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RÉSUMÉ

Les structures telles que les ponts, les barrages, les bâtiments et les tunnels sont des com-
posantes majeures du réseau d’infrastructures qui contribuent à la croissance économique d’un
pays. La détérioration des infrastructures est associée à un impact négatif sur l’économie causé
par les coûts directs de maintenance, ainsi que par les coûts indirects liés à la production de
biens et de services. L’adoption de stratégies de maintenance préventive et prédictive est une
solution à long terme pour atténuer les effets de la détérioration, prolonger la durée de vie en
service et minimiser le coût du cycle de vie des infrastructures vieillissantes. Toutes les struc-
tures se détériorent et se dégradent au cours de leur vie. Ainsi, la détection d’anomalies dans
le taux de changement de dégradation permet de déclencher des actions d’entretien préven-
tif et d’interventions. Cependant, il n’existe actuellement aucune méthodologie générique
d’interprétation des données qui est capable de détecter des anomalies en temps réel sans être
affectées par de fausses alarmes.

Le projet de recherche a pour objectif de développer des méthodes basées sur des données
pour la surveillance de l’état des structures ou Structural Health Monitoring (SHM) en anglais,
qui sont capables de suivre le comportement d’une structure en temps réel. Afin d’atteindre
cet objectif principal, cette thèse propose des méthodes d’apprentissage automatique qui
permettent (i) d’isoler le comportement d’une structure à partir de ses données brutes, y
compris les effets externes périodiques causés par les conditions environnementales ainsi que
les erreurs d’observation, (ii) d’apprendre automatiquement des paramètres du modèle et (iii)
de détecter les anomalies en temps réel sans supervision humaine et sans avoir besoin des
données étiquetées reflétant les conditions normales et anormales.

Les méthodes proposées sont validées avec les données enregistrées sur des structures
réelles. Les résultats illustrent que ces méthodes réussissent à détecter en temps réel les
changements dans le comportement de données de déplacement enregistrées sur un barrage,
ainsi qu’à modéliser des signaux périodiques, non harmoniques et complexes tels que les
données de charge de trafic enregistrées sur un pont. De plus, les méthodes d’apprentissage
sont capables d’identifier automatiquement les paramètres optimaux du modèle ainsi que
d’estimer, en ligne et hors ligne, la fonction de densité de probabilité à postériori de paramètres
du modèle. En outre, les méthodes proposées sont facilement transférables d’une structure à
une autre et d’un type de mesure à un autre. En résumé, les méthodes proposées offrent une
voie potentielle associée au déploiement à grande échelle de systèmes SHM permettant de
surveiller en temps réel l’état d’une population de structures.
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ABSTRACT

Civil structures such as bridges, dams, buildings, and tunnels are major components of
infrastructure networks which establish a foundation for the economic growth of a country.
Infrastructure deterioration is associated with a negative economic impact caused by the
direct maintenance costs, as well as the indirect costs for production and transport of goods
and services. One long-term solution to mitigate the effects of deterioration, to prolong the
service life, and to minimize life-cycle cost of ageing infrastructure is to adopt preventive and
predictive maintenance strategies. All structures experience deterioration and degradation
during their lifetime and thus, early detection of anomalies in the rate of change of degradation
could be used as a trigger for preventive maintenance and interventions. Yet, there is currently
no generic data-interpretation methodology capable of detecting anomalies in real time without
also being adversely affected by false alarms.

The goal of the research project is to develop data-driven methods for Structural Health
Monitoring (SHM) that are capable of tracking a structure’s behaviour in real time. To
achieve this main goal, this thesis proposes machine learning methods that allow (i) isolating
the structural behaviour from raw data including the periodic external effects caused by
environmental conditions as well as observation errors, (ii) automatically learning unknown
model parameters from data, and (iii) detecting anomalies in real time without human
supervision and without requiring labeled training data.

The proposed methodologies are validated with data recorded on real structures. The
results show that these methodologies succeed in detecting the changes in the behaviour
of the displacement data collected on a dam in real time, as well as in modeling complex
non-harmonic periodic patterns such as traffic load data recorded on a bridge. Furthermore,
the learning methods are able to automatically find the optimal model parameters as well
as to approximate, online and offline, the posterior probability density function of model
parameters. Moreover, the proposed methodologies are easily transferable from one structure
to another and from one measurement type to another. Putting this all together, the proposed
methodologies offer a promising path toward the large-scale deployment of SHM systems for
monitoring health and conditions of a population of structures in real time.
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CHAPTER 1 INTRODUCTION

1.1 Motivation

Civil structures such as bridges, dams, buildings, and tunnels are major components of
infrastructure networks which establish a foundation for the economic growth of a country [1–3].
Infrastructure deterioration is associated with a negative economic impact caused by the
direct maintenance costs, as well as the indirect costs for production and transport of goods
and services [2]. The health and conditions of structures keep deteriorating as a result of
ageing, usage, and environmental changes. According to the Canadian’s infrastructure report
card published in 2016 [4], approximately 35% of assets are in need of attention. In the USA,
the most recent report card [5] claims that American’s infrastructure is in poor conditions.
According to this report, an estimated investment of US $4.59 trillions is required by 2025 to
improve the USA’s infrastructure.

In several developed countries, the investment rate in infrastructure has been declining
for years [4–6]. In Canada, an independent report published in 2011 by Risk Analytica [7]
concluded that to achieve a maximum Gross Domestic Product (GDP) growth over the course
of 50 years, the Canadian government needs to annually invest in infrastructure with a total
amount of 5.1% of GDP where 22% of this investment should be for repairs and maintenance.
The repair and maintenance here are defined as the work required to retrain a structure at
its designed performance level. Over the last decade, the Canadian government has spent
an average of 3% of GDP as annual investment on infrastructure, and approximately 17%
of this total investment were spent on repairs and maintenance [8]. It remains significantly
below the aforementioned target of 5.1% of GDP. With this investment gap, a number of
ageing structures remains in service without optimal maintenance, which is likely to reduce
the length of their service life [4].

One long-term solution to mitigate the effects of deterioration, to prolong the service life,
and to minimize life-cycle cost of ageing infrastructure is to adopt preventive and predictive
maintenance strategies. A key aspect for achieving this goal is to have generic and low-cost
methodologies capable of tracking the health and conditions of any structures in real time.
As early as in the 1970s, many structures have been monitored to improve the understanding
of their behaviour [9, 10]. This research field is known as Structural Health Monitoring
(SHM). A typical SHM system consists of three main components: a sensor network, a
data processing system, and a data-interpretation system [11]. A sensor network contains
multiple sensors to monitor different structural responses. A data processing system provides
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the means for data acquisition, transmission, and storage. A data-interpretation system
includes methodologies that allow tracking and diagnosing the health and conditions of a
structure. Quantities monitored on a structure are typically displacement, strains, inclination
and accelerations [12, 13]. Sensing technologies have evolved over the last decades [11, 14] and
are now cheap and widely available. Despite the notable hardware developments, innovations
in data-interpretation methodologies have been evolving at a slower pace. There is currently
no data-interpretation methodology capable of detecting anomalies in real time without also
being adversely affected by false alarms. An anomaly is defined as an unexpected change in the
behaviour of a structure. A false alarm is a false detection of an anomaly that would require
the attention of the infrastructure manager, and that consequently incurs costs. Another key
aspect is that data-interpretation methods must be easily transferable from one structure
to another and from one measurement type to another in order to be financially viable for
practical applications as well as to be able to allow for massively distributed SHM systems
across thousands of structures.

This research focuses on anomaly detection for civil structures. As aforementioned, all
structures will experience deterioration and degradation during their lifetime and thus, there is
an economic incentive for the early detection of anomalies in the rate of change of degradation.
This is because the identification of such events could be used as a trigger for preventive
maintenance and intervention.

1.2 Anomaly Detection

Anomaly detection consists in finding patterns in data that do not conform to expected
behaviour [15]. In the context of SHM, the anomalies can be referred as, among others,
changes in the structural behaviour, outliers, and sensor drifts. The changes in the structural
behaviour are commonly caused by ageing, usage, and environmental changes. On the other
hand, the presence of an outlier might be due to either a high variability in the measurements
or by malfunctioning sensors. The sensor drift can be caused by environmental conditions,
installation conditions, and physical changes in the sensor. In practice, both the outliers and
sensor drifts do not lead to a long-term deterioration of a structure. Therefore, the main
interest of this thesis focuses on detecting changes in the structural behaviour. As a matter
of fact, detecting early-stage changes and providing infrastructure maintenance in time have
the potential to extend the infrastructure service life, avoiding costly replacement and service
disruption.

In different application domains, the anomaly detection problem is known to be a chal-
lenging task [15]. In the context of SHM, challenges associated with anomaly detection
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are:

− The generic notation of abnormal and normal behaviours is not well defined.
− Datasets with labeled anomalies are rarely available [16].
− Changes in the structural behaviour are commonly hidden under larger changes due to

a high variability in environmental conditions such as temperature [17,18].
− Distinguishing changes in the structural behaviour from the observation noise is difficult

[18].

Although many methodologies from the field of applied statistics and machine learning have
been proposed for detecting anomalies, they have only been applied to specific problems. The
complete review of these methods are presented in Chapter 2. For the context of SHM, an
anomaly detection system should be designed to meet the following requirements:

− It is capable of isolating the structural behaviour from raw structural responses including
the effect of environmental conditions and observation noise.

− It provides a generic model architecture for the normal and abnormal behaviour without
requiring labeled training data.

− It is capable of performing real-time anomaly detection without triggering any false
alarms and without human supervision.

− It allows using the information redundancy contained in multiple datasets to provide
the overall picture of the state of a structure.

− It is easily transferable from one structure to another.

1.3 Research Objectives

The research project aims at developing data-driven methods for SHM that are capable of
tracking a structure’s behaviour in real time. To achieve this main goal, four specific objectives
need to be completed:

1. Develop a methodology for modeling complex periodic external effects caused by envi-
ronmental conditions that influence the observed structural responses.

2. Develop a methodology for efficiently learning unknown model parameters from data.
3. Develop a methodology for detecting anomalies in real time and which is robust towards

false alarms.
4. Validate the proposed methodologies with data collected on the full-scale structures.
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1.4 Thesis Outline

This thesis is organized as follows. Chapter 2 provides a literature review for the field of
SHM and exposes the strengths and limitations of existing methodologies for interpreting
the observed structural responses. Chapter 3 presents the theory behind Bayesian Dynamic
Linear Models (BDLMs) on which this thesis builds for detecting anomalies in the context
of SHM. The goal of Chapter 3 is to provide (i) a mathematical formulation of existing
BDLMs, (ii) a generic model architecture for anomaly detection, and (iii) new approaches for
modeling non-harmonic periodic external effects. Chapter 4 introduces different algorithms
for optimizing unknown model parameters in BDLMs. Chapter 5 introduces the theory and
general framework proposed for performing real-time anomaly detection. For each chapter,
the proposed methodologies are validated using either simulated or real datasets. Finally,
Chapter 6 provides overall conclusions, discussions, and directions for future research.

1.5 Co-Authored Papers

Most of the work in this thesis has already been presented in the following co-authored
publications:

− Nguyen, L.H. and Goulet, J.-A.. Structural health monitoring with dependence on
non-harmonic periodic hidden covariates. Engineering Structures. 166:187 - 194, 2018.

− Nguyen, L.H. and Goulet, J.-A.. Anomaly detection with the switching Kalman filter
for structural health monitoring. Structural Control and Health Monitoring. 25:e2136,
2018.

− Nguyen, L.H., Gaudot, I., Khazaeli, S., and Goulet, J.-A.. A Kernel-based method
for modeling non-harmonic periodic phenomena in Bayesian dynamic linear models.
Frontiers in Built Environment. 5:8, 2019.

− Nguyen, L.H., Gaudot, I., and Goulet, J.-A.. Uncertainty quantification for model
parameters and hidden state variables in Bayesian dynamic linear models. Structural
Control and Health Monitoring. 26(3):e2309, 2019.

− Nguyen, L.H. and Goulet, J.-A.. Real-time anomaly detection with Bayesian dynamic
linear models. Structural Control and Health Monitoring. e2404. 2019.

https://www.sciencedirect.com/science/article/pii/S0141029617320308
https://www.sciencedirect.com/science/article/pii/S0141029617320308
https://onlinelibrary.wiley.com/doi/abs/10.1002/stc.2136
https://onlinelibrary.wiley.com/doi/abs/10.1002/stc.2136
https://onlinelibrary.wiley.com/doi/abs/10.1002/stc.2136
https://www.frontiersin.org/articles/10.3389/fbuil.2019.00008/full
https://www.frontiersin.org/articles/10.3389/fbuil.2019.00008/full
https://www.frontiersin.org/articles/10.3389/fbuil.2019.00008/full
https://onlinelibrary.wiley.com/doi/full/10.1002/stc.2309
https://onlinelibrary.wiley.com/doi/full/10.1002/stc.2309
https://onlinelibrary.wiley.com/doi/full/10.1002/stc.2309
https://onlinelibrary.wiley.com/doi/full/10.1002/stc.2404
https://onlinelibrary.wiley.com/doi/full/10.1002/stc.2404
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CHAPTER 2 LITERATURE REVIEW

2.1 Structural Health Monitoring

Structural Health Monitoring (SHM) [19] consists in evaluating the state of civil infrastructures
based on the measurements of structural responses in order to support their management.
One of the goals with SHM is to gain insightful information about the state of a structure by
interpreting its observed responses over time. SHM traditionally focuses on the physic-based
models [20, 21] that use structural measurements to update a numerical model of a structure
and then employs the model to predict the structural behaviour. For such an approach,
abnormal events in a structure are identified by changes associated with modal parameters
(e.g., mass, damping ratio, and stiffness) and structural vibration characteristics (e.g., natural
frequencies) [22]. A key challenge of the physic-based models is that such models are not
available for the majority of structures such as bridges and dams because they require prior
detailed information about these structures [23]. Another challenge is that these models
may not be representative of real-life structures for which the behaviour is affected by the
environmental conditions (e.g., temperature and humidity), installation conditions (e.g.,
bridge supports and dam foundation), and ageing. These factors are commonly difficult to be
incorporated in a physic-based model, and thus reduce the predictive capacity of the model
on the structural behaviour [24].

Data-driven approaches [25–27] that employ machine learning techniques for interpreting
structural responses, offer a promising path to mitigate the challenges of the physic-based
models. These approaches interpret structural responses without requiring the specific details
about structural properties. Furthermore, they can potentially model the dependency of
structural responses on environmental conditions in order to increase model accuracy. The
anomaly detection for a structure using the data-driven approach is commonly separated in
two phases. The first phase consists of extracting the normal behaviour of a structure using a
training dataset for which the abnormal events are absent. In the second phase, the changes
in the structural behaviour are identified by comparing new observations with the resulting
pattern behaviour. Although many methodologies based on the data-driven approaches have
been proposed for interpreting the observed structural responses, it remains a challenge to
reliably detect anomalies without also being adversely affected by false alarms.

Most of the methodologies employed to interpret SHM data take their origin in the fields
of Machine Learning [28, 29]. Machine learning is commonly categorized into three types:
supervised learning, unsupervised learning, and reinforcement learning. Supervised learning
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consists in learning models that maps input data to desired output values. On the other
hand, unsupervised learning is about finding an underlying structure in the data without
knowing the right answer should be. Reinforcement learning involves an autonomous agent
taking actions in a dynamic and uncertain environment by maximizing a long-term cumulative
reward [30]. In the context of SHM, the majority of methodologies focus on the supervised and
unsupervised learning. More specifically, main families of SHM methods based on supervised
and unsupervised learning are regression models and state-space models. The strength and
limitations of each of these families are described in the following section.

2.2 Regression Models

In the context of SHM, regression models consists in building models of the type

y = g(x), (2.1)

that is linking observed structural responses y to time-dependent covariates x such as
temperature, traffic load in the case of bridges, or water level in the case of dams. Even
if dozens of regression models exist, we focus our attention on the most commons: Linear
Regression and Neural Networks. For both types of approaches, the standard procedure is to
build a model g(x) using a training set, D = {xi, yi},∀i = 1 : D, and then predict state of
the structure for new covariates xj,∀j = 1 : P. The presence of anomalies are detected by
comparing discrepancy between observations yj and model predictions g(xj).

