kernel smoothing function estimate [5] of the PDFs for each
model parameter at 3 am on June 30, 2014. Figure 10 presents the evolution of the model
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Figure 8: Illustration of the estimation of the hidden state variables for the case study #1.
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Figure 9: Kernel smoothing function estimate of the posterior PDFs for each model
parameter at 3 am on June 30, 2014.

parameters over time. The median values, θ̃t, and its 68 % confidence interval, are presented
by the solid line and shaded region, respectively. The large uncertainty in the stationary
model parameters during the initial period is due to the imperfect initial conditions, as
illustrated in Figure 10 a, b, c, and e. It then reduces over time with an increase in
data points. When the anomaly took place, there is an abrupt change across all model
parameters. However, the most significant change is found in the local acceleration standard
deviation, σLA, relating to the abnormal state. When the abnormal events are absent, a large
variability can be observed in the non-stationary model parameters such as Z22 and σLAw , as
presented in Figure 10 d. This behavior can be explained by a heavy tailed distribution of
σLAw and the presence of the bimodal distribution in Z11, as illustrated in Figure 9 d and f.

4.3.2 Case-study #2

The anomaly occurring on July 9, 2010 as shown in case-study #1, is found in this case-study.
In addition to this anomaly, two other anomalies are identified on February 6, 2009 and
August 6, 2011. These two anomalies correspond to the periods where the artificial anomalies
were introduced to the original dataset (see §4.1). Figure 11 presents the probability of
abnormal state for the displacement dataset over time. The median values of the abnormal
state probability, π̃t|t, and their 68 % confidence interval, are presented by the solid line
and shaded region, respectively. The probability of abnormal state of the artificial anomaly
is presented by the dashed line. Because gradually adding a small slope to the original data
takes time to create a significant change in their underlying process, the timing of anomaly
detection provided by the model, does not match with the starting dates of the artificial
anomaly. Figure 12 presents the hidden state variables for the entire dataset. The solid
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Figure 10: Illustration of the estimation of model parameters using Rao-Blackwellized
particle filter for case-study #1.
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Figure 11: Probability of abnormal state for the displacement data in the case study #2.

line and shaded region represents the mean values, µ̂t|t, and uncertainty bound, µ̂t|t ± σ̂t|t,
accordingly. As case-study #1, the sudden changes are present in the baseline, local trend,
and local acceleration when the anomalies occurred. The large variability across all hidden
state variables during the initial period decreases over time as more data are available.
Despite the presence of multiple anomalies, the model is capable of separating the structural
behavior from the external effect, as illustrated in Figure 12d. Also, the autoregressive
component follows a stationary process, as presented in Figure 12e.

The estimation of model parameters for the case-study #2 is presented in Figure 13. The
median values of the model parameters, θ̃t, and its 68 % confidence interval, are presented by
the solid line and shaded region, respectively. The same behavior as the case-study #1, has
been found in the case-study #2. The large variability in the stationary model parameters
is observed at an early stage. It then vanishes as more data are collected. A sudden change
is identified across the model parameters. Three major changes corresponding to three
abnormal events are found in the local acceleration standard deviation. As the case-study
#1, a large uncertainty during the normal state is also identified in the transition probability
of the abnormal state and local acceleration standard deviation.

5 Discussion

The potential of the new methodology for detecting anomalies in real-time is illustrated on
both case-studies. The new approach is capable of detecting the anomaly caused by the
refection work and also the anomalies being artificially introduced to the original dataset.
In addition to the real-time anomaly detection, the proposed method allows estimating the
hidden state variables as well as model parameters as the data are collected. Because the
approach is accelerated with GPU computation, the estimation task of each time step for
both case-studies was completed within approximately 1 second. This computational time
is negligible in comparison with the data collection frequency in which the most frequent
time-step is 12 hours, as shown in Figure 5.

In order to make an efficient performance, the initial distribution of model parameters
for both case-studies are estimated using Laplace approximation with 1004 data points
(1024 days). Also, the period of the external effect is a known quantity. Therefore, a small
dataset should be available for carrying on the prior data analysis. As presented in Section
3.2, the hyperparameters need to be tuned before performing the anomaly-detection task.
The generic hyperparameters can be obtained using the empirical study. The observation
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Figure 12: Illustration of the estimation of the hidden state variables for the case study #2.
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Figure 13: Illustration of the estimation of model parameters using Rao-Blackwellized
particle filter for case-study #2.
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error standard deviation, σv, in both case-studies is assumed to be constant over time. In
practices, this hypothesis might no longer be valid because of the presence of either the
sensor drift or the imperfect installation conditions. Future work should investigate the
possibility of taking into account such these phenomena in the current framework in order
to reduce the false alarm.

6 Conclusion

The paper proposes a new approach by combining the existing Bayesian dynamic linear
models with the Rao-Blackwellized particle filter for the real-time anomaly detection. This
approach allows estimating the hidden state variables and the model parameters as a
new data point becomes available. The potential of the new method is illustrated on the
displacement data recorded on a Dam in Canada. The method succeeds in detecting the
anomaly due to the refection work on the dam as well as the artificial anomalies being
introduced to the original dataset. The new method opens the way for monitoring the
structure’s health and conditions in real-time.
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Appendix A Model Matrices

The transition matrix (At), the observation matrix (Ct), the observation error covariance
matrix (Rt), and the model error covariance matrix (Qt) for normal model class and
abnormal model class are defined following

Normal model class

A1
t = block diag




1 ∆t 0

0 1 0

0 0 0

 , [ 0 k̃KRt
0 I11

]
, φAR


C1
t = [1 0 0 01 02 . . . 011 1]

R1
t =

[
(σv)

2
]

Q
1(1)
t = block diag

(
03,011,

(
σAR
)2)

Q
2(1)
t = block diag

(
03,011,

(
σAR
)2)

Abnormal model class

A2
t = block diag


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C1
t = [1 0 0 01 02 . . . 011 1]

R2
t =

[
(σv)

2
]

Q
1(2)
t = block diag

(
03,011,

(
σAR
)2)

Q
2(2)
t = block diag

(σLA)2 ·


∆t2

20
∆t4

8
∆t3

6

∆t4

8
∆t3

3
∆t2

2

∆t3

6
∆t2

2 ∆t

 ,011,
(
σAR
)2
 ,

where k̃KRt = [k̃KRt,1 k̃
KR
t,2 . . . k̃

KR
t,11] is the normalized kernel values, ∆t is the time step at the

time t, I10 is the 10× 10 identity matrix, and 0n is the n× n zero matrix.
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