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Abstract

The quantification of uncertainty associated with the model parameters and the
hidden state variables is a key missing aspect for the existing Bayesian Dynamic
Linear Models. This paper proposes two procedures for carrying out the uncertainty
quantification task: (1) the Maximum a Posteriori with the Laplace approximation
procedure (LAP-P) and (2) the Hamiltonian Monte Carlo procedure (HMC-P). A
comparative study of LAP-P with HMC-P is conducted on simulated data as well as
real data collected on a dam in Canada. The results show that the LAP-P is capable
to provide a reasonable estimation without requiring a high computation cost, yet it is
prone to be trapped in local maxima. The HMC-P yields a more reliable estimation
than LAP-P, but it is computationally demanding. The estimation results obtained
from both LAP-P and HMC-P tend to the same values as the size of the training
data increases. Therefore, a deployment of both LAP-P and HMC-P is suggested for
ensuring an efficient and reliable estimation. LAP-P should first be employed for the
model development and HMC-P should then be used to verify the estimation obtained
using LAP-P.

Keywords: Uncertainty, Bayesian, Dynamic Linear Models, Kalmal filter, Structural Health

Monitoring, Dam.

1 Introduction

Bayesian Dynamic Linear Models (BDLMs) are a class of state-space models (SSMs) which
are well suited for sequential inference [40]. BDLMs rely on a transition model which is
used to predict recursively future hidden state variables based on current hidden state
variable. At each step, the predictions are updated with new observations. In BDLMs,
the hidden state variables and observations are assumed to be Gaussian random variables,
and the transition and observation model are linear. The analytical solutions for the
prediction and update step are available through the Kalman filter equations. Following
the Bayesian framework, the hidden state variables are described by a posterior probability
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density function (PDF) that combines information from a prediction (prior PDF) and
from observations through the likelihood function. In BDLMs, the posterior PDF is fully
described by its mean vector and covariance matrix, where the variance quantifies the
uncertainty about each hidden state variable. The accurate quantification of uncertainty
associated with state estimation is important because the primary objective of BDLMs is
to serve decision-making [42].

In this paper, we are interested in quantifying the effect of model parameter uncertainties
on hidden state uncertainties, in the context of the use of BLDMs for the long-term
monitoring of civil infrastructure. The BDLM formulation has been introduced in [15],
where the method is used to decompose the observed time-series related to the response of
the civil structure (e.g. displacements or frequencies) into a set of hidden state variables.
Recent applications have illustrated the potential of BDLMs to track time-varying baseline
responses of civil structures from datasets containing multiple observations [16], and to
detect anomalies [33]. BDLMs typically depend on several unknown parameters that need
to be inferred from data. Previous studies employed the Maximum Log-likelihood Estimation
(MLE) to infer the optimal model parameters from observations [10].

The MLE method suffers from the well-known drawbacks [25] of point estimation
methods: (a) it ignores model parameter uncertainties, (b) it does not guarantee to converge
towards the global maximum, and (c) its performance is sensitive to the choice of initial
parameter values. These reasons currently limit the general applications of BDLMs for the
structural health monitoring.

In SSMs, the classic point estimation method is the Expectation-Maximization (EM) [8],
which is based on the maximization of the likelihood function obtained by analytically
setting its derivative equals to zero [38]. The point estimation method for model parameters
is justified by the asymptotic distributional convergence [34], which tells that the MLE
converges to the true values as the training dataset length tends to infinity [10]. In practical
situation, however, the number of observations available to compute model parameters is
often limited, and it is difficult to know whether the asymptotic condition is met, or not.
More importantly, there are some problems where the asymptotic rule does not hold, that
is, when model parameters are not identifiable because there is no global maximum in the
likelihood function [1, 2, 6]. For instance, such a situation arises when model parameters
are strongly correlated with each other. In other cases, when likelihood function exhibits a
surface that is not unimodal, the MLE can converge towards a local maximum instead of the
global maximum, depending on the starting value of the model parameters. The Maximum
A Posteriori (MAP) using a gradient-based maximization algorithm is an alternative to the
MLE method, which allows us to account for our prior knowledge of model parameters [37].
Like the MLE, the MAP estimate corresponds to a Dirac delta function approximation to
the posterior PDF for model parameters. The MLE can be considered as a special case of
MAP when we employ a uniform prior PDF. The uncertainties around the MLE and MAP
results can be computed using the Laplace approximation [10]. The Laplace approximation
assumes that the target function around the estimate is close to a Gaussian, which may not
be the case for a wide range of problems, as mentioned earlier.

Alternatively, Monte Carlo sampling approaches can be used to directly sample from
the posterior PDF of model parameters. In contrast to MLE and MAP methods, which
explores only a small portion of the target function, Monte-Carlo sampling techniques

2



NGUYEN et al. (2018). Uncertainty Quantification for Model Parameters and Hidden States in
Bayesian Dynamic Linear Models. Preprint submitted to Structural Control and Heath Monitoring

have the potential to perform a global exploration. Markov chain Monte Carlo (MCMC)
is a broad class of Monte Carlo sampling techniques which perform a random walk in
the model parameter space, where each sample depends only on the previous one. The
resulting Markov chain statistically converges towards a unique stationary distribution
which is the required target function [5]. MCMC techniques are intrinsically Bayesian
because they provide an approximation of the posterior PDF of model parameters rather
than a point estimation. The use of MCMC methods have remained limited until the
90’s due to their high computational costs. In recent years, the advances in computer
performance, particularly in parallel computing [36], have led the MCMC approaches to be
more popular in many domains of applications, including for model parameters inference in
SSMs [14,21,34]. MCMC approaches are particularly attractive for practical applications
because they allow quantifying the model parameter posterior PDF even if a small training
dataset is available, or when the asymptotic rule does not hold [34]. In civil engineering,
MCMC approaches have been widely used for Bayesian model updating [7, 23] and for
model class selection [2].