2.2.1 Linear Regression

Linear regression models are defined as

g(x) = a · ψ(x) + b, (2.2)

where a and b are matrices containing unknown model parameters. Linear regression bears
its name because the model is linear with respect to functions ψ(·) that take covariates as
inputs. Because functions ψ(·) can be nonlinear, linear regression is not limited to modeling
linear relationships between x and y. Linear regression is employed to interpret the data
recorded on structures where covariates are for example, water level, traffic load, temperature,
etc.

In the field of dam monitoring, linear regression is employed in HST (Hydrostatic, Sea-
sonal, Time) methods. HSTs have been employed in many case studies [31–34] to interpret
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displacement, pressure, and flow-rate observations. The main idea of HST is to separate the ob-
servations into reversible (hydrostatic and seasonal) and irreversible components. Classic HST
formulations cannot handle the situation where the observations depends on non-harmonic pe-
riodic covariates [35]. Similar methods such as Hydrostatic-Temperature-Time (HTT) [36, 37]
and HST-Grad [35] employs directly the observed external effects such as concrete and water
temperatures for addressing this limitation. When those data are not available, a superposi-
tion of harmonic functions can be employed for constructing in the non-harmonic periodic
covariates [38]. However, it requires a large number of harmonic functions to deal with
complex non-harmonic periodic covariates. In the field of bridge monitoring, multiple linear
regression [26,39,40] is employed to describe the influence of the environmental conditions
(e.g., temperature and traffic load) on the structural responses (e.g., strain and acceleration).
In addition to the multiple linear regression, the robust regression [41,42] is used for detecting
structural damage. The robust regression method provides better regression coefficients for
the model g(x) in the presence of outliers.

The key limitations of linear regression models are well known in the field of Machine
Learning [28]:

− It does not distinguish between interpolating between observed data and extrapolating
beyond observations.

− It is sensitive to outliers.

− It requires an explicit definition of basic function ψ.

− It requires observing covariates.

− It is unable to handle auto-correlation which is omnipresent in time-series data.

2.2.2 Neural Networks

Neural Networks (NNs) build a function g(x) by a succession of interconnected hidden layers.
The advantages of NN methods are that (i) they allow modeling complex and nonlinear
phenomena, and (ii) they can provide a better accuracy than the linear regression models
for the prediction task. Model parameters associated with neural networks are learned using
the backpropagation algorithm [43]. Since 2006, Deep Neural Networks, that is, deep learning
have been at the forefront of the fields of machine learning and artificial intelligence [44]. The
main reasons for this interest are the advances in computational power combined with the
explosion of dataset sizes. In the field of dam monitoring, the potential of the NN approaches
have been illustrated on interpreting the displacement [45–49], piezometric water level [50],
and flow rates [51]. In the field of bridge monitoring, Pandey and Barai [52] have illustrated
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the application of the NN method on detecting damage in a truss bridge. Gu et al. [53] have
employed the NN method for differentiating the changes in natural frequencies caused by
damage from those induced by temperature variations in two-span grid model. Recently,
Tang et al. [54] have used the convolution neural network, that is, a variant of NN method,
for improving the anomaly detection accuracy in a long-span cable-stayed bridge. Other
authors [55–57] have applied the NN method to damage detection in structures based on
modal parameters and structural vibration characteristics.

The main limitation of NN models in the context of SHM is that they can contain
thousands of parameters. To learn these parameters, datasets containing up to millions of
points are required in order for them to outperform other methodologies [44]. This aspect
limits the utilization of neural network methods as a regression tool for SHM.

2.2.3 Common Limitations

As the subfield of the supervised machine learning, a first limitation common to all regression
models is that once the model g(x) is built using a training set, it stops evolving as new data
are collected. It means that the regression models are unable to improve themselves using the
data collected beyond the training period.

A second limitation is that the anomaly detection method is based on a hypothesis-testing
procedure [15]. In common cases, an error vector e = y−g(x) is evaluated for the training set
D = {xi, yi},∀i = 1 : D. When the error vector e follows a Gaussian process, e ∼ N (µ, σ2), µ
and σ2 are estimated as

µ = 1
D

D∑
i=1

ei

σ2 = 1
D− 1

D∑
i=1

(ei − µ)2.

Figure 2.1 shows an example of the error vector e that is evaluated using a training set D,
along with its probability density function (PDF). f(eTr) is employed to estimate a reference
confidence interval that is defining the normal condition. Once the training is completed,
the PDF of errors f(eT) is estimated for successive discrete test periods. The presence of
anomalies is then tested based on the distance between the training and test-set confidence
regions. Figure 2.2 shows an example where the normal statistics are learned using a training
set and where anomalies are sought during three test-sets T1, T2, and T3. Here, anomalies are
only present in the sets T2 and T3. The solid line presents the mean error and its confidence
interval is presented by the dashed line. The main limitation of this hypothesis-testing-based
approach is that it involves two counteracting phenomena. If one chooses to employ long
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Time f(eTr)

e e

Figure 2.1 The left figure presents the errors with respect to time between observations and
predicted values for the training set. The right figure shows the histogram and underlying
probability density function for errors observed during the training period.

Tr T1 T2 T3

Confidence interval T  : Test set

Anomalies

Tr  : Training set Meane 

Time

Figure 2.2 Illustration of the hypothesis-testing procedure for anomaly detection using a
training set (Tr) and three test sets T1, T2, and T3 where anomalies only occur for T2 and
T3.
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test-window lengths to increase the robustness toward false alarms, it will delay the detection
of anomalies. On the other hand, if one chooses to use short test window lengths, the approach
becomes prone to false alarms caused by outliers.

A third limitation is that the regression models are not capable of learning non-stationary
model parameters and thus affects their anomaly detectability in real time. The majority of
regression models operate using a batch learning procedure [58] in which the model parameters
are assumed to be stationary, and are estimated by minimizing a cost function, such as the
prediction error, within a fixed training period. This assumption can no longer be held in
the case where the underlying process in streaming data exhibits non-stationary behaviour
over time [59,60]. For this reason, the model parameters need to be relearned for each new
data point and this is computationally demanding for large datasets. Therefore, the batch
learning procedure is not well suited for performing real-time anomaly detection. Sejnowski
and Rosenberg [61] has proposed a sliding window technique in which a small dataset from the
past is kept for the learning purpose. This technique enables the model to learn continuously
using only the data in the selected window and the new data point. However, the window
length may become an issue because a short window-length might not have enough information
for the learning purpose, while a long window-length can slow down the learning process.

2.3 State-Space Models

As an unsupervised learning method, state-space models (SSMs) do not stop learning after
the training-set; they keep evolving over time as a new data point is collected. A SSM can be
described in a generic form by the following functions

xt = f(xt−1,wt)

yt = h(xt,vt),
(2.3)

where yt is a vector containing the observed structural responses at time t, xt is the vector of
hidden state variables, f is the transition model, h is the observation model, wt is the model
transition error, and vt is the observation error. Hidden state variables are defined as the
quantities of interest that are not directly observed and that are employed for explaining the
observed behaviour of the structure. In comparison with the regression models presented
in Section 2.2.1, the advantage of SSMs is to enable performing a dynamic estimation of
the hidden state variables where xt depends on xt−1, where the Markov Hypothesis [28] is
commonly employed to reduce the complexity of models. The Markov Hypothesis supposes
that the future is independent of the past given the present. In practice, it means that xt
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only depends on xt−1 rather than on x0,x1, · · · ,xt−1. The most common SSMs in the context
of civil infrastructure are autoregressive models, Kalman/particle filter-based models, and
Bayesian dynamic linear models.

2.3.1 Autoregressive Models

Autoregressive models (ARMs) are employed to estimate the time-dependent responses of
structures with the purpose of detecting anomalies based on hidden-state estimates. The
basic model structure for ARMs is

xt = θ · xt−1 + wt, (2.4)

where θ is a vector of parameters to be estimated and wt a vector of model errors at time t.
A special case of ARM is the Autoregressive Moving Average Model (ARMA). It combines
in a single model, an autoregressive and a moving average part. The moving average part
limits the effect of outliers that the autoregressive part alone cannot handle. Another type
of ARMs is the autoregressive model with exogenous terms (ARX). The ARX combines an
autoregressive term with dependent variables that allows including the effects of covariates
such as temperature, loading, etc. For all types of ARMs, the anomaly detection procedure
relies on the comparison of the current estimates for hidden state variables with reference
values estimated during a training period.

Carden and Brownjohn [62] have employed an ARMA model to classify damage scenarios
on experimental data for the IASC-ASCE benchmark a four-storey frame structure, the
Z24 bridge in Switzerland and the Malaysia-Singapore second link bridge. Omenzetter and
Brownjohn [63] applied ARIMA to interpret strain histories from a full-scale bridge. Bodeaux
and Golinval [64] have also illustrated the ARMA capacity for damage detection on the
Steel-Quake structure at the Joint Research Center in Ispra (Italy). A hybrid model of ARMA
and Kalman filter is used for interpreting the strain signal recording on the Malaysia-Singapore
Second Link bridge [65]. Peeters et al. [66, 67] have employed an ARX model to monitor the
frequency data collected on the Z24 bridge.

A first limitation of ARMs for SHM applications is related to their limited predictive
capacity. Because ARMs contains no information specific to the data being modeled, it
typically leads to a poor predictive capacity. A second limitation is that the model parameters
are learned using the batch learning procedure, so the ARMs offer a limited performance
for the real-time anomaly detection. A third limitation is that although the hidden state
estimation is performed dynamically, the anomaly detection remains based hypothesis-testing
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procedures similar to the one presented in §2.2.3.

2.3.2 Kalman/Particle Filter-Based Models

The Kalman Filter (KF) has been widely used in time series analysis for estimating the
posterior probability of the current hidden state variables xt given past and current observations
y1:t. The KF are employed for linear models and the Extended Kalman Filter (EKF) and
Unscented Kalman Filter (UKF) are employed for handling the nonlinear models. Particle
Filter (PF) is a sequential Monte Carlo methods for estimating the hidden state variables as
well as parameters of nonlinear models.

In the field of civil engineering, those methods are commonly employed for estimating
the structural responses associated with the modal parameters of a system over time, given
observations. For example, Tien et al. [68] have employed a KF to estimate the inter-story
drift of a 10-story shear-type building. Wu and Smyth [69] have illustrated the EKF and UKF
performances on the nonlinear hysteretic Bouc-Wen system with a single-degree freedom, a
linear system with two degree-of-freedoms (DOFs), and a nonlinear elastic system with two
DOFs. Chatzi and Smyth [70,71] have examined the PF performance on a three-mass-damped
system. In addition, the Kalman/Particle filter-based models are applied to the online
parameter estimation in several applications [72–76]. For these applications, the anomalies
are identified in real time by changes in modal parameters.

Most applications of Kalman/particle filter-based models are illustrated using either the
simulated data obtained from a numerical model or data collected on laboratory structures
for which a physic-based model with some assumptions has been established. However, such
a physic-based model has seldom been available for full-scale structures such as bridges and
dams because of their complexity and time-consuming nature. Another limitation of this
type of approach is that the anomaly detection is based on changes in the modal parameters
in comparison with reference values defined during a training period. Like other regression
models described in §2.2.3, this anomaly detection procedure is based on hypothesis-testing.

2.3.3 Common Limitations

The common limitation of current state-space methods is that the model complexity is not
adapted to the task. In the case of ARM, models are overly simple, limiting their predictive
capacity. In the case of Kalman/particle filter-based models, models require advanced
knowledge about a structure, which is not available for full-scale civil-engineering structures.
Another limitation of current state-space methods is that although they allow overcoming
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some of the limitations associated with regression models, the anomaly detection procedures
remain based on hypothesis-testing, which is subject to the same limitation as described in
§2.2.3.

2.3.4 Bayesian Dynamic Linear Models

The current factor limiting widespread SHM applications is the lack of generic data-interpretation
methods that can be employed at low cost, for any structures. Goulet [77] proposed to address
this challenge by building on the work done in the fields of machine learning in what is known
as state-space models [28], and in applied statistics what is known as Bayesian Dynamic
Linear Models (BDLMs) [78–81]. This methodology consists in the decomposition of the time
series recorded on structures into a vector of hidden state variables. The vector of possible
generic components includes, a baseline component to model the structural behaviour, a
local trend to model the rate of change, a periodic component to model the effect of periodic
external effects such as temperature, an autoregressive component to describe time-dependent
model errors, and a regression component to include the effect of an observed covariates,
e.g., loading and water temperature, on the structural response. An example of BDLMs for
decomposing a structure response into a set of hidden state variables is illustrated in Figure
2.3. The mean values of hidden state variables and its uncertainty bounds are presented by
the solid line and shaded region. In this example, the displacement data are decomposed into
a baseline, a periodic component, and an autoregressive component.

BDLMs can handle harmonic periodic patterns such as the effect of temperature on a
structural response. Moreover, this can be achieved whether or not the temperature is observed.
However, one limitation of BDLMs is that it is unable to handle complex non-harmonic
periodic patterns unless they are directly observed. The requirement that non-harmonic
periodic patterns must be directly observed is often a difficult constraint for SHM applications.
Another limitation is that the current form of BDLMs can only model behaviour of time series
under stationary conditions. To detect the occurrence of anomalies, it needs to be extended
to operate in non-stationary conditions. Furthermore, the task of the model parameter
calibration in BDLMs still relies on the batch learning procedure which is sensitive to initial
parameter values and local maxima.

2.4 Conclusion

This literature review identifies that current data-driven methodologies for SHM can be
separated into two main categories, regression models and state-space models. Both of models
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Figure 2.3 Illustration of structural responses (a) that are decomposed in a set of hidden
state variables (b): baseline component (xB), periodic component (xPD), and autoregressive
component (xAR). The mean values of the hidden state variables, µt|t, and its bound uncertainty,
µt|t ± σt|t are presented by the solid line and shaded region.

share two common limitations; there is a lack of generic methodologies for detecting anomalies
and model parameters are assumed to be stationary. In common cases, anomalies are detected
using hypothesis-testing based approaches. These approaches are (i) prone to false alarms,
(ii) incur long anomaly detection time, and (iii) computationally inefficient for performing the
real-time anomaly detection. The assumption of invariant model parameters can no longer be
held in the presence of anomalies, where several model parameters exhibit a non-stationary
behaviour.

The majority of the methods proposed for SHM have only been validated using either the
simulated measurements obtained from the numerical model or the measurements collected
from laboratory structures. Yet, they have seldom been tested using the measurements
recorded on the real-life structures. Furthermore, regression models have a limited predictive
ability beyond the training period. Although the state-space models solve some of the
limitations associated regression models, it remains that current methods employ models
that are either too simple or too complex for the task of detecting anomalies in the context
of SHM. Simplistic models are limited by their poor predictive capacity and over-complex
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models require detailed information about a structure, which is not suited for a widespread
deployment across thousands of bridges and dams that are all different from one to another.
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CHAPTER 3 BAYESIAN DYNAMIC LINEAR MODELS

3.1 Introduction

This chapter presents the theory behind existing Bayesian Dynamic Linear Models (BDLMs)
on which this dissertation builds for detecting anomalies in time series. More specifically,
Section 3.2 reviews the mathematical background as well as the generic components of the
BDLMs. This section also exposes the common limitations in the current form of the BDLMs
for detecting anomalies and for handling external effects (e.g., temperature and traffic loading).
Section 3.3 presents the theory of existing Switching Kalman Filter (SKF) that, in common
cases, is used for handling non-stationary time series. Section 3.4 then proposes a generic
model architecture for coupling the SKF with BDLMs to detect anomalies. In the context of
SHM, changes in the structural behaviour are commonly masked by larger changes due to a
high variability in the external effects. Therefore, a well separation between the external effects
and the structural behaviour is a key aspect for anomaly detection. For this purpose, Section
3.5 and 3.6 present the new methodologies that enable the existing BDLMs to model efficiently
the external effects while overcoming their common limitations. The main contributions of
this chapter are:

− proposing a generic model architecture for anomaly detection without requiring labeled
training data.

− developing the methodologies for handling the non-harmonic periodic external effects.

− validating the proposed methodologies with data recorded on real-life structures.

3.2 Theory of Bayesian Dynamic Linear Models

This section reviews the theory behind BDLMs, which are a special case of state-space
models (SSMs). A BDLM consists of two linear models defined by an observation model
and a transition model. The observation model is employed to describe the relation between
observations yt and hidden state variables xt at time t ∈ [1 : T]. The transition model describes
the dynamics of the hidden states variables over time. The mathematical formulations for
both models are defined as
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Observation model

yt = Ctxt + vt,


yt ∼ N (E[yt], cov[yt])

xt ∼ N (µt,Σt)

vt ∼ N (0,Rt)

(3.1)

Transition model
xt = Atxt−1 + wt,

{
wt ∼ N (0,Qt), (3.2)

where Ct is the observation matrix, vt is the Gaussian observation error with mean zero and
covariance matrix Rt, At is the transition matrix, and wt is the Gaussian model error with
mean zero and covariance matrix Qt. The main strength of BDLMs for SHM applications
is the capacity to model a variety number of structural responses from a limited vector of
hidden state variables such as a baseline component, local trend, periodic component, and
regression components. Further details regarding the hidden state variables are provided by
Goulet [77] and West & Harrison [79].

3.2.1 Kalman Filter/Smoother

In BDLMs, the hidden state variables xt are estimated using either the Kalman filter [28] or
the UD filter [82]. Note that the UD filter yields a numerically more stable performance than
the Kalman filter yet, it is slightly more computationally demanding. This Kalman/UD filter
algorithm is a two-step iterative process that estimates the posterior mean vector µt|t and
covariance matrix Σt|t so that

Prediction step
p(xt|θt,y1:t−1) = N (xt;µt|t−1,Σt|t−1) Prior state estimate

µt|t−1 , Atµt−1|t−1 Prior expected value

Σt|t−1 , AtΣt−1|t−1Aᵀ
t + Qt Prior covariance,

(3.3)

where θt is a vector of unknown model parameters included in the model matrices {At,Ct,Qt,Rt}.
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Measurement step
p(xt|θt,y1:t) = N (xt;µt|t,Σt|t) Posterior state estimate

µt|t = µt|t−1 + Ktot Posterior expected value

Σt|t = (I−KtCt)Σt|t−1 Posterior covariance

ot , yt − ŷt Innovation vector

ŷt , E[yt|y1:t−1] = Ctµt|t−1 Predicted observations vector

Kt , Σt|t−1Cᵀ
tO−1

t Kalman gain matrix

Ot , CtΣt|t−1Cᵀ
t + Rt Innovation covariance matrix.

(3.4)

The Kalman filter algorithm uses the Kalman gain Kt to weight the information coming from
observations yt, in comparison with the information coming from prior knowledge. The KF
algorithm is summarized in its short form as

(
µt|t,Σt|t,Lt

)
= Filter

(
µt−1|t−1,Σt−1|t−1,yt,At,Ct,Qt,Rt

)
, (3.5)

where Lt is the marginal likelihood at time t. With BDLMs, the marginal likelihood is defined
by a multivariate Gaussian distribution following

Lt = p(yt|y1:t−1,θt)

= N (yt; Ctµt|t−1,CtΣt|t−1Cᵀ
t + Rt).

(3.6)

The vector of model parameters, θt, needs to be estimated from the data. The common
approaches for this estimation task can be the point-estimation and Bayesian methods such
as Maximum Likelihood Estimation (MLE) and Markov Chain Monte Carlo (MCMC). The
details of these methods are presented in Chapter 4.

The offline estimation for the hidden state variables xt at time t is performed using the
Kalman Smoother (KS) [28]. The mathematical formulation of the KS algorithm is written as

p(xt|y1:T) = N (xT;µt|T,Σt|T)

µt|T = µt|t + Jt
(
µt+1|T − µt+1|t

)
Posterior expected value

Σt|T = Σt|t + Jt
(
Σt+1|T −Σt+1|t

)
Jᵀ
t Posterior covariance

Jt , Σt|tAᵀ
tΣ−1

t+1|t Backward Kalman gain matrix.

(3.7)

The difference between KF and KS lies on the estimation of the hidden state variables. The
smoothed hidden states are conditioned over all observations y1:T, while the filtered hidden
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states are conditional only on the observations from the previous time steps y1:t. The initial
values for the hidden state variables estimated using the KS are values obtained from the
last step of the Kalman filter, that is,

(
µT|T,ΣT|T

)
. The smoother step is summarized in the

following short form,

(
µt|T,Σt|T

)
= Smoother(µt+1|T,Σt+1|T,µt|t,Σt|t,At,Qt). (3.8)

3.2.2 Modeling External Effects

In the context of SHM, the observed structural responses are commonly dependent on the
environmental and operational conditions, that is, external effects, such as temperature, traffic
load, wind, and humidity [83–85]. This section covers the existing approaches in the current
form of the BDLMs for modeling periodic external effects.

Fourier Form

The Fourier form component allows modeling sine-like phenomena. Its mathematical formu-
lation is written as

xF
t =

 xF1
t

xF2
t

 , AF
t =

 cosω sinω
− sinω cosω

 , CF
t =

 1
0

ᵀ , QF
t = (σF

w)2

 1 0
0 1

 ,
where ω = 2π·∆t

P is the angular frequency defined by the period P of the phenomena modeled,
and the time-step length, ∆t. Note that the Fourier form component is represented by
two hidden state variables xF1

t and xF1
t [77]. Yet, only the first component contributes to

the observation. Figure 3.1 presents examples of realizations of a Fourier form component.
Although the Fourier form component is computationally efficient, it is limited to modeling
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Figure 3.1 Examples of realizations of xF for a Fourier form component with parameters
σF
w = 0.01 and P = 10.

simple harmonic periodic phenomena such as the one presented in Figure 3.2a. It is possible
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to model simple non-harmonic periodic phenomena such as the one presented in Figure 3.2b
using a superposition of Fourier form components each having a different period. Nevertheless
this process is difficult to employ in practice, especially when the complexity of the periodic
pattern increases because it requires a significant increase in the number of hidden state
variables as well as of an unknown period parameter to be identified, which in turn decreases
the overall computationally efficiency of the approach.

t

xt

(a)
t

xt

(b)

Figure 3.2 Examples of (a) harmonic and (b) non-harmonic periodic pattern.

Dynamic Regression

When observed, external effects influencing the responses of structures, that is, covariates can
be included as a regressor in the BDLMs. One approach to include the effect of these observed
covariates is to employ a Dynamic Regression Component [79]. In the dynamic regression
component, the dynamic regression coefficient is treated as an unknown state variable xDR

t ,
whose temporal evolution follows a random walk. This random walk is parameterized by a
transition matrix ADR

t = 1, and by a model error covariance matrix QDR
t = (σDR)2. For σDR = 0,

the dynamic regression coefficient xDR
t is assumed to be stationary in time, for σDR > 0, the

dynamic regression coefficient xDR
t is assumed to be changing over time (non-stationary). The

regressor, that is, the observed covariate yDR
t , is placed directly in the observation matrix so

that CDR
t = yDR

t .

3.3 Theory of Switching Kalman Filter

The literature review in Chapter 2 has identified that most anomaly detection approaches share
a common limitation; they employ a hypothesis-testing procedure. This section presents the
theory of existing Switching Kalman Filter (SKF) [86] which has the potential to overcome the
limitations of the traditional hypothesis-testing procedure. The SKF models non-stationary
systems by estimating the probability of multiple model classes over time steps. However,
a limitation of SKF is that the number of possible sequences of transitions between model
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classes grows exponentially with time steps. Figure 3.3a presents the exponential increase in
the number of sequences of states. Here, starting from S = 2 possible initial states at time t,
it leads to 8 possible sequences at t+ 2. It means that the number of sequences of states is 2n

at the nth time step. This exponential increase leads to an intractable inference. The key
aspect for addressing this limitation is to employ the collapsing approximation known as the
Generalized Pseudo Bayesian (GPB) algorithm of order r [87,88], where it only considers a
total of Sr possible sequences of states that then collapse into S states after each time step.
Figure 3.3b presents an example of the GPB algorithm of order 2 ensuring that 22 possible
sequences of states merge into 2 states after each time step. At each time step, GPB-2

t+ 2t+ 1t

(a)

t+ 1t Collapse

(b)

Figure 3.3 Illustration of (a) how the number of state sequences grows exponentially with
time and (b) the Generalized Pseudo Bayesian algorithm of order 2.

estimates the current probability of each state irrespectively of the state at previous time
steps. In practice, this is achieved by approximating the mixture of 4 Gaussian PDFs with a
mixture of 2 Gaussian PDFs in which each Gaussian PDF is approximated by a mixture of 2
Gaussian PDFs [87,89,90].

3.3.1 SKF-filter Step

For a time series where t ∈ [1 : T], the observation and transition equations for the SKF
remain identical to those presented in Section 3.2 for the BDLM. However, the notation for the
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Kalman filter (KF) algorithm needs to be adapted to include the Markov-switching variable
st ∈ {1, 2, 3, . . . , S} corresponding to filtering models. Assume that the Markov-switching
variables at time t and t − 1 are st−1 = i and st = j. We use the superscript inside the
parentheses i(j) to denote the current state j at the time t given the state i at time t − 1.
For the SKF, the short form of the Kalman filter algorithm presented in Equation 3.5 are
rewritten as

(
xi(j)t|t ,Σ

i(j)
t|t ,L

i(j)
t

)
= Filter

(
µit−1|t−1,Σi

t−1|t−1,A
i(j)
t ,Ci(j)

t ,Qi(j)
t ,Ri(j)

t

)
, (3.9)

where Li(j)t measures the marginal likelihood that the state at time t− 1 was st−1 = i and that
it switches to st = j at time t. The marginal likelihood of such as switch Li(j)t is defined as

Li(j)t = p(yt|st = j, st−1 = i,y1:t−1)

= N
(
yt; Ci(j)

t µ
i(j)
t|t−1,C

i(j)
t Σi(j)

t|t−1

(
Ci(j)
t

)ᵀ
+ Ri(j)

t

)
.

(3.10)

For common cases, the model uncertainty is described by the model error covariance matrix
Qi(j)
t which depends on the state i at time t − 1 and the state j at time t. The matrices

defining the transition and observation models are only dependent on the arrival state j at
time t,

Ai(j)
t = Aj

t , Ci(j)
t = Cj

t , Ri(j)
t = Rj

t . (3.11)

Therefore, Equation 3.12 becomes

(
xi(j)t|t ,Σ

i(j)
t|t ,L

i(j)
t

)
= Filter

(
µit−1|t−1,Σi

t−1|t−1,A
j
t ,Cj

t ,Q
i(j)
t ,Rj

t

)
. (3.12)

The short form for the Kalman smoother in Equation 3.8 is adapted as

(
µ

(j)k
t|T ,Σ(j)k

t|T

)
= Smoother(µkt+1|T,Σk

t+1|T,µ
j
t|t,Σ

j
t|t,A

k
t ,Q

(j)k
t ), (3.13)

where k is the state at time t+ 1.

3.3.2 SKF-collapse Step

The mean vector µjt|t and covariance matrix Σj
t|t are computed by collapsing the filtering

models according to their weights p(st−1 = i|st = j,y1:t). Note that the filtering model uses
the classic Kalman filter algorithm for estimating the mean vector, covariance matrix, and
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marginal likelihood. To further describe the collapse step, let us introduce the notation

p(st−1 = i|y1:t−1) = πit−1|t−1 Previous state probability

p(st = j|st−1 = i) = Zi(j) Transition probability

p(st−1 = i, st = j|y1:t) = Mi(j)
t−1,t|t Joint probability

p(st−1 = i|st = j,y1:t) = Wi(j)
t−1|t State switching probability.

(3.14)

The transition probability matrix Zt is defined by the number of states. For S states
st ∈ {1, 2, 3 · · · , S}, the matrix Zt is defined as

Zt =


Z11 Z12 · · · Z1S

Z21 Z22 · · · Z2S

... ... . . . ...
ZS1 ZS2 · · · ZSS


where Zij ≡ Zi(j) with ∑S

j=1 Z
ij = 1. The joint probability of st = j and st−1 = j, given y1:t

is evaluated as

Mi(j)
t−1,t|t =

Li(j)t|t · Zi(j) · πit−1|t−1∑S
j=1

∑S
i=1 L

i(j)
t|t · Zi(j) · πit−1|t−1

, (3.15)

The denominator of Equation 3.15 is a normalization constant ensuring that

S∑
j=1

S∑
i=1

Mi(j)
t−1,t|t = 1.

The marginal probability of st = j is obtained through marginalization following

πjt|t =
S∑
i=1

Mi(j)
t−1,t|t. (3.16)

The collapsed mean vector µjt|t and covariance matrix Σj
t|t are obtained using Gaussian mixture

approximation

µjt|t =
S∑
i=1
µ
i(j)
t|t ·W

i(j)
t−1|t

Σj
t|t =

S∑
i=1

[
Wi(j)

t−1|t ·
(
Σi(j)
t|t + mmᵀ

)]
,

(3.17)
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where

Wi(j)
t−1|t =

Mi(j)
t−1,t|t

πjt|t

m = µ
i(j)
t|t − µ

j
t|t.

(3.18)

The short-form notation for the collapse step is

(
µjt|t,Σ

j
t|t, π

j
t|t

)
= Collapse

(
µ
i(j)
t|t ,Σ

i(j)
t|t ,W

i(j)
t−1|t

)
.

For the purpose of simplicity, SKF-filter and SKF-collapse steps are summarized in a short
form as

(µt|t,Σt|t,Lt,πt|t) = SKF(µt−1|t−1,Σt−1|t−1,yt,At,Ct,Qt,Rt,Zt,πt−1|t−1). (3.19)

An example of the SKF employed for describing the transition between two possible models
is presented in Figure 3.4. The goal is to evaluate the mean vector µjt|t and the covariance
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Figure 3.4 Illustration of the SKF algorithm for two states each having its own transition
model. (.) indicates the filtering model being used for computation.

matrix Σj
t|t for each model, j ∈ {1, 2} along with the probability πjt|t of each model at the
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time t, given the same two models at time t − 1. When going from t − 1 to t, there are
four possibilities of transitions from a starting state st−1 = i to an arrival state st = j, each
leading to its own mean vector µi(j)t|t , covariance matrix Σi(j)

t|t and marginal likelihood Li(j)t|t . In
the collapse step, the prior probability of each origin state is combined with the transition
probability and the marginal likelihood of each transition using Equation 3.15. The end result
of the collapse step is a mean vector, covariance matrix, and a probability for each model.
Although SKF is well documented in the field of machine learning, it has never been coupled
with BDLM and it lacks a generic model architecture for detecting anomalies in the field of
SHM.

3.4 Generic Model Architecture for Anomaly Detection

This section proposes a generic model architecture for anomaly detection in BDLMs. As
mentioned in §1.2, an anomaly is defined as a change in the underlying process (e.g., baseline
behaviour) in time series. If the speed and acceleration of the underlying process can be
modeled over time, the anomaly detection task is done by tracking the changes in these
time-varying quantities. Figure 3.5 presents a baseline behaviour with a descending trend, its
speed, and its acceleration over time. The normal and abnormal states are denoted as (1)
and (2). The presence of the abnormal state (2) in the baseline behaviour from the time ts
to the time te, causes the changes in its speed and acceleration in the corresponding period.
After the time te, the baseline behaviour returns to its normal state (1) where the speed and
acceleration show the same behaviour as before the switching state at the time ts.