The random walk Metropolis-Hasting (MH) [27, 28] is one of the most common MCMC
algorithms. MH relies on a proposal distribution to transit from a current sample to
the following one. The proposed sample is then accepted or rejected according to an
acceptance probability [19]. MH suffers from some drawbacks, such as the tuning of the
proposal distribution. In particular, in the case of non-Gaussian posterior, high correlations
between the model parameters can substantially slow down the convergence speed [35].
More sophisticated MCMC methods have been developed to improve sampling performance.
Adaptive MCMC techniques were developed to automatically adjust the proposal during the
MCMC run [18]. Another approach consists in taking advantage of the gradient information
for the target function to propose new samples [9]. This approach, known as Hamiltonian
Monte Carlo (HMC) [3,31], has been recently used in a wide range of applications including
physics [9], biology [22], engineering [7, 17]. Few studies have investigated the use of HMC
for model parameters inference in SSMs [26,41].

This paper first proposes both a MAP approach coupled with a Laplace approximation,
and an HMC-based method to approximate the posterior PDF of model parameters for
the BDLMs. Secondly, we propose a Gaussian mixture approach to propagate the model
parameters uncertainties in the hidden state variable estimates. The performance of the
MAP coupled with a Laplace approximation is tested against the results obtained using
an HMC-based method which serves as Benchmark. The results obtained using the two
algorithms are compared as a function of the training dataset length.

The paper is organized as follows. The first section presents the state estimation theory
for BDLMs. We then describe the MAP with the Laplace approximation and the HMC
method applied to BDLMs. In a third section, we present the details of the Gaussian
mixture approach to propagate the model parameter uncertainties on state estimation
uncertainties . The fourth section presents a general procedure including the theories
presented in Sections 2 & 3. In the fifth section, we illustrate the results obtained using the
proposed approaches on simulated data as well as real displacement data measured on a
dam in Canada. Finally, we discuss the main features of the approaches, reviewing their
advantages and drawbacks.
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2 Bayesian Dynamic Linear Models

This section presents the Bayesian dynamic linear models (BDLM), which is a special
case of State-space models (SSMs). A BDLM consists of two linear models defined by an
observation model and a transition model. The observation model is employed to describe
the relation between data yt and hidden state variables xt at time t ∈ [1 : T]. The transition
model describes the dynamics of the hidden states variables over time. The mathematical
formulations for both models are defined as

Observation model

yt = Ctxt + vt,


yt ∼ N (E[yt], cov[yt])

xt ∼ N (µt,Σt)

vt ∼ N (0,Rt)

(1)

Transition model
xt = Atxt−1 + wt,

{
wt ∼ N (0,Qt),

where Ct is the observation matrix, vt is the Gaussian observation error with zero-mean
and covariance matrix Rt, At is the transition matrix, and wt is the Gaussian model error
with zero-mean and covariance matrix Qt.

The theory behind the BDLM is that the observation yt is modeled by a vector of
hidden state variables xt. In common cases, the vector of hidden state variables describes
the baseline, periodic, and stochastic behavior of a system’s response. Typically, a baseline
is used to describe the structural behavior over time without external effects such as
temperature and loading, a periodic component is employed to model the external effects,
and an autoregressive component is used to capture the time-dependent model errors. The
rate of change of the baseline component over time is described by a trend component. Like
any other SSMs, the BDLM also employs either Kalman filter [30] or the UD filter [39] to
estimate the hidden state variables xt given the model parameter vector θ and the available
information y1:t,

p(xt|θ,y1:t) = N
(
xt;µt|t,Σt|t

)
, (2)

where the posterior expected value µt|t ≡ E [xt|y1:t] and posterior covariance Σt|t ≡
cov [xt|y1:t] are obtained from the measurement step in the Kalman filter. The reduced
form of the Kalman filter or UD filter can be written as(

µt|t,Σt|t
)

= filter
(
µt−1|t−1,Σt−1|t−1,yt; At,Ct,Q,Rt

)
. (3)

Note that the UD filter yields numerically more stable performance than the Kalman filter
yet, it is slightly more computational demanding. The full mathematical formulations
associated with the hidden state variables as well as with the Kalman filter are described in
well details by West & Harrison [40] and Goulet [15].

3 Parameter Estimation

This section presents the details of two methods for approximating the posterior PDF of
model parameters: Maximum A Posteriori with Laplace approximation and Hamiltonian
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Monte Carlo.

3.1 Maximum A Posteriori with Laplace Approximation

Maximum a posteriori consists in identifying the point estimates by maximizing the posterior
PDF defined as

p(θ|y1:T) =
p(y1:T|θ) · p(θ)

p(y1:T)

∝ p(y1:T|θ) · p(θ),

(4)

where p(θ) is the prior PDF, p(y1:T|θ) is the likelihood function, p(y1:T) is a normalizing
constant, and θ = [θ1, θ2, · · · , θP] is a vector of model parameters to be estimated. The
prior probability represents the knowledge available for model parameter values before
the data have been collected. The likelihood function is the joint prior probability of
observations, that is, plausibility of the available observations y1:T given the parameter
vector θ. Assuming that the observations are independent from each other, the joint
likelihood function is defined as the product of the marginal likelihoods

p(y1:T|θ) =
T∏
t=1

p(yt|y1:t−1,θ). (5)

In the BDLM framework, the likelihood function at time t is a Gaussian distribution
following

p(yt|y1:t−1,θ) = N (yt; Ctµt|t−1,Rt + CΣt|t−1C
ᵀ), (6)

where the model matrices {Ct,Rt} are defined in Section 2, the prior expected value µt|t−1

and prior covariance matrix Σt|t−1 for the hidden state variables are obtained from the
prediction step in the Kalman filter. Replacing the likelihood function in Equation 4 by
Equation 5 results in

p(θ|y1:T) ∝
T∏
t=1

p(yt|y1:t−1,θ) · p(θ). (7)

In order to avoid zero underflow, the posterior probability density is transformed into the
log space. Equation 7 then becomes

ln p(θ|y1:T) ∝
T∑
t=1

ln p(yt|y1:t−1θ) + ln p(θ)︸ ︷︷ ︸
Lp(θ)

, (8)

where Lp(θ) denotes log-posterior function. The MAP method identifies the optimal
parameter estimates θ∗ that maximize the log-posterior function

θ∗ = arg max
θ

[Lp(θ)] .