In BDLMs, the baseline behaviour is represented by the baseline component. Its speed
and acceleration are described by the local trend and local acceleration. Therefore, the key
parts of the anomaly detection methodology for the BDLMs lie in the model architecture
of these components employed for each state, as well as in the transition probability matrix,
Zt, describing the switch between states. For the model architecture, each state has its own
transition matrix At and model error covariance matrix Qt. According to the SKF theory in
Section 3.3, the parameters from the matrix Qi(j)

t need to be identified both for the stationary
case, that is, i = j, and for the case of a state transition, that is, i 6= j. A state transition is
here defined by a change in speed and acceleration in the baseline behaviour. Other hidden
state variables describing the dependence on environmental conditions such as temperature
remain unchanged. In the presence of a state transition, the model architecture must allow
for an increase in the uncertainty for the local trend and local acceleration. For this purpose,
the standard deviations included in Qi(j),baseline

t are treated as unknown parameters to be
inferred from observations.
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Figure 3.5 Illustration of the anomaly detection for the baseline behaviour. (1) and (2)
represents the normal and abnormal states of the baseline behaviour.

For common cases, we assume that there are only two states: normal and abnormal
where the anomaly is represented by the abnormal state. The transition matrix and model
covariance matrix corresponding to the normal (denoted as 1) and abnormal (denoted as 2)
states are written as

A1
t =


1 ∆t 0
0 1 0
0 0 0

 , Q1(1)
t = (σLT

w )2 ·


∆t3

3
∆t2

2 0
∆t2

2 ∆t 0

0 0 0

 , Q2(1)
t = (σLTT

w )2 ·


∆t3

3
∆t2

2 0
∆t2

2 ∆t 0

0 0 0

 ,
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1 ∆t ∆t2

2
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∆t3
6

∆t2
2 ∆t

 ,
(3.20)

where σLT
w is the local trend standard deviation, σLTT

w is the local-trend transition standard
deviation, σLA

w is the local acceleration standard deviation, σLAT
w is the local-acceleration
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transition standard deviation, and ∆t is the time-step length. The mathematical development
for obtaining the covariance matrix Qt is described by Bar-Shalom et al. [87] and Labbe [91].
The transition probability matrix, Zt, is defined following

Zt =
 Z11 1− Z11

1− Z22 Z22

 , (3.21)

where Zij = p(st = j|st−1 = i) ,∀i, j = 1, 2 is the transition probability from a state i
at the time t − 1 to a state j at the time t. The vector of unknown model parameters,
θ = [σLT

w σLA
w σLTT

w σLAT
w Z11 Z22]ᵀ, needs to be learned from data.

3.5 Hidden Dynamic Regression

This section proposes a methodology that builds on the formulation of the dynamic regression
(§3.2.2) in order to handle hidden non-harmonic periodic covariates, as shown in Figure 3.2b.
Note that an unobserved external effect is defined as a hidden covariate. For this purpose,
the block component matrices are defined as

AHDR
t = 1, CHDR

t = h(C, t), QHDR
t = (σHDR)2, (3.22)

where observation matrix CHDR
t is replaced by the hidden response function h(C, t) and C is

a set of control points being used for describing the shape of a pattern. In the context of
BDLMs, a control point is defined by a time stamp and a value. The function h(C, t) consists
in a cubic spline [92] capable of interpolating hidden covariate values at any time stamps.

Figure 3.6 presents an example of a hidden response function h(C, t). h(C, t) depends on
the time stamp t as well as on a set of N master control points, C = {(ti, hi),∀i = 1 : N},
where hi ∈ [−1, 1] is the Normalized Hidden Covariate Value (NHCV) and ti is the time
stamp corresponding to hi. Note that the amplitude of the hidden covariates that influence
the structural responses, is defined not by h(C, t) but by the dynamic regression coefficient
xDR
t . The methodology can take advantage of the periodicity of the studied phenomenon to

identify only (ti, hi) for master control points that are defined over the domain (1) having a
duration corresponding to half a period, and (2) bounded at each end by symmetry planes.
Note that if no symmetry planes exist, the same method applies except that the number
of control points increases. The NHCVs hs1 and hs2 for time stamps corresponding to the
symmetry planes, ts1 and ts2, are fixed at either −1 or 1. Time stamps ti for the master
control points are uniformly spaced between ts1 and ts2. Over one half-period before and after
the symmetry planes, slave control points are defined to constrain the spline slope for the
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Figure 3.6 Example spline fitted using master and slave control points defined over three
sub-segments that are separated by the vertical symmetry lines.

fixed points (ts1, hs1) and (ts2, hs2). Slave control points are replicates of the master points
defined using the symmetry condition with respect to either ts1 or ts2. Although the spline is
fitted over the fitting period including the entire set of slave and master control points, only a
portion having a length of one period is employed. This sub-selection is called reference period.
An example of spline fitted using a set of five control points, C = {(ti, hi),∀i = 1 : 5}, is
presented in Figure 3.6. Master control points are represented by plus signs (+), slave points
by crosses (x), and fixed points by asterisks (∗). Vertical dashed lines represent symmetry
planes with respect to time. In practice, the NHCVs hi are unknown and need to be estimated
indirectly from observations of a structure’s behaviour. Once NHCVs have been estimated
using data, the hidden response h(C, t) is generalized for any time stamps t by extracting the
spline value corresponding to any day of the year within the reference period.

Although this method has been shown to be capable of modeling non-harmonic periodic
patterns, its main limitation is that complex periodic patterns typically require a large
number of NHCVs making the approach computationally demanding. The reason behind this
computational demand is that the NHCVs need to be estimated from the observations with
an optimization algorithm such as MLE method.

3.6 Kernel Regression

Kernel regression methods have gained much attention in recent years, mainly due to the
high performance that they provide in a variety of tasks [93, 94]. Kernel regression is a
non-parametric approach that uses a known function, that is, the kernel function to fit
nonlinear patterns in the data [95]. The use of kernel enables to interpolate between a set
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of control points as well as to extrapolate beyond them, which is well suited for handling
non-uniformly spaced observations over time.

3.6.1 Periodic Kernel Regression

Kernel regression allows modeling periodic phenomena while overcoming the limitations of
the methods presented in §3.2.2 and Section 3.5. The kernel is employed to measure the
similarity between pairs of covariates. The goal here is to model the periodic phenomena in
time series, therefore the periodic kernel [96] is formulated as

k(ti, tj) = exp
[
− 2
`2 sin

(
π
ti − tj

P

)2]
, (3.23)

where the covariate is the time t. The kernel output k(ti, tj) ∈ (0, 1) measures the similarity
between two time stamps ti and tj as a function of the distance between these, as well as a
function of two parameters; the period and kernel lengthscale, θ = {P, `}. Figure 3.7 presents
three examples of periodic kernels for different sets of parameters θ.
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Figure 3.7 Examples of periodic kernels.

With kernel regression assuming that there is a set of observations, D = {(ti, yi),∀i = 1 : D},
consisting in D pairs of observed system responses yi, each associated with its time of occurrence
ti. The regression model is built using a set of control points defined using tKR ∈ RN, a vector
of time covariates associated with a vector of control point’s (CP’s) values, x ∈ RN. The
observed system responses are modeled following

yi = xᵀ k(ti, tKR)∑
t k(t, tKR) + vi, v : V ∼ N (v; 0, σ2

v),︸ ︷︷ ︸
Observation errors

(3.24)

where the predictive capacity of the model comes from the product of the CP’s values x and
the normalized kernel values which measure the similarity between the time ti and those
stored for the control points in tKR. The main challenge here is to estimate x using the set of
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observation D. The likelihood describing the conditional probability of D given x is

f(D|x) =
D∏
i=1
N
(
yi; xᵀ k(ti, tKR)∑

t k(t, tKR) , σ
2
v

)
. (3.25)

If one employs a MLE approach to estimate the optimal values of the control points x∗, the
problem consists in maximizing the log-likelihood following

x∗ = arg max
x

ln f(D|x). (3.26)

Figure 3.8 presents an example of application of the kernel regression for modeling a non-
harmonic periodic pattern. A set of D = 15 simulated observations represented by plus signs
(+) are generated by adding normal-distributed observation noise on the ground truth signal
presented by the dashed line. Then, an optimization algorithm is employed to identify the
optimal values x∗ for a set N = 10 control points represented by asterisks (∗). This example

0 365 730 1,095
−2
−1
0

1

2

t

x

Ground truth
Kernel regression
Control points - {tKRj , x∗j}Observations - {ti, yi}

Figure 3.8 Examples of application of kernel regression.

illustrates the capacity of the kernel-based method for interpolating the system responses
within control points as well as for extrapolating beyond them.

The main limitation of this approach is that the model cannot evolve over time. Moreover,
like the dynamic regression method presented in §3.2.2, the estimation of x∗ relies on a
maximization algorithm which makes it computationally inefficient when applied to complex
patterns.

3.6.2 Periodic Kernel Regression with BDLMs

This section proposes the new method which consists in coupling the kernel regression method
with the hidden dynamic regression method presented in Section 3.5. For the new approach,
we assume that there is a vector of N + 1 hidden state variables xKR

t = [xKR
t,0 x

KR
t,1 . . . x

KR
t,N]ᵀ,

where the first hidden state variable xKR
t,0, represents the kernel pattern, and the remaining
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hidden state variables describe the CP’s values. xKR
t is estimated using the filtering procedure

presented in Section 3.2. The transition matrix is defined as

AKR
t =

 κ k̃KR(t, tKR)
0 IN

 , (3.27)

where κ ∈ {0, 1} is the kernel regression coefficient and k̃KR(t, tKR) corresponds to the normalized
kernel, k(t, tKR)/∑t k(t, tKR), as presented in Equation 3.23. k̃KR(t, tKR) is parameterized by the
kernel lengthscale `KR, its period pKR, and a vector of N time stamps tKR = [tKR

1 . . . tKR
N ], so that

k̃KR(t, tKR) ≡ k̃KR(t, tKR, `KR, pKR) ≡ k̃KR
t , (3.28)

where each time stamp tKR
i ,∀i = 1 : N, corresponds to a hidden state variable xKR

t,i associated
with a CP’s value. xKR

t,0 describes the kernel pattern value at time t which is obtained by
multiplying the remaining N hidden state variables [xKR

t,1 . . . x
KR
t,N]ᵀ and the normalized kernel

values k̃KR
t . The coefficient κ describes the autocorrelation of the hidden state variables

associated with the kernel pattern between the successive steps. Setting κ = 0 indicates that
there is no autocorrelation between them and that the kernel regression models directly the
periodic pattern. If this autocorrelation exists, κ is set to 1. In this case, the kernel regression
models the stationary difference of the periodic pattern values from the previous to current
time steps. In the context of this dissertation, κ is set to 0 for the case studies employed the
kernel regression approach.

The N× N identity matrix forming the bottom right corner of AKR
t indicates that each of

the hidden state variables [xKR
t,1 . . . x

KR
t,N]ᵀ evolves over time following a random walk model [79].

The temporal evolution of these hidden state variables is controlled by the process noise
covariance matrix

QKR
t =

 (σKR
w,0)2 0
0 (σKR

w,1)2 · IN

 , (3.29)

where σKR
w,1 controls the increase in the variance of the hidden state variables associated with

the CP’s values between successive time steps, and σKR
w,0 controls the time-independent process

noise in the hidden state variable associated with the kernel pattern. This process noise allows
describing random, unpredictable changes in the periodic phenomena between successive time
steps. There are four possible cases:

1. σKR
w,0 = 0, σKR

w,1 = 0: the kernel pattern is stationary and the kernel regression can exactly
model the true process.

2. σKR
w,0 > 0, σKR

w,1 = 0: the kernel pattern is stationary, yet the kernel regression is an
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approximation of the true process being modeled.

3. σKR
w,0 = 0, σKR

w,1 > 0: the kernel pattern is non-stationary so the hidden state variables
associated with the CP’s values evolve over time, and the kernel regression can exactly
model the true process.

4. σKR
w,0 > 0, σKR

w,1 > 0: the kernel pattern is non-stationary and the kernel regression cannot
exactly model the true process.

As mentioned, above only the hidden state variable associated with the kernel pattern
contributes directly to the observation so the observation matrix is

CKR
t = [1 0 . . . 0]. (3.30)

All CP’s values are considered as hidden state variables, thus the only parameters to be
estimated using the optimization algorithm are θKR = [σKR

w,0 σ
KR
w,1 `

KR PKR]ᵀ.

An example using kernel regression with BDLMs on a non-harmonic periodic pattern is
presented in Figure 3.9, where ground truth is presented by the dashed line. The control points
and kernel pattern are presented by the asterisk (∗) and circle (◦). Figure 3.9a illustrates
a target periodic pattern with a period of 365 days and a time step of 1 day. This example
employs a vector of 11 hidden state variables associated with the kernel pattern and CP’s
values for modeling the periodic pattern. The new approach allows estimating the CP’s values
over time, thus each time step has its own CP’s values that are employed for constructing its
kernel pattern value (see Figure 3.9b). For an intuitive visualization, only 4 out of 365 time
steps are shown in this figure. Figure 3.9c illustrates the left orthographic projection of the
CP’s values presented in Figure 3.9b. The kernel pattern value at a given time stamp ti, is
estimated using its CP’s values and the periodic kernel formulation in Equation 3.23. Figure
3.9d shows 4 estimated values of the kernel pattern corresponding to 4 time steps in Figure
3.9b. Figure 3.9d illustrates a superposition of the complete kernel pattern and ground truth.
The standard deviation of the hidden state variables associated with the CP’s values σKR

1 , is
set to zero, thus these 10 hidden state variables are constant over time (Figure 3.9b). Note
that Figure 3.9 only shows the mean values of the hidden state variables associated with the
kernel pattern and CP’s values over time.

3.7 Applications

This section presents applications of the methods proposed for modeling periodic external
effects as well as for detecting anomalies for several datasets collected on different structures
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Figure 3.9 An example of using Kernel regression with BDLMs. (a) Periodic pattern with
a period of 365 days; (b) Evolution of 10 hidden state variables associated with the control
point’s values for 4 time steps; (c) Left orthographic projection of 10 hidden state variables
associated with the control point’s values; (d) Estimated values of kernel pattern for 4 time
steps; (e) Kernel pattern.
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such as dams and bridges.

3.7.1 Comparison of Approaches for Modeling a Simple Non-Harmonic Pattern

The objective of this case study is to compare the kernel regression (§3.6.2), hidden dynamic
regression (Section 3.5), and Fourier form (§3.2.2) approaches for modeling external effects
exhibiting a simple non-harmonic, yet periodic pattern.

Data Description

The horizontal dam displacement data on a dam is measured using an inverted pendulum
over a period of five years with a total of 1721 data points. The sensor studied is located on
the west bank of the dam as shown in Figure 3.10. The engineers responsible for the dam

Downstream

Dam displacement
 along the x-axis

West bank

Z
X

Y

Uptream

East bank

Figure 3.10 Location plan of the sensor employed to monitor the dam behaviour.

instrumentation have estimated the observation error standard deviation to be σv = 0.3mm.
Figure 3.11 shows the complete dataset. In addition to the linear trend, the data displays a
yearly seasonal pattern where displacements are maximal during winter months and minimal
during summer. The key aspect here is that the seasonal effect is non-harmonic, yet periodic;
the evolution of displacement during the winter is more stable than during the summer.
The hypothesis for this behaviour is that the structure’s response depends not only on the
air temperature but also on the water temperature that is known to follow a non-harmonic
periodic pattern where in winter months, the temperature stabilizes despite the air temperature
dropping below -20◦C. To measure model predictions, the dataset are divided into a training
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Figure 3.11 Illustration of the raw displacement dataset.

set of 4 years (1383 data points) and a test set of 1 year (338 data points). The data in the
test set is used to measure how well the model performs at making forecasts in this test set.

Architecture for Model #1, #2, and #3

This case study compares three models using the kernel regression (#1), hidden dynamic
regression (#2), and Fourier form (#3) approaches for describing the non-harmonic periodic
pattern. In model #1, the observations are decomposed into a vector of hidden state variables
including a baseline component (B), a local trend (LT), a kernel regression (KR) component
with a period of 365.24 days, and an autoregressive (AR) component. The baseline component
and local trend are used to model the behaviour of the displacement over time. The kernel
regression is employed to describe the external effect. The autoregressive component is used
to capture the time-dependent model errors. The vector of hidden state variables is defined
following

xt =
[
xB xLT xKR

0 xKR
1 . . . xKR

6 xAR
]ᵀ
t
, (3.31)

where xKR
t,0 is the kernel pattern and xKR

t,1:6 are associated with 6 CP’s values. Instead of using
the kernel regression component, the vector of hidden state variables for Model #2 employs the
hidden-dynamic-regression component (HDR) with 5 control points for modeling the external
effect in which the reference period of hidden covariates is 365.24 days and the two fixed
points corresponding to symmetry planes are located at the 50th end 232.5th day. The vector
of hidden state variables for Model #2 is written as

xt =
[
xB xLT xHDR xAR

]ᵀ
t
. (3.32)

In Model #3, the vector of hidden state variables is the same as the models #1 and #2,
except that the external effect is modeled by a superposition of two Fourier-form components
with a period of P1 = 365.24 days and P2 = 182.62 days. The vector of hidden state variables
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for model #3 is given by

xt =
[
xB xLT xF1P1 xF2P1 xF1P2 xF2P2 xAR

]ᵀ
t
. (3.33)

The vector of unknown model parameters for three models are defined as

Model #1 θM1 = [`KR φAR σAR]ᵀ

Model #2 θM2 = [hHDR
1 . . . hHDR

5 φAR σAR]ᵀ

Model #3 θM3 = [φAR σAR]ᵀ ,

(3.34)

where `KR is the kernel length, φAR is the autoregression coefficient, σAR is the autoregression
standard deviation, and hHDR

i ,∀i ∈ {1, · · · , 5} is the normalized hidden covariate value. The
standard deviation, kernel lengthscale, and kernel period are positive real numbers R+.
The autoregression coefficient is constrained to the interval [0, 1] because the autoregressive
component is assumed to be stationary [97]. As presented in Section 3.5, the normalized hidden
covariate value varies in range from −1 to 1, that is, hHDR

i ∈ [−1, 1] ,∀i ∈ {1, · · · , 5}. For an
efficient optimization, the model parameters are transformed in the unbounded space [98].
The natural logarithm function is applied to the standard deviation, kernel lengthscale, and
kernel period. The logistic sigmoid function is employed for the autoregression coefficient.
The details of these transformation functions are presented in Section 4.5. The complete
model matrices {At,Ct,Qt,Rt} for three models are presented in Appendices A.1, A.2, and
A.3. θM1 ,θM2 , and θM3 are learned from data using MLE approach presented in Section 4.3.
The initial parameter values for the vectors of model parameters in the original space are
tuned using engineering heuristics as well as prior data analysis such that

θM1
0 = [0.5 0.95 0.16]ᵀ

θM2
0 = [−0.95 − 0.8 − 0.3 0.3 0.7 0.95 0.16]ᵀ

θM3
0 = [0.95 0.16]ᵀ ,

(3.35)

where the ordering of each model parameter is the same as in Equation 3.34.
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Comparative Results

The optimal vector of model parameters for each model is

θM1,∗ = [0.582 0.991 0.02]ᵀ

θM2,∗ = [−1 − 0.906 − 0.443 0.278 0.782 0.992 0.03]ᵀ

θM3,∗ = [0.99 0.03]ᵀ ,

(3.36)

where again the ordering of each model parameter remains identical as in Equation 3.34.
Figure 3.12 presents the displacement forecast of three models in the test set. The solid line
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Figure 3.12 Illustration of displacement forecasts in the test set. (a) Model #1: Kernel
regression; (b) Model #2: hidden dynamic regression; (c) Model #3: Fourier form.

presents the predicted mean values of displacement µyt . The uncertainty bounds µyt ± σyt

are presented by the shaded regions. Note that the uncertainty includes the errors from
both the model and observations. The test data are presented by the dashed line. A general
remark is that the uncertainty bounds obtained from three models include the observations
in the test set. The Mean Absolute Error (MAE), Root Mean Squared Error [99], and Log
Predictive Density (LPD) [100] evaluated on the test dataset are employed to measure the
forecast accuracy. The mathematical formulations for these metrics are detailed in Appendix
C. Table 3.1 presents the metric values evaluated on the test set as well as the training time
for each model. Model #1 using the kernel regression outperforms Model #2 and Model #3
that employs the hidden dynamic regression and Fourier form. More specifically, it yields
more accurate forecast values while requiring less training time than the other models. The
training time of Model #2 is approximated to 10 times higher than Model #1 and Model #3.
This is because it has a larger number of model parameters than the others.
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Table 3.1 Comparison of three approaches of the forecast capacity for modeling an external
effect. Model #1: kernel regression; Model #2: hidden dynamic regression; Model #3: Fourier
form; RMSE: root-mean-square error; MAE: mean absolute error; LPD: Log Predictive Density.

Test set (338 data points)
Model

RMSE MAE LPD
Training time (s)

#1 0.18 0.14 −8.26 30
#2 0.23 0.20 −38.91 280
#3 0.23 0.19 −44.17 37

3.7.2 Modeling a Complex Non-Harmonic Periodic Pattern

The goal of this case study illustrates the potential of the kernel regression approach presented
in §3.6.2 for modeling a complex non-harmonic periodic pattern. For such a pattern, the
Fourier form approach struggles to identify the required number of periodic components while
the hidden-dynamic-regression method is more computationally demanding regarding the
optimization of model parameters.

Data Description

The traffic loading data are collected on the Tamar Bridge from September 01 to October 21,
2007 with a total of 2409 data points [101]. Figure 3.13 presents the entire dataset. The traffic
loading data are recorded from a toll booth where the vehicles are counted and classified by
weight classes. The data are collected with a uniform time step of 30minutes and the units
are kilotons (kTs). A constant baseline and a periodic pattern with a period of 7days can
be observed from the raw data. The traffic loading on weekends is much lighter than those
on weekdays. For most of the day, the traffic load presents a high volume between 8 am and
4pm, and it then drops after 20pm. To examine the predictive performance, the dataset is
divided into a training set (1649 data points) and a test set (760 data points). The unknown
model parameters are learned using the training set and the predictive performance is then
evaluated using the test set. The test set is presented by the shaded region in Figure 3.13.

Architecture for Model #4

Model #4 for interpreting the traffic load data consists in a vector of hidden state variables
that includes a baseline (B) component for the average traffic load, a kernel regression
(KR) component with 101 hidden state variables to describe the periodic pattern, and an
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Figure 3.13 Traffic load on the Tamar Bridge in the United Kingdom.

autoregressive (AR) component to capture the time-dependent model errors. The vector of
hidden states is given by

xt = [xB xKR
0 xKR

1 . . . xKR
100 x

AR]ᵀt . (3.37)

Model #4 involves a vector of unknown model parameters θ that are defined as

θ =
[
σB
w σ

KR
w,0 σ

KR
w,1 `

KR PKR φAR σAR
w σv

]ᵀ
, (3.38)

where σB
w ∈ (0,+∞) is the baseline standard deviation, σKR

w,0 ∈ (0,+∞) is the standard
deviation of the hidden state variable associated with the kernel pattern, σKR

w,1 ∈ (0,+∞) is the
standard deviation for the hidden state variables associated with the control point’s values,
`KR ∈ (0,+∞) is the kernel lengthscale, PKR ∈ (0,+∞) is the kernel period, φAR ∈ [0, 1] is the
autoregression coefficient, σAR is the autoregression standard deviation, and σv ∈ (0,+∞)
is the observation noise standard deviation. For transforming the model parameters to
an unbounded space, the natural logarithm is applied to the standard deviations, kernel
lengthscale, and kernel period. The logistic sigmoid function is used for the autoregression
coefficient. The complete model matrices are detailed in Appendix A.4. The initial parameter
values in the original space are selected using expert judgment and experience as well as prior
data analysis,

θ0 =

10−6︸ ︷︷ ︸
σB

w

0.29︸ ︷︷ ︸
σKR

w,0

0.029︸ ︷︷ ︸
σKR

w,1

0.5︸︷︷︸
`KR

7︸︷︷︸
PKR

0.75︸ ︷︷ ︸
φAR

0.075︸ ︷︷ ︸
σAR

w

1.47︸ ︷︷ ︸
σv


ᵀ

. (3.39)
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Parameter & Hidden State Estimation

The optimal model parameters obtained using the MLE technique presented in Section 4.3 are

θ∗ =

10−6︸ ︷︷ ︸
σB

w

3.3× 10−5︸ ︷︷ ︸
σKR

w,0

10−5︸ ︷︷ ︸
σKR

w,1

0.0511︸ ︷︷ ︸
`KR

7︸︷︷︸
PKR

0.78︸ ︷︷ ︸
φAR

0.34︸ ︷︷ ︸
σAR

w

1.2× 10−5︸ ︷︷ ︸
σv


ᵀ

. (3.40)

It is noted that σKR
w,0 and σKR

w,1 are close to zero, thus the kernel pattern for this case study
is stationary. Figure 3.14 presents the hidden state variables and predicted means for the
traffic load estimated using the Kalman smoother [28] for both the training and test set. µt|t
and σt|t are the mean value and standard deviation at time t for the hidden state variables.
The mean value µt|t and its uncertainty bound µt|t ± σt|t, are presented by the solid line and
shaded region. The estimates for the training set and test set are delimited by the dashed
line. The traffic load data is presented by the dash-dotted line. Figure 3.14c shows that the
autoregressive component, xAR

t is stationary. If it would not be the case, the non-stationarity
would indicate that either the component choice, or the optimal parameter identified are
inadequate. Figure 3.14b shows that the kernel pattern is stationary and all cycles of 7 days
have an identical pattern. Figure 3.14d displays that the estimates of the traffic load in the
test set are close to the corresponding observations. It can be seen that the model is not
capable of predicting the peaks on the test set where the traffic loading presents a high volume
during the rush hours. This can be explained by the high variability associated with these
rush hours. The proposed method is intended to capture the periodic phenomena and not
the non-periodic changes occurring from day to day.

The MAE, RMSE, and LPD are employed to measure the forecast accuracy by comparing
the estimates with their corresponding traffic-load data in the test set. The mathematical
formulations for the MAE, RMSE, and LPD are presented in Appendix C. These metrics
are evaluated for the forecast periods of 1, 3, 7, and 14days in the test set. The results are
summarized in Table 3.2. The MAE for each forecast period is small in comparison with the
traffic-loading amplitude that varies in range from 0.07 to 10.3 kT. The uncertainty bounds
typically widen as the forecast horizon increases, leading to a decrease in the LPD and an
increase in the MAE as well as RMSE.
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Figure 3.14 Illustration of the estimation of hidden state variables for the traffic load data:
(a) Baseline component, xB

t ; (b) Kernel pattern, xKR
t,0; (c) Autoregressive component, xAR

t ; (d)
Traffic load.
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Table 3.2 Evaluation of forecast accuracy with respect to the different forecast periods for
the traffic load data. RMSE: root-mean-square error; MAE: mean absolute error; LPD: log
predictive density.

Forecast period

1 3 7 14
Metric (day) (days) (days) (days)

48pts 144pts 336 pts 760pts

MAE 0.15 0.20 0.37 0.38
RMSE 0.21 0.28 0.55 0.58
LPD −10.90 −61.68 −267.55 −656.30

3.7.3 Offline Anomaly Detection

This case study illustrates the potential of the method proposed for the anomaly detection
method presented in Section 3.4 and applied on the horizontal displacement data collected on
a Dam in Canada.

Data Description

Figure 3.15 presents the horizontal displacement data along the X-direction (see Figure 3.10)
recorded over the period of 13 years and 1 month (8364 data points). The observation error
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Figure 3.15 X-direction displacement data collected over the period of 13 years and 1 month.

standard deviation σv = 0.3mm was provided by the instrumentation engineers. Based
on the raw data, one can observe a linear trend and a seasonal pattern with a period of
one year. The seasonal pattern reaches its maximum during winter and minimum during
summer and is non-harmonic because of the lack of symmetry with respect to the horizontal
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axis. This behaviour can be explained by the dependence of the displacement on the water
temperature [35], as mentioned in §3.7.1. Figure 3.16 presents the time-step length for the
entire dataset. Time-step length varies in range from 1 hour to 36 days in which the two most
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Figure 3.16 Time-step size is presented in a log scale.

frequent time steps are 12 and 24 hours. To adapt with the non-uniformity of time steps, the
parameters need to be defined as a function of the time-step length where the reference time
step is selected as the most frequent one [77].

Architecture for Model #5

Model #5 consists, for both case studies, in a vector of hidden state variables that includes
a baseline (B) component, a local trend (LT), a local acceleration (LA), a kernel-regression
(KR) component with a period of 365.24 days, and an autoregressive (AR) component. The
structural behaviour over time is described by the baseline. The local trend is employed
to model the rate of changes in the baseline component. The local acceleration is used to
model the rate of changes in the local trend. The kernel regression component involves 11
hidden state variable and describes the non-harmonic periodic pattern. The autoregressive
component is used to capture the time-dependent model errors. The vector of hidden state
variables is written as

xt =
[
xB xLT xLA xKR

0 xKR
1 . . . xKR

10 x
AR
]ᵀ
t
. (3.41)

Because the main interest here is to detect anomalies in time series, two model classes
representing respectively a state st ∈ {1: normal, 2: abnormal} are built for Model #5. These
two model classes use the same vector of hidden state variables presented in Equation 3.41,
except that the local acceleration for the normal model-class is set to zero. This is done by
assigning a value of zero to the line and row corresponding to the local acceleration component
in the transition matrix At and model error covariance matrix Qt.
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The transition probability matrix is

Z =
 Z11 Z12

Z21 Z22

 , (3.42)

where Zij = p(st = j|st−1 = i) with i, j = 1, 2 is the prior probability of transitioning from a
state i at the time t− 1 to a state j at the time t. To be valid, this transition matrix must
satisfy ∑j Z

ij = 1 so that

Z =
 Z11 1− Z11

1− Z22 Z22

 . (3.43)

Given this constraint, only transition probabilities Zii need to be defined as unknown param-
eters to be learned from data. The unknown model parameters are defined as

θ =
[
`KR φAR σAR

w Z11 σLA
w Z22

]ᵀ
, (3.44)

where `KR ∈ (0,+∞) is the kernel lengthscale, φAR ∈ [0, 1] is the autoregression coefficient,
σAR
w ∈ (0,+∞) is the autoregression standard deviation, Zii ∈ [0, 1] is the transition probability,

and σLA
w ∈ (0,+∞) is the local acceleration standard deviation. For the transformation function,

the natural logarithm function is used for the standard deviations and kernel lengthscale.
The logistic sigmoid function is employed for the autoregression coefficient and transition
probabilities. The full model matrices employed in this case study is presented in Appendix
A.5.

The model parameters are estimated using the MLE approach shown in Section 4.3.
For this approach, using engineering knowledge for the definition of initial values for both
model parameters and hidden state variables ensures an effective performance in terms of
the capacity to detect anomalies and in terms of computational time for learning model
parameters. For this purpose, the parameters related to the state transition such as Z11, Z22,

and σLA need to be chosen with care. This case study assumes that the occurrence of an
anomaly is rare so that the possibility of switching from a normal state to an abnormal state
is lower than the probability of a switch in the opposite direction. Also, the uncertainty in
the local acceleration σLA in the baseline behaviour for the abnormal model must be greater
than for the normal model. Initial parameter values estimated based on the above-mentioned
engineering heuristics are

θ0 =

0.5︸︷︷︸
`KR

0.95︸ ︷︷ ︸
φAR

0.095︸ ︷︷ ︸
σAR

w

0.9999︸ ︷︷ ︸
Z11

4.8× 10−4︸ ︷︷ ︸
σLA

w

0.95︸ ︷︷ ︸
Z22


ᵀ

. (3.45)
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The initial mean µ0 and covariance Σ0 for hidden state variables are estimated using the
multi-pass technique presented in §4.3.3 using a period of 5 years (1694 data points) with N = 5
iterations. This period is selected because (i) it provides a sufficiently accurate estimation for
the initial values and (ii) it requires less computational time than when using a longer period.
The optimization procedure employs the entire dataset (8364 data points) for estimating the
parameter values θ∗.