In this paper, the Newton-Raphson (NR) algorithm [10] is employed to carry on the
optimization task. The stopping criterion for the NR algorithm is defined as{

Lp(θi−1) < Lp(θi)∣∣Lp(θi)− Lp(θi−1)
∣∣ ≤ τ ·

∣∣Lp(θi−1)
∣∣ , (9)
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where i corresponds to optimization loop and τ is a termination tolerance on the log-posterior
function.

Because the regularization of the optimization is provided by the prior PDF, the
performance of the MAP method is sensitive to the selection of the prior PDF. An example
that provides the details regarding the choice of the prior PDF is presented in Section 6.1.2.
In addition to the sensitivity towards the prior distribution, the MAP by itself is a point
estimation method so that it does not take into account the uncertainty in the parameter
estimates. This challenge can be addressed using the Laplace approximation [10]. Hence,
the posterior distribution of parameters is approximated with a Gaussian distribution

p(θ|y1:T) ≈ N
(
θ;θ∗,−H(θ∗)−1

)
, (10)

where H(θ∗) is the second derivative of the log-posterior function Lp(θ) evaluated at the
MAP optimal parameter values θ∗.

3.2 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) [9,31] is known as a Markov Chain Monte Carlo (MCMC)
method for approximating the posterior PDF p(θ|y1:T) of the parameters of interest θ,
given the training data y1:T. The particularity of the HMC algorithm is that an auxiliary
momentum variable ri is added to each parameter θi. The joint probability density for a
parameter vector θ and its momentum variable vector r is defined as

p(θ, r|y1:T) = p(r|θ,y1:T) · p(θ|y1:T), (11)

where p(r|θ,y1:T) is a conditional probability density of r given θ. The joint density
p(θ, r|y1:T) is also called the canonical distribution that is independent from the choice of
parameterization [3]. Hence, the joint probability density can be written in another form
using an invariant Hamiltonian function H(θ, r) as

p(θ, r|y1:T) = exp [−H(θ, r)] . (12)

The Hamiltonian function originally comes from the classical mechanics where it refers
to the energy at specific points and is conservative over time. In most cases, H(θ, r) is
decomposed into two terms

H(θ, r) = T (θ, r) + V (θ),

where T (θ, r) is the kinetic energy and V (θ) is the potential energy. In the case of HMC,
H(θ, r) can be obtained using the Equations 11 and 12, so that

H(θ, r) = − ln p(r)︸ ︷︷ ︸
T (r)

− ln p(θ|y1:T)︸ ︷︷ ︸
V (θ)

(13)

with the assumption that the momentum variables r do not depend on the parameters θ.
In common cases, the kinetic energy is defined as

T (r) =
1

2
rᵀM−1r, (14)
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where M is symmetric and positive-definite mass matrix. M corresponds to the inverted
covariance matrix of p(θ|y1:T). Once the kinetic and potential energies are identified, the
Hamiltonian’s equations over time can be written as

dr

dt
= −∇θ V (θ)

dθ

dt
= ∇r T (r),

(15)

where ∇ is the gradient operator. Equation 15 is employed to propose new samples in
HMC. For the practical implementation, Equation 15 can be approximated using the
leapfrog method, that is, a symplectic integrator, that allows simulating the trajectories
for an efficient exploration of the posterior density p(θ|y1:T). Given a time discretization
parameter n, the main steps in the leapfrog method are written as

rn+
1
2 = rn − ε

2 ∇θ V (θn)

θn+1 = θn + ε∇r T (rn+
1
2 )

rn+1 = rn+
1
2 − ε

2 ∇θ V (θn+1),

where ε is defined as the step size. A half step for the momentum vector rn+
1
2 is first

evaluated. Then, a full step for the parameter vector θn+1 is updated using rn+
1
2 . Finally,

the other half step for the momentum vector rn+1 is computed using θn+1. The iterative
process is repeated a number of steps L. A limitation of the leapfrog method is that it
can introduce errors during discretizations, leading to a bias. Therefore, an acceptance
probability β is defined to ensure the validity of the Markov chain:

β = min

{
1,

exp
[
−H(θn+1, rn+1)

]
exp [−H(θn, rn)]

}
= min

{
1, exp

[
−T (rn+1)− V (θn+1) + T (rn) + V (θn)

]}
.

(16)

The key challenge in HMC is to tune the parameters such as the step size ε and the
number of steps L [3, 20]. A small step size provides a more accurate approximation and
effective exploration, yet it is computationally more demanding. A large step size leads to
inaccurate simulations and yields low acceptance probabilities. Similarly, a small number
of steps yields a high autocorrelation between the successive samples. A larger number of
steps causes back loop trajectories [20,31], leading to a poor exploration. Optimal values
for ε and L are tuned based on the acceptance probability in Equation 16 using either the
Dual Averaging method [32] or the No-U-Turn Sampler method [20].

In order to measure the efficiency exploration in HMC, we employ the convergence
diagnostic statistic R̂ [12], i.e. estimated potential scale reduction. The idea behind is to
interpret the stationarity of multiple, parallel Markov chains based on the quantity R̂. If R̂
is approximating to 1, the estimates obtained from the Markov chains are reliable.