Results

The computational time required for parameter calibration is approximately 16 minutes for
a computer with 32Gb of Random Access Memory (RAM) and an Intel i7 processor. The
optimal vector of model parameter values identified are

θ∗ =

0.953︸ ︷︷ ︸
`KR

0.996︸ ︷︷ ︸
φAR

0.018︸ ︷︷ ︸
σAR

w

1︸︷︷︸
Z11

4.5× 10−3︸ ︷︷ ︸
σLA

w

0.997︸ ︷︷ ︸
Z22


ᵀ

. (3.46)

Combining BDLMs in Section 3.2 with SKF in Section 3.3 serves two purposes: (i) it enables
the detection of anomalies without requiring labeled training data, and (ii) it decomposes the
observations into its reversible and irreversible effects. Figure 3.17 presents the probabilities
of the abnormal state estimated at each time step. The proposed method identifies that there
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Figure 3.17 Probabilities of the two states are evaluated using SKF algorithm for the entire
dataset.

is an abnormal event occurring on July 09, 2010. This anomaly was caused by refection work
that took place on the dam in early July. After the work was completed, the model identifies
that the dam behaviour returns to a normal one. This example of application demonstrates
how anomalies can be detected without triggering any false alarm that would jeopardize the
applicability of the approach. Figure 3.18 presents the hidden state variables estimated for
the entire dataset. The solid line represents the mean values µt|t and its uncertainty bounds
µt|t ± σt|t are represented by the shaded region. Figure 3.18a, b, and c show a sudden change
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Figure 3.18 Expected values µt|t and uncertainty bound µt|t ± σt|t for hidden state variables
of a combination of the normal and abnormal models are evaluated using SKF algorithm.



47

in the baseline, local trend and local acceleration at the moment when the anomaly occurred.
These three figures show how the baseline behaviour of the structure can be isolated from the
effect of external temperature. The external temperature is modeled by a kernel regression
component in Figure 3.18d. Figure 3.18e shows that the autoregressive component follows
a stationary process. Figures 3.18a, b, c, d, and e show that the large uncertainty in the
hidden state variables during the initial period is due to the imperfect initial conditions. The
uncertainty then vanishes as more and more data are observed.

3.8 Conclusion

This chapter proposes the methodologies (i) for modeling periodic external effects and (ii) for
detecting anomalies in the structural responses. The hidden dynamic regression and kernel
regression approaches are developed for the first task. Both methods have the ability to
describe a non-harmonic, yet periodic pattern. The applications on the structural datasets
show that the kernel regression method yields more accurate forecasts while requiring less
training time than the hidden dynamic regression and Fourier form approaches. It is also
capable of modeling complex non-harmonic periodic patterns. On the other hand, the hidden
dynamic regression shows its ability to describe non-harmonic periodic patterns, yet it is
much more computationally demanding than the kernel regression, especially when it comes
to complex non-harmonic periodic patterns such as traffic load.

A common downside of both approaches is that a good initial guess for the pattern’s period
parameter is needed to ensure an efficient optimization. The reason is that the likelihood for
the period parameter is strongly peaked so that starting from a wrong value can lead to a slow
convergence. A prior data analysis that combines a periodogram study with a visualization of
the time series can be used as a heuristic for identifying good starting values for the period
prior analysis.

The key aspects of the anomaly detection methodology are that (i) it considers the prior
probability of anomalies, the anomaly kinematic model and the probability to transition
from a normal state to an abnormal state, (ii) does not require labeled training data with
normal and abnormal conditions, and (iii) increases the robustness towards false alarms in
real operation conditions. The method has shown to be capable to detect changes in the dam
behaviour, hearby caused by the refection work. It also provided the specific information
about the dam behaviour over time. The main limitations of the method proposed are that
(i) model parameters are assumed to be constant over time, (ii) the influence of different
anomaly types remains to be tested, and (iii) the estimation of model parameters can only be
done offline. This last limitation will be addressed in Chapter 5.
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CHAPTER 4 BATCH LEARNING

4.1 Introduction

In BDLMs, the vector of unknown model parameters θt is employed to define the model
matrices {At,Ct,Qt,Rt,Zt} presented in Chapter 3. The values taken by θt are different from
one dataset to another, so there is a need for an automated optimization procedure that allows
learning θt from the data itself. This chapter presents the adaptation of existing optimization
algorithms available in the literature to BDLMs. In the field of machine learning, the task of
learning model parameters can be regrouped in two common methods: Maximum Likelihood
Estimation (MLE) and Bayesian Estimation (BE) [28]. The MLE consists in finding a
single vector of model parameters that maximizes the log-likelihood function. Gradient-based
optimization algorithms such as the gradient ascent and stochastic gradient ascent [58] can be
employed for carrying out this task. Instead of only providing point estimates like the MLE
approach, BE methods such as Hamiltonian Monte Carlo (HMC) and Laplace Approximation
(LAP) allow approximating the posterior PDF of model parameters. In the context of this
chapter, both MLE and BE assume that θt is constant over time and is learned from a
fixed-size training dataset, that is, θt ≡ θ. This learning technique is called batch learning [58].
The main contributions of this chapter are:

− adapting gradient-based optimization algorithms to BDLMs and comparing their per-
formance (§4.3.5).

− adapting the HMC and LAP for quantifying the model parameter uncertainty to BDLMs
(§4.4.4).

− proposing a method for propagating model parameter uncertainty to the hidden state
variables in the context of BDLMs (§4.4.3).

− validating the proposed approaches on the simulated and real datasets (Section 4.6).

The chapter is organized as follows. Section 4.2 introduces the mathematical formulation of
the marginal likelihood being used for BDLMs. Section 4.3 surveys existing gradient-based
optimization algorithms and presents the framework proposed for integrating them into
BDLMs. Section 4.4 provides the details for the Bayesian estimation methods. Section 4.5
presents the transformation functions being used to transform the model parameters from a
bounded space to an unbounded one. Section 4.6 presents the applications of the proposed
approaches to both the simulated and real datasets.
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4.2 Likelihood

The likelihood is defined as the joint prior probability of observations, that is, the plausibility
of the available observations y1:T given the model parameter vector θ. Assuming that the
observations are conditionally independent from each other, the joint likelihood function is
defined as the product of the marginal likelihoods,

p(y1:T|θ) =
T∏
t=1

p(yt|y1:t−1,θ).

=
T∏
t=1

S∏
j=1

S∏
i=1

p(yt|st = j, st−1 = i,y1:t−1,θ) · p(st = j|st−1 = i) . . .

. . . · p(st−1 = i|y1:t−1,θ),

=
T∏
t=1

S∏
j=1

S∏
i=1
Li(j)t|t · Z

i(j) · πit−1|t−1,

(4.1)

where st ∈ {1, 2, . . . , S} is the Markov-switching variable presented in Section 3.3, Li(j)t|t is
defined in Equation 3.10, Zi(j) is the transition probability, and πit−1|t−1 is the previous state
probability. To avoid either underflow or overflow issue, the joint likelihood function is
transformed into the natural logarithm space, and Equation 4.1 then becomes

ln p(y1:T|θ) =
T∑
t=1

ln
 S∑
j=1

S∑
i=1
Li(j)t|t · Z

i(j) · πit−1|t−1

 , (4.2)

where ln p(y1:T|θ) is the joint log-likelihood.

4.3 Maximum Likelihood Estimation

For BDLMs, the MLE approach consists in finding an optimal vector of model parameters,
θ∗ by maximizing the log-likelihood presented in Equation 4.2,

θ∗ = argmax
θ

ln p(y1:T|θ). (4.3)

The optimization task can be done using gradient-based algorithms. This section first covers
the mathematical formulation for different gradient-ascent variants. It then details how they
are adapted to BDLMs. Note that the term “gradient ascent” is not commonly found in the
literature, which most often refers to “gradient descent”. This is because the gradient-based
optimization is commonly used for minimizing an objective function, for example, a cost
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function. However, both gradient descent and ascent are in practice identical, where one can
be transformed into the other by taking the negative of the objective function.

4.3.1 Batch Gradient Ascent

Batch Gradient Ascent (BGA) [58], or simply gradient ascent, is a gradient-based optimization
method used to maximize an objective function such as log-likelihood function. It iteratively
updates model parameters with a step, ∆n

θ , in the direction calculated using of the gradient
for the entire training dataset y1:T. The model parameter update is done following

θn = θn−1 + ∆n
θ

∆n
θ = η∇θF(θn−1,y1:T),

(4.4)

where n corresponds to the optimization loop, η is the learning rate, ∇ is the gradient operator,
and the objective function F(θn−1,y1:T) depends on the vector of model parameters at the
optimization loop n− 1 and on the training dataset. The BGA algorithm is computationally
demanding when dealing with a large dataset, because it computes the gradient using a large
amount of observations.

4.3.2 Stochastic Gradient Ascent

Stochastic Gradient Ascent (SGA) [58] is an extension of the BGA algorithm that allows
speeding up the optimization procedure. The SGA consists in updating model parameters

θn = θn−1 + ∆n
θ

∆n
θ = η∇θF(θn−1,yt),

(4.5)

where the gradient is computed using a single observation. An epoch is completed when
Equation 4.5 has been applied to every observation in the dataset. In common cases, multiple
epochs are required for ensuring the convergence. Figure 4.1 shows the behaviour of the
log-likelihood function of the BGA and SGA algorithms with respect to the number of
epochs. Because only one observation at a time is used for computing the vector of gradients
∇θF(θn−1,yt), the SGA algorithm shows a high variability in the updates of model parameters,
which explains the fluctuations in the log-likelihood illustrated in Figure 4.1b. On the other
hand, the log-likehood for the BGA algorithm keeps increasing until converging, as shown in
Figure 4.1a.

To improve the stability of the SGA algorithm, it is common to employ Mini-Batch
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Figure 4.1 The log-likelihood of (a) the batch gradient ascent and (b) stochastic gradient
ascent algorithm during training.

Gradient Ascent (MGA) that computes the gradient using mini-batches of data yt:t+lMB . The
model parameter update then follows

θn = θn−1 + ∆n
θ

∆n
θ = η∇θF(θn−1,yt:t+lMB),

(4.6)

where lMB is the length of the mini-batch. The MGA algorithm allows (i) reducing the variability
in the updates of model parameters and (ii) providing a speed up for the optimization procedure.
A gradual decrease in the learning rate over time for the MGA algorithm is needed in order
to achieve the same performance as the BCA algorithm [44].

4.3.3 Common Challenges

Despite the widespread application of the gradient ascent variants to optimization problems,
several key challenges [44] remain to be addressed in order to ensure an efficient performance.
The first limitation is that its performance relies on how the learning rate is tuned. More
specifically, a small learning rate can slow down the learning speed while a large learning rate
might overshoot the maximum, as shown in Figure 4.2. In common cases, the same learning
rate for all model parameters can be obtained using expert judgment and experience as well
as prior data analysis. However, this tuning method becomes inefficient in the case where the
objective function is sensitive to some search directions of model parameters as defined by
their gradients, yet insensitive to the others. For this case, it is required to update the model
parameters with different values of the learning rate.
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Figure 4.2 Illustration of the impact of the learning rate on the model parameter optimization.
(a) a small learning rate; (b) a large learning rate. Each circle presents an update step. The
ordering update is presented by the arrows.

The second limitation is that, in the field of machine learning, the objective functions are
usually non-convex because of the presence of multiple local maxima, as shown in Figure
4.3a. A local maximum is defined as a point where the first derivative is equal to zero, the
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Figure 4.3 Examples of (a) the local maxima and (b) the saddle points.

second derivative is negative, yet it is not the highest value of the objective function. Escaping
from these local maxima using gradient ascent is theoretically impossible because the model
parameters can no longer be updated due to the zero-value gradient. Another difficulty is the
saddle points [102], that is, the location where the objective function has a local minimum
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in one dimension but a local maximum in another dimension, as illustrated in Figure 4.3b.
These saddle points make it difficult for optimization algorithms to escape from them because
the gradient of the objective function around them are close to zero.

The third limitation is that the BGA algorithm is sensitive to the initial values of model
parameters. The initial values have a significant impact on the convergence speed of the
optimization algorithm. They can also determine whether it converges to a global or local
maximum or it gets stuck in a saddle point. In some cases, poor initial values may also cause
a numerical instability. In practice, the optimization algorithm should be run several times
with some random sets of initial values of model parameters.

All the aforementioned limitations make gradient-based optimization algorithms difficult
to fully automate. These algorithms are thus typically coupled with the other algorithms such
as momentum and adaptive moment estimation which are described in detail in the following
sections.

4.3.4 Optimization Algorithm

This section reviews the mathematical formulation along with the advantages as well as
limitations of five optimization algorithms. The discrepancy between these five algorithms
lies on the computation of the step update ∆n

θ defined in Equation 4.4−4.6.

Newton-Raphson (NR)

The Newton-Raphson (NR) algorithm [98] performs the update of model parameters using
the most recent gradient and Hessian. The learning rate is approximated using the inverse of
negative Hessian matrix of the objective function with respect to the model parameters. ∆n

θ

is calculated following

∆n
θ =

[
−∇2

θF(θn−1,y1:T)
]−1
· ∇θF(θn−1,y1:T), (4.7)

where ∇2
θF(θn−1,y1:T) is the Hessian matrix of the objective function with respect to the

vector of model parameters and the training dataset. The use of the Hessian matrix allows
estimating the curvature of the objective function at a given θ. The computational time for
evaluating the full Hessian matrix is not negligible when dealing with a large number of model
parameters. To reduce the computational cost, it is possible to employ only its main diagonal
terms. A key limitation is that the NR algorithm performs poorly in the presence of saddle
points and local minima [44].
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Momentum (MMT)

For the case where the objective function exhibits pathological curvature [103] (e.g., valleys,
ravines, and trenches) or where there is a high variability in the gradient. Both BGA and
MGA algorithms gradually oscillate towards the maximum, as presented by the solid line
in Figure 4.4. Consequently, these oscillations result in a slow convergence. A momentum

BGA/MGA
BGA/MGA with momentum
Maximum

Figure 4.4 Illustration of how the momentum algorithm addresses the limitations of classic
gradient ascent variants. Each arrow presents an update step made by the optimization
algorithm.

term [104] that accumulates an exponentially decaying average of the past gradients, helps
the gradient ascent algorithms to dampen these oscillations. As a result, the MGA and BGA
algorithms with momentum lead to a faster convergence than the one without momentum, as
shown by the dashed line in Figure 4.4. ∆n

θ for the MMT algorithm is given by
 ∆n

θ = rn

rn = βrn−1 + η∇θF (θn−1,y1:T) ,
(4.8)

where r is the vector of momentum and β ∈ [0, 1] is a hyperparameter that defines the
contribution of the previous momentum. In practice, the possible values of β typically are
0.5, 0.9 and 0.99 [44]. The advantage of the MMT algorithm is that it makes a small update
in model parameters, yet it provides an efficient and fast learning process, especially in the
presence of saddle points and local maxima. A drawback of the MMT algorithm is that it
ignores the bias of the gradients, leading to inaccurate updates for model parameters.

Root Mean Square Propagation (RMSProp)

RMSProp [105] allows each model parameter to have its own adaptive learning rate. Like the
MMT algorithm, RMSProp also dampens the oscillations, yet this time it uses an exponentially
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decaying average of past squared gradients. The update step for model parameters is defined
as 

∆n
θ =

[
η
(√
ν̂n + ε

)−1
]
�∇θF (θn−1,y1:T)

νn = β1ν
n−1 + [1− β1] [∇θF (θn−1,y1:T)]2 ,

(4.9)

where νn is the exponential average of the past squared gradients, ε is a vector containing
small constants to ensure that (νn + ε) 6= 0 , β1 ∈ (0, 1) is a hyperparameter that controls the
length scale of the moving average of the past squared gradients, and � is the element-wise
operator. In practice, β1 and ε are typically set to 0.9 and 10−8. RMSProp performs well for
non-convex optimization problems in which there might be local minima and saddle points [44].
Its main limitation is that it does not take into account the bias of the squared gradients.