7



NGUYEN et al. (2018). Uncertainty Quantification for Model Parameters and Hidden States in
Bayesian Dynamic Linear Models. Preprint submitted to Structural Control and Heath Monitoring

4 Gaussian Mixture for Hidden State Variables

In the BDLMs, a vector of hidden state variables is assumed to be a multivariate Gaussian
distribution, as presented in Equation 1. Because the new parameter estimation methods
presented in Section 3, each model parameter is now represented by a probability distribution.
Therefore, the vector of hidden state variables at each time step t is then described
by a population of multivariate Gaussian distributions. In order to make an intuitive
interpretation, this population of multivariate Gaussian distributions is approximated with
a single multivariate Gaussian distribution using the Gaussian Mixture (GM) approach [30].
This section presents the GM approach proposed for including the model parameter
uncertainty in the estimation of the hidden state variables. Assuming that we have
N samples from the parameter posterior PDF approximated using either the MAP with the
Laplace approximation, or the HMC method, the mixture density of hidden state variables
is built from a linear combination of N Gaussian densities, each obtained using Equation 2.
The mathematical formulation for the Gaussian mixture density is written as

p(x̂t|y1:T ) =

∑N
n=1 p(x

n
t |θn,y1:t) · wn∑N
n=1w

n

=

∑N
n=1N (xnt ;µnt|t,Σ

n
t|t) · wn∑N

n=1w
n

,

where µnt|t and Σn
t|t that are obtained using Equation 3 and wn are the mixing coefficients.

p(x̂t|y1:T ) is approximated by a Gaussian distribution with mean µ̂t|t and covariance matrix

Σ̂t|t that can be calculated following

µ̂t|t =

∑N
n=1µ

n
t|t · wn∑N

n=1w
n

Σ̂t|t =

∑N
n=1 Σn

t|t · wn∑N
n=1w

n
+

∑N
n=1(µnt|t − µ̂t|t)(µnt|t − µ̂t|t)ᵀ · wn∑N

n=1w
n

.

(17)

This Gaussian distribution is the closest one to the true mixture distribution [24, 29].
Because samples θn are realizations of the posterior PDF, wn are all equals to one and
Equation 17 becomes

µ̂t|t =
1

N

∑N
n=1µ

n
t|t

Σ̂t|t =
1

N

[∑N
n=1 Σn

t|t +
∑N

n=1(µnt|t − µ̂t|t)(µnt|t − µ̂t|t)ᵀ
]
.

(18)

5 Methodology

This section presents two procedures (1) the maximum a posteriori with the Laplace
approximation procedure (LAP-P) and (2) the Hamiltonian Monte Carlo procedure (HMC-
P) for approximating the posterior PDF of model parameters and for estimating the hidden
state variables.
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5.1 Maximum A Posteriori with Laplace Approximation Procedure (LAP-
P)

The LAP-P consists in two main steps: Posterior Density Approximation (PDA) and
Uncertainty Marginalization (UM). The PDA-step is to approximate the parameter posterior
density p(θ|y1:T) using the MAP and the Laplace approximation presented in Section 3.1.
The UM-step is related to the estimation of the expected values for hidden state variables
µ̂t|t and its covariance matrix Σ̂t|t based on Gaussian Mixture approach presented in Section
4.

In the PDA-step, the optimal parameter vector θ∗ of a model is first learned from a
training set y1:T using the Newton-Raphson algorithm. The parameter posterior density
p(θ|y1:T) is then approximated using the Laplace approximation. Note that this density is
supposed to be a Gaussian density with mean θ∗ and covariance matrix −H(θ∗)−1, where
the operator H corresponds to the Hessian of the log-posterior function Lp(θ) defined
in Equation 8. The UM-step marginalizes the parameter uncertainty estimation using
Equation 18 to estimate µ̂t|t and Σ̂t|t at each time t. The LAP-P is summarized in Figure
1.

5.2 Hamiltonian Monte Carlo Procedure (HMC-P)

HMC-P has the same two steps as LAP-P, except that the PDA-step employs the HMC-
based method presented in Section 3.2 for approximating the parameter posterior density
p(θ|y1:T). The shematic architecture of a HMC-P is illustrated in Figure 2.

To ensure an efficient performance for the HMC-P, the parameters {ε, L} for the leapfrog
method presented in Section 3.2 need to be tuned in the PDA-step. For this purpose,
the appropriate start point θ start for the parameters along with the HMC sampler are
required. Once the leapfrog parameters are identified, the samples are then drawn from the
constructed sampler for approximating p(θ|y1:T).

6 Case-Study

This section compares the LAP-P with the HMC-P for approximating the posterior PDF of
model parameters and the estimation of the hidden state variables with respect to different
training-set lengths (TSLs) on two case-studies: a simulated dataset and a real dataset for
a dam in Canada. For this purpose, five tests associated with the TSL of 30, 90, 180, 365
and 1095 days are employed in both case-studies.

6.1 Illustrative Example

The illustrative example studies a simulated dataset where the true values for the hidden
state variables and the model parameters are known. The objective is to compare the
performance of the LAP-P with the HMC-P based on the true values.
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Figure 1: Illustration of the general procedure for approximating the posterior density of
parameters p(θ|y1:T) and the mean values of the hidden state variables and its covariance
matrix at each time t i.e. {µ̂t|t, Σ̂t|t} using the combination of the MAP with the Laplace
approximation and Gaussian Mixture approach.

10



NGUYEN et al. (2018). Uncertainty Quantification for Model Parameters and Hidden States in
Bayesian Dynamic Linear Models. Preprint submitted to Structural Control and Heath Monitoring

Training
set

Model

Newton-Raphson
algorithm

θ start

Sampler
construction

HMC
sampler

Leapfrog
parameter tuning

ε, L

Sampling

p(θ|y1:T)

Gaussian mixture

µ̂t|t, Σ̂t|t

P
osterior

d
en
sity

ap
p
rox

im
ation

(§3.2)
U
n
certain

ty
m
argin

alization
(§4)

Figure 2: The two main steps for approximating the posterior density of parameters p(θ|y1:T)
and the mean values of hidden state variables and its covariance matrix at each time t i.e.
{θ̂t|t, Σ̂t|t} using the combination of the HMC method with Gaussian Mixture approach.
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6.1.1 Simulated Data

The experiment is conducted on simulated data that are generated to be representative
of the data recorded on civil infrastructure such as a dam. For this purpose, a dataset of
displacement (D) measurements is generated including a baseline (B) to present the structural
behavior over time, a seasonal cycle (S) to describe the thermal effect of environmental
conditions on the displacement, an autoregressive (AR) process to artificially introduce
model prediction errors over time, and observation errors (vt). The dataset is formulated
following

yDt = xBt + xSt + xARt + vt [mm],

where each component is generated using the following formulation

xBt = 3 + wB
t , wB

t ∼ N (0, (10−5︸︷︷︸
σBw

)2)

xSt = 4 sin
[

2π
365.24 · (t+ 15)

]
xARt = 0.866︸ ︷︷ ︸

φAR

·xARt−1 + wAR
t , wAR

t ∼ N (0, (0.05︸︷︷︸
σARw

)2)

vt ∼ N (0, ( 0.1︸︷︷︸
σv

)2).

A four-years-dataset (1461 observations) with a uniform time-step length of 24 hours is
generated from the simulated setting, as shown in Figure 3.

14-01 15-01 16-01 16-12 17-12−8.28

2.85

13.99

Time [YY-MM]

D
isp

l,
y
D

[m
m

]

Figure 3: Illustration of 4 years of simulated data.

6.1.2 Model Construction

A common model is built for the experiment using both LAP-P and HMC-P. In this model,
each observation is decomposed into a baseline component to model the structural behavior
over time, a periodic component with a period of 365.24 days to model the environmental
conditions, and an autoregressive component to describe model prediction errors. Hence,
the vector of hidden state variables is defined as

xt =

 xBt︸︷︷︸
baseline

, xS1,T1t , xS2,T1t︸ ︷︷ ︸
cycle, p=365.24 days

, xARt︸︷︷︸
AR


ᵀ

. (19)
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The model involves a vector of unknown parameters that are defined following

θ =
[
σBw, φ

AR, σARw , σv
]ᵀ
, (20)

where σBw is the baseline standard deviation, φAR is the autocorrelation coefficient, σARw is
the autocorrelation standard deviation, and σv is the observation error standard deviation.
σBw, σ

AR
w and σv are positive real numbers R+, whereas φAR is defined in range between 0 and

1. The full model matrices can be found in Appendix A. The parameters being estimated
are commonly transformed to unbounded spaces for an efficient estimation [10]. For this
purpose, a logarithms-base-10 and sigmoid functions are applied to the standard deviations;
σ ∈ (0,∞) and the autocorrelation coefficient; φAR ∈ (0, 1), respectively, so that

σTR = log10(σ)

φAR,TR = 1
1+exp(− 4φAR) ,

where the superscript TR stands for transformed space. The initial parameter values in the
original space for the model are

θ0 =

10−4︸︷︷︸
σBw

, 0.7︸︷︷︸
φAR

, 0.01︸︷︷︸
σARw

, 0.026︸ ︷︷ ︸
σv

ᵀ

.

In the BDLM framework, we expect the baseline standard deviation σBw to be small
because the error between the model prediction and the observation at each time step will
be captured in the autoregressive component xAR. Hence, it yields to high autocorrelations
in the model prediction errors between time steps. The autocorrelation coefficient φAR is
assumed to be close to one. This prior knowledge defines the prior PDF for σBw and φAR

in order to ensure a reliable estimation [11, 13]. The remaining parameters are expected
to be near to a unit scale. The prior distributions in the transformed space associated
with each parameter in Equation 20 are set as follows f(σB,TRw ) = N (−4, 2), f(φAR,TR) =
N (1.5, 0.5), f(σAR,TRw ) = N (0, 1), and f(σTRv ) = N (0, 1). Figure 4 illustrates the different
prior distributions corresponding to three parameters

{
σBw, φ

AR, σv
}

represented in the
original space.

0 0.3 0.7 1
·10−3σBw

(a) σB
w

0.80 0.87 0.93 1.00
φAR

(b) φAR

0.0 0.7 1.3 2.0
σv

(c) σv

Figure 4: Illustration of prior distribution choices for model parameters in the original
space.
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Because the nature of LAP-P and HMC-P is different from each other, some setup
options for parameter estimation must be tuned separately. In the LAP-P, the termination
tolerance τ in Equation 9 is set to 10−7 and the initial parameter values in the original
space are equal to θ0. The HMC-P employs 4 parallel Markov-chains (Cc) for each training
set length, where each Markov-chain has its own initial parameter values. These initial
parameter values are directly defined in the transformed space as follows

θ0,C1 = θ start

[θ0,C2 ,θ0,C3 ,θ0,C4 ] = N
(
θ start, diag([1 1 1])

)
,

where θ start is a vector of pre-estimated parameters as presented in Section 5.2. The mass
matrix M in Equation 15 is chosen as the negative diagonal Hessian matrix of ln p(θ|y1:T).
Here, the stopping criterion is when the quantity R̂ is less than 1.01 (See Section 3.2).

6.1.3 Results

Five tests on the different training-set lengths (TSLs); 30 days , 90 days, 180 days, 365 days,
and 1095 days using both LAP-P and HMC-P have been conducted for approximating
the posterior PDF of model parameters as well as for the estimation of the hidden state
variables. Figure 5 shows the Kernel smoothing function estimate [4] of the PDFs for
each parameter according to each TSL. The dashed line and the solid line represent the
PDFs obtained using LAP-P and HMC-P, respectively. The true parameter values (θ̌) are
presented by the asterisks.