Adaptive Moment Estimation (ADAM)

Like RMSProp, ADAM [106] is another approach that provides the adaptive learning rate for
each model parameter. This adaptive learning rate is evaluated based on the exponentially
decaying average of past squared gradients as well as of past gradients. The ADAM algorithm
is a combination of the MMT algorithm with the RMSProp algorithm where their limitations
are addressed introducing a bias correction to the gradient and squared gradients. For the
ADAM algorithm, the step update, ∆n

θ , is computed following


∆n
θ = ηŝn �

(√
ν̂n + ε

)−1

ν̂n = ν
1−(β1)n

ŝn = s
1−(β2)n

νn = β1ν
n−1 + [1− β1] [∇θF (θn−1,y1:T)]2

sn = β2sn−1 + (1− β2)∇θF (θn−1,y1:T) ,

(4.10)

where sn is the exponential average of the previous gradients, ŝn is the bias correction of
the exponential average of previous gradients, ν̂n−1 is the bias correction of the exponential
average of the previous squared gradients, β1 is defined in Equation 4.9, and β2 ∈ (0, 1) is a
hyperparameter that controls the length scale of the moving average of the previous gradients.
β2 is typically set to 0.999.

Adaptive Momentum (AMMT)

AMMT is a combination of the NR algorithm with the MMT algorithm. The AMMT
algorithm provides the adaptive learning rate for each model parameter while overcoming
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the limitations of the NR and MMT algorithms. The AMMT algorithm accumulates an
exponentially decaying average of the past gradients and diagonal Hessian terms [107]. The
update step for model parameters ∆n

θ is given by


∆n
θ =

(
h̄n
)−1
· sn

sn = βsn−1 + (1− β)∇θF (θn−1,y1:T)

h̄n = βh̄n−1 + (1− β)∇2
θF (θn−1,y1:T) ,

(4.11)

where h̄n is the exponential average of the previous diagonal Hessian terms, sn is defined in
Equation 4.10, and β is defined in Equation 4.8.

A general remark is that there is no absolute rule for selecting the optimization algorithm.
Instead, the choice of the optimization algorithm depends on (i) the dataset, (ii) the model
architecture, and (iii) the user’s preference. Furthermore, the performance of an optimization
algorithm relies on the hyperparameter tuning.

4.3.5 Practical Implementation for BDLMs

To provide an efficient and fast learning process for BDLMs, the BGA and MGA algorithms
need to be designed in such as a way that they can meet some specific requirements for
BDLMs. The section proposes practical implementations of both BGA and MGA algorithms
for optimizing the vector of model parameters θ = [θ1 θ2 . . . θp]ᵀ for BDLMs. The first
part presents a general implementation for both algorithms. The following parts provide the
specifications of the implementation for each algorithm in order to maximize their performance
in BDLMs. Note here that the objective function is the log-likelihood function presented in
Equation 4.2. For simplicity purpose, the log-likelihood function is denoted as F(θ,y1:T) that
depends on the model parameters θ and training observations y1:T.

General Implementation

In BDLMs, the analytic formulation of the log-likelihood function is typically complex to
obtain. Therefore, its first and second derivatives are evaluated using the finite difference
method,

gp = F(θ(p) + δθ,y1:T)−F(θ(p)− δθ,y1:T)
2δθ

hp = F(θ(p) + δθ,y1:T)−F(θ(p),y1:T) + F(θ(p)− δθ,y1:T)
δ2
θ

,

(4.12)
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where gp is the first derivative, hp is the second derivative, and δθ is a small change in θ(p).
The details of their implementation are presented in Algorithm 2 in Appendix B.1. Note that
these numerical approximations can introduce errors into first and second derivatives. For
an efficient and fast optimization, the five optimization algorithms presented in §4.3.4 can
be employed to perform the updates of model parameters. Algorithm 3 in Appendix B.2
presents a simple version of the implementation for the model parameter updates.

For the convergence criterion, a metric needs to be computed after each epoch. The
optimization algorithm can use either the log-likelihood value (Ltr) of the training set or the
log-likelihood value (Lv) of the validation set. Figure 4.5 illustrates how the data are used to
evaluate each metric as well as the first and second derivatives for updating model parameters.
Note that the validation set is not used to optimize model parameters. In common cases,

Training set

gp, hp Ltr

1 T

(a)

Training set Validation set

gp, hp Ltr Lv

1 Ttr T

(b)

Figure 4.5 Illustration of two metrics employed in BDLMs to evaluate the performance of the
optimization algorithm. (a) training log-likelihood value (Ltr); (b) validation log-likelihood
value (Lv).

the validation log-likelihood value is used as a metric when a small dataset is employed to
update model parameters (e.g., a mini-batch of data in the MGA algorithm). Such a case is
prone to overfitting when the performance of the model on training set is better than on the
validation set. It means that the model does not generalize well from the training set to the
validation set. Figure 4.6 shows an example of this overfitting issue. In this example, the
training log-likelihood keeps increasing while the validation log-likelihood starts decreasing
after the 37th epoch. Here, the best-case scenario is to stop the optimization algorithm at the
epoch 37. Note that the validation log-likelihood is not an accurate metric when it comes to
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Figure 4.6 Illustration of the log-likelihood function of the training set and validation set.

anomaly detection because the occurrence of the abnormal events is not frequent in a time
series. For example, the validation set might include these events, yet the training set does
not, meaning that the training and validation sets come from different distributions. This
phenomenon is called data shift [108]. Such a case, it is not well suited to measure the model
performance on the validation set whose the distribution is different from the one in the
training set. The implementation of two metrics is presented in Algorithm 4 in Appendix B.3.

BGA Implementation

Each model parameter in BDLMs has its own contribution to the log-likelihood value. Therfore,
the log-likelihood might be more sensitive to some model parameters than others. Only
updating the model parameter having the most relevant contribution to the log-likelihood
function at each epoch may lead to the maximum faster than updating all model parameters
at once. This update technique is a variant of the coordinate ascent technique [109,110]. A
limitation of the coordinate ascent is that it does not perform well if there are dependencies
between model parameters. Another limitation is that the computational cost increases
rapidly with the number of model parameters such as in the case of a neural network which
contains millions of model parameters to be optimized. In the context of BDLMs, however,
the number of unknown model parameters commonly varies from 1 to 20, which makes this
technique computationally efficient. For these reasons, updating each model parameter once
at a time is proposed for the BGA algorithm in BDLMs.

The challenge now is how to select the model parameter to perform the updates for the
next epoch because there is neither general rule nor prior knowledge to determine which
model parameter is more relevant than others. Randomly shuffling the model parameter



59

for each epoch can be used for this task, yet it does not take into account the information
from data as well as model architecture, thus making it unreliable. Another way to address
this challenge is to define a distance measure between the current and previous values of the
training log-likelihood, Lntr and Ln−1

tr , for each model parameter as the learning progresses,

d(p) = Lntr − Ln−1
tr , (4.13)

where p corresponds to the pth model parameter of θ. Once d is evaluated, the index p of the
next model parameter to be updated is sampled from a discrete distribution with a probability
proportional to

pd = d∑p
p=1 d(p) . (4.14)

The algorithm for sampling the index p is presented Algorithm 5 in Appendix B.4. Because
the log-likelihood function contains both information from data and model architecture, it
can theoretically provide a better performance than the random selection technique. Note
here that this selection procedure can be biased due to a high variability in the data. The
five optimization algorithms presented in §4.3.4 can be coupled with the BGA algorithm.

Like any other optimization algorithms, a convergence criterion needs to be defined.
Because the model parameters are updated once at a time, a converged vector c is defined
following

c(p) =


1 if Lntr > Ln−1

tr and
∣∣∣∣∣Lntr − L

n−1
tr

Ln−1
tr

∣∣∣∣∣ < tol

0 otherwise,
(4.15)

where Lntr and Ln−1
tr are the current and previous values of the training log-likelihood, and

tol is a convergence tolerance that needs to be tuned before optimizing. The optimization
procedure has converged when either all elements of c are equal to one or the number of
epoch reaches the allowed maximum. A version of the convergence check can be implemented
as described in Algorithm 6 in Appendix B.5. The training log-likelihood Ltr (see Figure
4.5) is typically used as the metric for the BGA algorithm. The first reason is that, as
discussed in the previous section, it is better suited than the validation log-likelihood in the
case of anomaly detection, where the BGA algorithm is a common choice for optimizing its
model parameters. Second, it allows reducing the computational cost, thus leading a fast
optimization. Third, using the entire dataset to optimize model parameters is less sensitive
to overfitting than using a small portion of the dataset like the MGA algorithm. Algorithm 8
presented in Appendix B.6 summarizes the main steps of the BGA algorithm for BDLMs.
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MGA Algorithm

As presented in §4.3.2, the MGA algorithm is used for improving the optimization speed
when dealing with a large dataset by separating the training data into mini-batches in order
to update model parameters. There are two main features in BDLMs for which the MGA
algorithm needs to be adapted: (i) the selection of data for the mini-batch and (ii) the
use of mini-batches of data for optimizing model parameters. In general cases, to avoid
biasing the optimization algorithm, the classic MGA algorithm shuffles the training data
for the mini-batches at every update. This requirement becomes problematic for BDLMs
that specializes in interpreting sequential data for which the order of observations matters.
To tackle this problem, the starting time ts ∈ [1 : T − lMB] for each mini-batch is randomly
selected. Each mini-batch of data is then built by taking the observations with respect to
their ordering in the time window from ts to ts + lMB, where lMB is the length of mini-batch.
An epoch is completed when the model parameters are updated with NmaxM = bT/lMBe times,
where b·e represents the nearest integer. To prevent overfitting, the validation log-likelihood
is used as a metric to measure the performance of the optimization procedure. Figure 4.7
illustrates how the data are selected for each mini-batch.

The key challenges with the use of mini-batches of data are that (i) the selection technique
for the model parameter for the next update in the BGA algorithm is no longer applied to
the MGA algorithm because the mini-batch of data is not the same at every update, so the
contribution of each model parameter cannot be evaluated, (ii) its first and second derivatives
are much noisier than when using the full batch of data, and (iii) it can be prone to overfitting
because of small datasets. For addressing the first challenge, the multiple possibilities of the
model parameter update are proposed for the MGA algorithm in BDLMs. It means that each
model parameter has the same potential to be updated for the next epoch. More specifically,
a matrix in which each column represents a possible update for the model parameters is
defined following

Mθ =


θ1 + ∆θ1 θ1 . . . θ1 θ1 + ∆θ1

θ2 θ2 + ∆θ2 . . . θ2 θ2 + ∆θ2
... ... . . . ... ...
θp θp . . . θp + ∆θp θp + ∆θp

 , (4.16)

where ∆θ is the step update. Note that the last column of Mθ presents a possibility of
updating all model parameters at once. Because ∆θ for each model parameter has been
computed, this possibility is obtained without requiring additional computations and it may
lead to a faster convergence. Each column of Mθ is associated with a value of the validation
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Figure 4.7 Illustration of the selection of the mini-batch of data for the mini-batch gradient
ascent algorithm. gp: the first derivative of F(θ,y1:T) with respect to θ(p); hp: the second
derivative of F(θ,y1:T) with respect to θ(p); Lv: the validation log-likelihood.
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log-likehood computed using Algorithm 4 so that a vector of validation log-likelihood values
is given by

Lm
v =

[
Lmv,1 L

m
v,2 . . . Lmv,p

]ᵀ
, (4.17)

where m is the mini-batch loop. The new vector of the model parameters corresponds to the
column of Mθ having the highest validation log-likelihood value of Lm

v . This update technique
can lead to the optimal maximum faster than the previous one because (i) it considers different
update configurations of model parameters that are updated either one model parameter at
a time or all model parameters at once and (ii) the computational time for a mini-batch of
data is small. In the current implementation, Mθ is not include all possibilities of model
parameter update because it is computationally demanding. Further improvements can focus
on increasing the size of Mθ by well selecting different combinations of model parameters
to be updated in such a way that the model parameters relating to the same hidden state
variable should be updated at once.

To tackle the second challenge, the update of model parameters is performed using one of
four options following: MMT, RMSProp, ADAM, and AMMT algorithms. The convergence
is reached when one of the following conditions is satisfied Lnv < tol · Ln−1

v

n = NmaxEpoch,
(4.18)

where tol is convergence tolerance and NmaxEpoch is the maximal number of epochs. Algorithm
7 presented in Appendix B.5 presents the convergence check after each epoch for the MCA
algorithm.

Despite all advantages offered by the MGA algorithm, the practical application shows
that it does not provide a stable optimization in the case of anomaly detection. This can
be explained by the infrequent occurrence of abnormal events. It means that some of the
mini-batches may include them but not to the others, leading to a high variability when
updating model parameters. Therefore, the BGA algorithm is more suited than the MGA
algorithm to such a case. The details of the MGA algorithm proposed for the BDLMs are
presented in Algorithm 9 in Appendix B.7.

Initialization Strategies

As mentioned in §4.3.3, the performance of both BGA and MGA algorithms depends on the
initial parameter values θ0. In the context of BDLMs, they are additionally dependent on
the initial mean µ0 and covariance Σ0 for the hidden state variables. Poor guesses for the
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initial values of either model parameters or hidden state variables can lead to suboptimal
local maxima. In the case of anomaly detection, it can trigger false alarms or prevent the
detection of anomalies. For addressing the first limitation, several runs with different sets of
initial values of θ should be tested to ensure proper initial values. The multi-pass technique is
proposed to tackle the second limitation. The multi-pass consists in recursively employing the
Switch Kalman Smoother (SKS) [86] for estimating µ0 and covariance Σ0 for hidden state
variables. During training, the model is first built using the vector of initial model parameter

θn y1:T µ0,Σ0

BCA or MCA
algorithm

θn, Ln

n = N
Switching

Kalman Smoother

µnew
0 ,Σnew

0 Lnew > Ln

θ∗

no

yes

yes

n
=
n

+
1

no

Figure 4.8 Illustration of the batch optimization procedure using the multi-pass.

values θn, initial values for hidden state variables {µ0,Σ0}, and the training data y1:T. The
optimization algorithm is employed for optimizing the vector of model parameters θn and
for evaluating the corresponding log-likelihood Ln. After each iteration, µnew

0 and Σnew
0 are

estimated using SKS. To be accepted as new initial values, the log-likelihood evaluated using
{µnew

0 ,Σnew
0 } needs to be greater than Ln. This procedure is repeated until the convergence

criterion, n = N, are met. The final output of the procedure is the vector of optimal parameters
θ∗. Note that N needs to be defined before the optimization. To reduce the computation cost,
the amount of data employed for estimating the initial values µnew

0 and Σnew
0 can be smaller

than the training data employed for the optimization procedure.
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4.4 Bayesian Estimation

In the context of BDLMs, the uncertainty in the model parameters is a key aspect for
quantifying the confidence over the estimation of hidden state variables. The reason behind
this uncertainty is the limited amount of data for learning model parameters. The uncertainty
in model parameters can be incorporated in a decision-making process in order to provide
risk-aware decisions. For instance, the MLE approach presented in Section 4.3 only provides
point estimates for model parameters which does not take into account the model parameter
uncertainty. To overcome this limitation, the section presents two methods for approximating
the posterior PDF of model parameters: Hamiltonian Monte Carlo [111–113] and Laplace
approximation [98]. A Gaussian mixture approximation [87] is then employed for propagating
the model parameter uncertainty towards the hidden state variables.