It can be seen that the PDFs obtained from both procedures concentrate around θ̌
as the training dataset length increases. In the case for the TSL of 180 days, where the
PDFs approximated using LAP-P are shifted away from those approximated using HMC-P
and θ̌. This behavior can be explained by the sensitivity to the initial parameter values
in LAP-P, leading to a local maximum. Note that in this case, the full Hessian matrix
cannot be inverted so that only diagonal terms are used to compute parameter covariance
matrix. In addition, the posterior PDF for σBw approximated using HMC-P, as presented
in Figure 5a, has a larger posterior mass in the tail than the other shorter TSLs. This
behavior is contrary to the general intuition that the more data we have, the more posterior
mass concentrates around θ̌. This behavior justifies that the extraction of information from
data depends not only on the size of data, but also on the interaction of the prior with the
likelihood function and the parameter being estimated as noted by Gelman et al [13].

The dominance of the prior PDF can be seen on the autocorrelation coefficient φAR

presented in Figure 5b for the small dataset size such as 30, 90 and 180 days. However,
the prior becomes dominated by the information from data, as illustrated in the TSLs
of 365 and 1095 days. In the TSL of 1095 days, the parameter posterior PDFs obtained
with both procedures are identical except the heavy tailed posterior PDF for σBw estimated
using LAP-P. Overall, HMC-P shows a superior capacity at approximating the parameter
posterior PDF over LAP-P.

Biased estimation with LAP-P for the TLS of 180 days leads to the question of the
robustness of LAP-P with respect to the choice of initial parameter values. To answer this
question, an addition test using a different set of initial parameter values, is carried out
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Figure 5: Each column illustrates the Kernel smoothing function estimate of the posterior
PDFs for each model parameter p(θi|y1:T) in the original space with respect to the training-
set length of simulated data.

15



NGUYEN et al. (2018). Uncertainty Quantification for Model Parameters and Hidden States in
Bayesian Dynamic Linear Models. Preprint submitted to Structural Control and Heath Monitoring

with the TLS of 1095 days. Note that in the previous test, the LAP-P performed well in the
approximation of the parameter posterior PDFs, where these PDFs concentrated around
the θ̌. Figure 6 presents the Kernel smoothing function estimate of the posterior PDFs for
each parameter. Instead of concentrating around θ̌, the PDFs obtained using LAP-P are

0.00 0.02 0.05 0.07
σBw

HMC
LAP
True

(a) σB
w

0.00 0.33 0.67 1.00
φAR

HMC
LAP
True

(b) φAR

0.00 0.05 0.10 0.15
σARw

HMC
LAP
True

(c) σAR
w

0.00 0.07 0.13 0.20
σv

HMC
LAP
True

(d) σv

Figure 6: Illustration of the Kernel smoothing function estimate of the posterior PDFs for
each model parameter in the original space with the training set of 1095 days.

far from them. It illustrates the effect of poor initial parameter values on the approximation
of the parameter posterior PDF. Hence, a careful tuning of the initial parameter values in
LAP-P is essential for an accurate estimation. For this purpose, the different sets of initial
parameter values should be tested during training.

For both procedures, the hidden state variables are estimated using 1000 samples from
the joint parameter posterior PDF. This number of samples provides a sufficient accuracy
for the estimation of the hidden state variables, because the same results are found for
the larger sizes of samples. Figure 7 presents the hidden state variables estimated using
Kalman Smoother [30] for the entire dataset with respect to the TSL. We only present the
results for the baseline (xB) and autoregressive (xAR) components. The mean value and

its standard deviation at time t are µ̂
(.)
t|t and σ̂

(·)
t|t , respectively, where the superscript (·) is

associated with either LAP-P or HMC-P being employed for the estimation task. The mean
value µ̂LAP

t|t and its uncertainty bound µ̂LAP
t|t ± σ̂LAP

t|t at time t are represented by the dashed

line and the shaded region delimited by the solid line, respectively. Meanwhile, µ̂HMC
t|t and

µ̂HMC
t|t ± σ̂HMC

t|t are represented by the solid line and the shaded region, respectively. The

true hidden state variables (x̌t) are presented by the dash-dot line.

As with the posterior PDFs for model parameters, the estimation for the hidden state
variables keeps improving as the amount of the training data increases. The mean values
for the hidden state variables tend to x̌t and their uncertainty bounds narrow down. More
importantly, these uncertainty bounds include with x̌t in almost all TLSs, except 180 days.

For 180 days, the estimation of the hidden state variables using LAP-P suffers from the
biased posterior PDF, as shown in Figure 7c. The baseline and autoregressive components
obtained from LAP-P are not well separated as expected, even though their uncertainty
bounds are smaller than those obtained from HMC-P. Meanwhile, the uncertainty bounds
for the baseline and autoregressive components estimated using HMC-P are larger than
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(b) Training set of 90 days (90 data points)
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(c) Training set of 180 days (180 data points)
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(d) Training set of 365 days (365 data points)
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(e) Training set of 1095 days (1095 data points)

Figure 7: Expected value µ̂ and standard deviation σ̂ for baseline (left) and autoregressive
(right) components using LAP-P and HMC-P with respect to the training-set length of the
simulated data.
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those from the shorter TSL of 90 days.
The uncertainty bounds of the baseline component obtained from LAP-P are larger than

those obtained from HMC-P in almost TLSs except for 180 days. The discrepancy between
both procedures is clearly observable in the TSLs of 30 and 1095 days, as illustrated in
Figures 7a and e. The heavy tailed posterior PDFs for σBw obtained from LAP-P (Figure 5a)
is to be blamed for such this behavior. For the TSL of 365 days, the uncertainty bounds of
the autoregressive component estimated using LAP-P are unexpectedly smaller than those
estimated using HMC-P. This is explained by a more precise approximation with LAP-P
than with HMC-P in the posterior PDFs for φAR and σARw presented in Figures 5b and c.

These results illustrate a potential impact of the model parameter uncertainty on the
estimation of the hidden state variables. Also, the mean values and their uncertainty bounds
for the hidden state variables obtained from HMC-P overall are more reliable than those
obtained from LAP-P because of the lack of sensitivity test with respect to the initial
parameter values in LAP-P.

6.2 A Dam in Canada

In this case-study, the comparison between the LAP-P and the HMC-P is illustrated using
the horizontal displacement data collected on a dam located in Canada. The horizontal
displacement is measured using an automatic inverted-pendulum along the X-direction.
The location of the studied sensor is shown in Figure 8.

Downstream

Dam displacement
 along the x-axis

West bank

Z
X

Y

Uptream

East bank

Y

Figure 8: Sensor localization on the dam.

6.2.1 Data Description

The horizontal displacement data are collected over the period of 4 years from 2010 to 2014
with a total of 2679 data points. The entire dataset is shown in Figure 9. A descending
trend and a periodic pattern with a period of one year can be observed from the raw
data. The periodic pattern reaches its maximum during winter and minimum during
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Figure 9: Raw displacement data.

summer. Such a behavior is attributed to the temperature effect. Note that the data are
collected with a non-uniform time-step length, as shown in Figure 10. The time-step length
varies in the range from 1 to 216 hours, where the most frequent time-step is 12 hours.
A reference time-step [15] corresponding to the most frequent time-step according to the
studied training-set is selected.
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T
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 216 hours

 12 hours

  1 hour

Figure 10: Time step size

6.2.2 Model Construction

Similarly to the previous model detailed in Section 6.1.2, a new model is constructed using
the same vector of hidden state variables, with an additional trend component. Because of
the descending trend behavior observed from the raw data (Figure 9), the trend component
is needed to model the rate of change in the baseline component. Therefore, the vector of
hidden state variables is written as

xt =

 xBt︸︷︷︸
baseline

, xTt︸︷︷︸
trend

, xS1,T1t , xS2,T1t︸ ︷︷ ︸
cycle, p=365.24 days

, xARt︸︷︷︸
AR


ᵀ

.

The parameter vector θ corresponding to the model is defined following

θ =
[
σTw, φ

AR, σARw , σv
]ᵀ
,
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where σTw is the trend standard deviation and the remaining parameters are the same with
the bounds as defined in Equation 20. The full matrices for the new model are detailed in
Appendix A. The initial parameter values in the original space for the model are

θ0 =

10−4︸︷︷︸
σTw

, 0.8︸︷︷︸
φAR

, 0.02︸︷︷︸
σARw

, 0.03︸︷︷︸
σv

ᵀ

.

The other settings such as the transformation functions and the prior PDFs related to
LAP-P and HMC-P in the new model remain identical as the previous model.

6.2.3 Results

As with the case involving simulated data, five tests with different training-set lengths
(TSLs) have been carried out using both LAP-P and HMC-P for this case-study. The
amount of data in each TSL is 30, 90, 180, 365 and 1095 days correspond to 51, 161, 328, 651
and 2142 data points, respectively. The convention for the figure remains identical as the
simulated case presented in Section 6.1.3. The dashed and solid lines represent the Kernel
smoothing function estimate of parameter posterior PDF obtained from LAP-P and HMC-P,
respectively. For hidden state variables, the dashed line and the shaded region delimited
by the solid line represent respectively the mean value µ̂LAP

t|t and its uncertainty bound

µ̂LAP
t|t ± σ̂LAP

t|t at time t, whereas µ̂HMC
t|t and µ̂HMC

t|t ± σ̂HMC
t|t are illustrated by the solid line

and the shaded region, correspondingly.

Figures 11 and 12 show the posterior PDFs for each parameter and the hidden state
variables estimated using Kalman Smoother, respectively. A common remark is that the
posterior PDF of model parameters approximated using both LAP-P and HMC-P tend to
concentrate to the same values with the increasing size of the training data. For the TSL
of 30 days, the posterior PDF for σTw obtained from LAP-P, as illustrated in Figure 11a,
is uniform for the range while those obtained from HMC-P yields reasonable inferences
given this short TSL. An interesting behavior identified in the posterior PDFs for σARw and
σv, is that there is a lack of consistency between these posterior PDFs regarding the TSL.
Furthermore, the expected values of these posterior PDFs slightly change with respect to
TLS. The time varying model parameters might be an explanation for this change. The
posterior PDFs for φAR presented in Figure 11b, again shows the dominance of the likelihood
function over the prior for large dataset sizes.

Despite the discrepancy of the posterior PDFs for σARw and σv across training-set lengths,
the inferences for the hidden state variables from both procedures are well behaved as
expected. The autoregressive component xAR shows a stationary behavior with a small
amplitude even though an abnormal peak with high amplitude is identified at the end
of the year 2013. This jump is likely to be caused by the presence of a malfunction in
the measurement sensor. The estimation accuracy improves with the dataset size. Their
expected values tend to the same values and their uncertainty bounds are reduced as the
TSL increases. The estimation results for the TSL of 1095 days presented in Figure 12e,
outperform the others in the remaining TSLs. It confirms that the model parameter and
state estimate uncertainties can be reduced through an increase in dataset size.
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Figure 11: Illustration of the Kernel smoothing function estimate the posterior PDFs for
each model parameter p(θi|y1:T) in the original space with respect to the training-set length.
The data are collected on a dam in Canada.
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(a) Training set of 30 days (51 data points)

10-09 11-08 12-07 13-06 14-05−32.29

−25.08

−17.88

Time [YY-MM]

x
B

[m
m

]

10-09 11-08 12-07 13-06 14-05−3.01

0.02

3.05

Time [YY-MM]
x
A
R

[m
m

]
(b) Training set of 90 days (161 data points)
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(c) Training set of 180 days (328 data points)
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(d) Training set of 365 days (651 data points)
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(e) Training set of 1095 days (2142 data points)

Figure 12: Expected value µ̂ and standard deviation σ̂ for baseline (left) and autoregressive
(right) components using LAP-P and HMC-P with respect to the training-set length. The
data are collected on a dam in Canada.
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HMC-P again shows its more reliable estimation capacity over LAP-P for the small
dataset size such as 30 and 90, as presented in Figures 12a and b. Yet, the differences in
the estimation between both LAP-P and HMC-P become unnoticeable for the TSLs of
180, 365, and 1095 days, as shown in Figures 12c, d and e.

7 Discussion

From the comparative studies, we are able to expose the advantages as well as the limitations
of both LAP-P and HMC-P. More specifically, the LAP-P provides a fast method for the
approximation of parameter posterior PDFs, yet it is prone to be trapped in a local
maximum due to its sensitivity towards the selection of initial parameter values. In addition,
the evaluation of the parameter covariance matrix depends not only on the structure of the
log-posterior but also on the parameter being estimated. The accuracy and feasibility of
such evaluation become challenging for either high-dimensional parameter spaces, or for a
small dataset size. To ensure a reliable approximation, the model must be (a) trained with
a large amount of data and (b) tested with the different sets of the initial parameter values.
In the other hand, the HMC-P is less sensitive to the initial parameter values and provides
more reliable estimation than LAP-P, especially when the amount of data in the training
set is limited. However, the computational cost is much higher than the LAP-P. Figure 13
presents the compute time of both procedures for approximating the parameter posterior
PDF in the simulated and real datasets.
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Figure 13: The compute time of LAP-P and HMC-P for approximating the parameter
posterior PDF is presented in logarithmic scale.

Because LAP-P is a fast method for the estimation task and providing an equivalent
performance as HMC-P in the case of the large size of the training data. The LAP-P is
well suited for approximating the posterior PDF of model parameters as well as for the
estimation of the hidden state variables during the model development. HMC-P should
then be used for verifying the resulting estimations obtained from LAP-P. If the results
estimated using both procedures are different from each other, the model construction must
be carefully revised for consistency.

An interesting behavior identified in the case-study of the real dataset is that the model
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parameters might be changed over time. Future work will investigate the possibility of
estimating time varying model parameters.

8 Conclusion

This paper proposes the LAP and HMC-based procedures for quantifying the uncertainty
for the model parameters as well as the hidden state variables in the existing BDLM
framework. A comparative study has been conducted using a simulated dataset and a real
dataset collected on a dam in Canada. The results show that the LAP-P is able to provide
a reasonable estimation without requiring a high computation cost, yet it is prone to be
trapped in a local maximum. Meanwhile, the estimation of HMC-P is more reliable than
those of LAP-P, but it is computationally demanding. The estimation results obtained
from both LAP-P and HMC-P converge to the same values when the training dataset is
large. Therefore, we suggest a deployment of both LAP-P and HMC-P in order to ensure a
reliable estimation. More specifically, LAP-P is first employed for the model development.
HMC-P should then be used to verify the resulting estimation obtained using LAP-P.
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[26] I. S. Mbalawata, S. Särkkä, and H. Haario. Parameter estimation in stochastic
differential equations with Markov chain Monte Carlo and non-linear Kalman filtering.
Computational Statistics, 28(3):1195–1223, 2013.

[27] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller.
Equation of state calculations by fast computing machines. J. Chem. Phys., 21:1087–
1091, 1953.

[28] N. Metropolis and S. Ulam. The Monte Carlo method. Journal of the American
Statistical Association, 44(247):335–341, 1949.

[29] K. P. Murphy. Switching kalman filters. Technical report, Citeseer, 1998.

[30] K. P. Murphy. Machine learning: a probabilistic perspective. The MIT Press, 2012.

[31] R. M. Neal et al. Mcmc using hamiltonian dynamics. Handbook of Markov Chain
Monte Carlo, 2(11):113–160, 2011.

[32] Y. Nesterov. Primal-dual subgradient methods for convex problems. Mathematical
programming, 120(1):221–259, 2009.

[33] L. H. Nguyen and J.-A. Goulet. Anomaly detection with the switching kalman filter
for structural health monitoring. Structural Control and Health Monitoring, pages
e2136–n/a, 2018.

[34] B. Ninness and S. Henriksen. Bayesian system identification via Markov chain Monte
Carlo techniques. Automatica, 46(1):40–51, 2010.

[35] B. Rannala. Identifiability of parameters in mcmc bayesian inference of phylogeny.
Systematic Biology, 51(5):754–760, 2002.

[36] J. S. Rosenthal. Parallel computing and Monte Carlo algorithms. Far East Journal of
Theoretical Statistics, 4:207–236, 2000.
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Appendix A

The transition matrix (At), the observation matrix (Ct), the observation error covariance
matrix (Rt), and the model error covariance matrix (Qt) for the simulated-dataset model
class and the real-dataset model are defined following

Simulated-dataset model

At = block diag

(
1,

[
cosωT1 sinωT1

−sinωT1 cosωT1

]
, φAR

)

Ct = [1, 1, 0, 1]

Rt =
[
(σv)

2
]

Qt = block diag

((
σBw
)2
,

[
0 0

0 0

]
,
(
σARw
)2)

Real-dataset model

At = block diag

([
1 ∆t

0 1

]
,

[
cosωT1 sinωT1

−sinωT1 cosωT1

]
, φAR

)

Ct = [1, 0, 1, 0, 1]

Rt =
[
(σv)

2
]

Qt = block diag

(σTw)2
 ∆t3

3
∆t2

2

∆t2

2 ∆t

 ,[ 0 0

0 0

]
,
(
σARw
)2

where ∆t is the time step at the time t.
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