4.4.1 Hamiltonian Monte Carlo (HMC)

The posterior PDF for the vector of model parameters defined as

p(θ|y1:T) = p(y1:T|θ) · p(θ)
p(y1:T)

∝ p(y1:T|θ) · p(θ),
(4.19)

where p(θ) is the prior PDF, p(y1:T|θ) is the marginal likelihood, p(y1:T) is a normalization
constant, and θ = [θ1 θ2 · · · θP]ᵀ is a vector of model parameters to be estimated. The prior
probability represents the knowledge available for model parameter values before the data
have been collected. The marginal likelihood formulation for the BDLMs is shown in Equation
4.1. HMC is a Markov chain monte carlo method for approximating the posterior PDF
p(θ|y1:T) for model parameters θ, given the training data y1:T. The particularity of the HMC
algorithm is that an auxiliary momentum variable ri is added to each parameter θi. The joint
probability density for a parameter vector θ and its momentum variable vector r is defined as

p(θ, r|y1:T) = p(r|θ,y1:T) · p(θ|y1:T), (4.20)

where p(r|θ,y1:T) is a conditional probability density of r given θ. The joint density p(θ, r|y1:T)
is also called the canonical distribution that is independent from the choice of parameterization
[114]. Hence, the joint probability density can be written in another form using an invariant
Hamiltonian function H(θ, r) as

p(θ, r|y1:T) = exp [−H(θ, r)] . (4.21)
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The Hamiltonian function originally comes from the field of classical mechanics where it
refers to the energy at specific points and is conservative over time. In most cases, H(θ, r) is
decomposed into two terms

H(θ, r) = T (θ, r) + V (θ),

where T (θ, r) is the kinetic energy and V (θ) is the potential energy. In the case of HMC,
H(θ, r) can be obtained using the Equations 4.19 , 4.20, and 4.21 so that

H(θ, r) =
T (r)︷ ︸︸ ︷

− ln p(r)
V (θ)︷ ︸︸ ︷

− ln p(θ|y1:T)

= − ln p(r)− ln p(y1:T|θ)− ln p(θ)
(4.22)

with the assumption that the momentum variables r do not depend on θ. In common cases,
the kinetic energy is defined as

T (r) = 1
2rᵀM−1r, (4.23)

whereM is a symmetric and positive-definite mass matrix. M corresponds to the inverse
covariance matrix of p(θ|y1:T). Once the kinetic and potential energies are identified, the
Hamiltonian’s equations over time can be written as

dr
dt

= −∇θ V (θ)

dθ

dt
= ∇r T (r),

(4.24)

where ∇ is the gradient operator. Equation 4.24 is employed to propose new samples in
HMC. For practical implementations, Equation 4.24 can be approximated using the leapfrog
method [111], that is, a symplectic integrator, that allows simulating the trajectories for an
efficient exploration of the posterior density p(θ|y1:T). Given a time discretization parameter
l, the main steps in the leapfrog method are written as

rl+1/2 = rl − ξ
2 ∇θ V (θl)

θl+1 = θl + ξ∇r T (rl+1/2)

rl+1 = rl+1/2 − ξ
2 ∇θ V (θl+1),

(4.25)

where ξ is defined as the step size. A half step for the momentum vector rl+1/2 is first
evaluated. Then, a full step for θl+1 is updated using rl+1/2. Finally, the other half step
for the momentum vector rl+1 is computed using θl+1. The iterative process is repeated a
number of steps Ls. A limitation of the leapfrog method is that it can introduce errors during
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the discretization, leading to a bias. Therefore, an acceptance probability β is defined to
ensure the validity of the Markov chain:

β = min

1,
exp

[
−H(θl+1, rl+1)

]
exp [−H(θl, rl)]


= min

{
1, exp

[
−T (rl+1)− V (θl+1) + T (rl) + V (θl)

]}
.

(4.26)

The key challenge in HMC is to tune the parameters such as the step size ξ and the
number of steps Ls [114, 115]. A small step size provides a more accurate approximation and
effective exploration, yet it is computationally more demanding. A large step-size leads to
inaccurate simulations and yields low acceptance probabilities. Similarly, a small number of
steps yields a high autocorrelation between the successive samples. A larger number of steps
causes back loop trajectories [111,115], leading to a poor exploration. Optimal values for ξ
and Ls are tuned based on the acceptance probability in Equation 4.26 using either the Dual
Averaging method [116] or the No-U-Turn Sampler method [115].

The convergence diagnostic statistic R̂ [117], that is, the Estimated Potential Scale
Reduction (EPSR) is employed to measure the efficiency exploration in HMC. The idea behind
is to interpret the stationarity of multiple, parallel Markov chains based on the quantity R̂.
If R̂ is approximately 1, the estimates obtained from the Markov chains are deemed reliable.

4.4.2 Laplace Approximation (LAP)

The MLE approach presented in Section 4.3 does not take into account the uncertainty in the
model parameter estimates. One solution to tackle this problem is to combine the MLE with
the Laplace Approximation (LAP) [58]. The LAP consists in approximating the posterior
PDF of parameters with a Gaussian PDF

p(θ|y1:T) ≈ N

θ;θ∗,
(
−∇2

θF(θ∗,y1:T)
)−1

︸ ︷︷ ︸
cov(θ∗,y1:T)

 , (4.27)

where ∇2
θF(θ∗,y1:T) is the Hessian of the log-likelihood function evaluated at the optimal

model parameter values θ∗ for the entire training dataset.
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4.4.3 Gaussian Mixture Approximation

This section proposes a method based on a Gaussian Mixture Approximation (GMAP) [89]
for including the model parameter uncertainty in the estimation of the hidden state variables
in BDLMs. After having estimated the posterior PDF for the model parameters p(θ|y1:T),
the posterior PDF for hidden state variables can be obtained by integrating over the vector
of model parameters θ,

p(xt|y1:T) =
∫
p(xt|θ,y1:T) · p(θ|y1:T) dθ, (4.28)

where p(xt|θ,y1:T) is assumed to be a multivariate Gaussian PDF, as shown in Equation 3.1.
With the HMC approach presented §4.4.1, each model parameter is now represented by a
realization of the posterior PDF. On the other hand, the LAP approach presented in §4.4.2
allows generating samples for model parameters using a Gaussian distribution in Equation
4.27. Equation 4.28 can be approximated by a weighted sum of multivariate Gaussian PDFs,
that is, a Gaussian mixture. Assuming that there are K samples from the model parameter
posterior PDF approximated using either the MLE with the Laplace approximation, or the
HMC method, the mixture density of hidden state variables is built from a linear combination
of K Gaussian densities. The mathematical formulation for the mixture density is written as

p(x̂t|y1:T) =
K∑

k=1
p(xkt |θk,y1:t) · wk

=
K∑

k=1
N (xkt ;µkt|t,Σk

t|t) · wk,
(4.29)

where µkt|t and Σk
t|t are obtained using Equation 3.4 and wk are the mixing weights. Note that

the sum of all mixing weights are equal to one. Because, in common cases, these multivariate
Gaussian PDFs are not far from each other, the Gaussian mixture can be approximate by a
single multivariate Gaussian PDF [87,89,90], as illustrated in Figure 4.9. This Gaussian PDF
is the closest one to the true mixture PDF. p(x̂t|y1:T) is approximated by a Gaussian PDF
with mean µ̂t|t and covariance matrix Σ̂t|t that can be calculated following

µ̂t|t =
K∑

n=1
µkt|t · wk

Σ̂t|t =
K∑

k=1
Σk
t|t · wk +

K∑
k=1

(µkt|t − µ̂t|t)(µkt|t − µ̂t|t)ᵀ · wk.
(4.30)



68

x1
t ∼ N (µ1

t|t,Σ1
t|t)θ1

t

θ2
t

θ3
t

...
θkt
...
θK
t

x2
t ∼ N (µ2

t|t,Σ2
t|t)

x3
t ∼ N (µ3

t|t,Σ3
t|t)

...
xkt ∼ N (µkt|t,Σk

t|t)
...

xK
t ∼ N (µK

t|t,ΣK
t|t)

x̂t ∼ N (µ̂t|t, Σ̂t|t)

Hidden States
w 1

w 2

w3

w
k

w
K

Figure 4.9 Illustration of the Gaussian mixture approximation for the hidden state variables.

Because samples θk are realizations of the posterior PDF, wk are all equals to 1/K and
Equation 4.30 simplifies to

µ̂t|t = 1
K

K∑
k=1
µkt|t

Σ̂t|t = 1
K

[ K∑
k=1

Σk
t|t +

K∑
k=1

(µkt|t − µ̂t|t)(µkt|t − µ̂t|t)ᵀ
]
.

(4.31)

4.4.4 Framework Architecture for BDLMs

This section proposes the general framework architectures for the Laplace approximation
as well as Hamiltonian Monte Carlo procedure. Both frameworks are specifically tailored
for approximating the posterior PDF of model parameters and to estimate the hidden state
variables.

Laplace Approximation Procedure (LAP-P)

The LAP-P consists in two main steps: Posterior Density Approximation (PDA) and Uncer-
tainty Marginalization (UM). The PDA-step approximates the parameter posterior density
p(θ|y1:T) using the Laplace approximation presented in §4.4.2. The UM-step is related to the
estimation of the expected values for hidden state variables µ̂t|t and its covariance matrix
Σ̂t|t based on Gaussian mixture approximation presented in Section 4.4.3 for BDLMs.

In the PDA-step, the optimal parameter vector θ∗ of a model is first learned from
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a training set y1:T using either BGA or MGA algorithms presented in Section 4.3. The
parameter posterior density p(θ|y1:T) is then approximated using the Laplace approximation.
Note that this density is a Gaussian density with mean θ∗ and covariance matrix cov(θ∗,y1:T)
(Equation 4.27). The UM-step marginalizes the parameter uncertainty estimation using
Equation 4.30 to estimate µ̂t|t and Σ̂t|t at each time t. The LAP-P is summarized in Figure
4.10.

Training
set Model

BGA or MGA
algorithms

θ∗

Laplace
approximation

p(θ|y1:T)

GMAP

µ̂t|t, Σ̂t|t

Posterior
density

approxim
ation

(§4.4.2)
U
ncertainty

m
arginalization

(§4.4.3)

Figure 4.10 Illustration of the general procedure for approximating the posterior density of
parameters p(θ|y1:T) and the mean values of the hidden state variables and its covariance
matrix at each time t, that is, {µ̂t|t, Σ̂t|t} using the combination of the Laplace approximation
and Gaussian Mixture Approximation (GMAP). BGA: batch gradient ascent; MGA: mini-
batch gradient ascent.
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Hamiltonian Monte Carlo Procedure (HMC-P)

HMC-P has the same two steps as LAP-P, except that the PDA-step employs the HMC-based
method presented in §4.4.1 for approximating the model parameter posterior density p(θ|y1:T).
The shematic architecture of a HMC-P is illustrated in Figure 4.11.

To ensure an efficient performance for the HMC-P, the parameters {ξ, Ls} for the leapfrog
method presented in §4.4.1 need to be tuned in the PDA-step. For this purpose, the appropriate
start point θstart for the parameters along with the HMC sampler are required. Once the
leapfrog parameters are identified, the samples are then drawn from the constructed sampler
for approximating p(θ|y1:T).

4.5 Transformation of Model Parameter

In BDLMs, some model parameters are defined in bounded spaces where their values are
restricted to specific intervals. For example, the model error standard deviation parameter σ
in Qt is a real positive number, that is, σ ∈ (0,+∞). During the optimization, a constraint
needs to be defined for these model parameters in order to ensure that their values fall into
their valid intervals. Yet, this constraint makes either the gradient ascent algorithms or the
Bayesian estimation methods inefficient and slow [98]. For addressing this limitation, these
model parameters are transformed into unbounded space, that is, θ ∈ (−∞,+∞). In BDLMs,
the bounded model parameters are regrouped in two following categories,

category #1 θ ∈ (0,+∞)
category #2 θ ∈ [a, b] ,

(4.32)

where a, b are the real numbers ∈ R. The category #1 can be parameters such as the standard
deviation, kernel lengthscale, and kernel period (§3.6.2). The category #2 represents, for
example, the autocorrelation coefficient and the transition probability (§3.3.2), whose values
lie in the interval [0, 1]. Either the base-10 logarithm (log10) or natural logarithm (ln) can be
applied to the category #1 as a transformation function such that

θTR = log10(θ) or θTR = ln(θ), (4.33)

where θTR ∈ (−∞,+∞) is the transformed model parameter. The reverse functions trans-
forming the model parameter to the original space are given by

θ = 10θTR or θ = exp
(
θTR
)
. (4.34)
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Figure 4.11 The two main steps for approximating the posterior density of parameters p(θ|y1:T)
and the mean values of hidden state variables and its covariance matrix at each time t, that is,
{θ̂t|t, Σ̂t|t} using the combination of the HMC method with Gaussian Mixture Approximation
(GMAP). BGA: batch gradient ascent; MGA: mini-batch gradient ascent.
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For the category #2, the logistic sigmoid function can be used as a transformation function,
so that

θTR = − ln
(
b− a
θ − a

− 1
)
. (4.35)

Its reverse function is defined following

θ = b− a
1 + exp(−θTR) + a. (4.36)

Figure 4.12 presents three common transformation functions of model parameters in BDLMs.
This example shows that the base-10 logarithm may provide a more intuitive interpretation
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Figure 4.12 Illustration of transformation function of model parameters. (a) logistic sigmoid
function with a = 0 and b = 1; (b) base-10 logarithm function; (c) nature logarithm function.
TR stands for transformation.

than the natural logarithm in the case of the Bayesian estimation, where the prior PDFs
of the model parameters of the category #1 are defined in the transformed space. This is
because a value of −1 in the transformed space gives a value of 10−1 in the original space, as
presented in Figure 4.12b.

4.6 Applications

This section presents three case studies. The first case study examines the performance of the
gradient-based algorithms presented in Section 4.3 for optimizing the model parameters on
a benchmark dataset. The second and third case studies compare the LAP with the HMC
methods for approximating the posterior PDF of the model parameters and estimating the
hidden state variables for both a benchmark and a real-world dataset.
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4.6.1 Comparison of Optimization Algorithms

The goal of this experiment is to study the performance of the gradient-based optimization
algorithms in finding the optimal model parameters. This case study is conducted on
a simulated dataset where the optimized model parameters are compared with the true
parameter values.

Simulated Data

The experiment is conducted on simulated data that are generated to be representative of
the data recorded on a bridge. A temperature (T) dataset is generated including a baseline
(B) component to represent the average temperature over time, the daily (P1 = 1 day) and
seasonal (P2 = 365.24 days) sinusoidal cycles, an autoregressive (AR) process to artificially
introduce time-dependent model prediction errors, and observation errors. The mathematical
formulation for the observation model describing this dataset is given by

yT
t = xB,T

t + xP1,T
t + xP2,T

t + xAR,T
t + vT

t , (4.37)

where the formulation of each component is defined as

xB
t = 5 ◦C average temperature

xP1,T
t = 1 · sin

[
2π
1

(
t+ 8

24

)]
daily cycle

xP2,T
t = 20 · sin

[
2π

365.24

(
t+ 8

12

)]
seasonal cycle

xAR,T
t = 0.99︸ ︷︷ ︸

φAR,T

xAR,T
t−1 + wAR,T

t wAR,T
t ∼ N (0, 0.5︸︷︷︸

σAR,T

) AR(1) process

vT
t ∼ N (0, 0.1︸︷︷︸

σT
v

) observation errors.

(4.38)

A displacement dataset is generated by superposing the average displacement, the effect of
temperature on the displacement, an autoregressive component, and observation errors. The
mathematical formulation for the this dataset is defined as

yD
t = xB,D + x

D|T,R
t + xAR,D

t + vD
t , (4.39)
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where the formulation of each component is defined as

xB,D
t = 2 [mm] average displacement

x
D|T,R
t = 0.1︸︷︷︸

βR
1

xP1,T
t − 0.05︸ ︷︷ ︸

βR
2

xP2,T
t − 0.05︸ ︷︷ ︸

βR
3

xAR,T
t temperature regression

xAR,D
t = 0.98︸ ︷︷ ︸

φAR,D

xAR,D
t−1 + wAR,D

t wAR,D
t ∼ N (0, 0.02︸ ︷︷ ︸

σAR,D

) AR(1) process

vD
t ∼ N (0, 0.05︸ ︷︷ ︸

σD
t

) observation errors.

(4.40)
Both temperature and displacement datasets are generated with a uniform time-step length of
30 minutes. The total number of data points for each dataset is 52 608. Figure 4.13 presents
the simulated data for the displacement and temperature.
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Figure 4.13 Illustration of the simulated datasets. (a) displacement; (b) temperature.

Architecture for Model #6

Model #6 is built (i) for the purpose of decomposing the displacement and temperature data
into their hidden state variables and (ii) for describing the dependence of the displacement
data on the temperature data. For this purpose, the vector of hidden state variables for the
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temperature observations is defined as

xT
t =

[
xB,T xF1P1,T xF2P1,T xF1P2,T xF1P2,T xAR,T

]ᵀ
t
, (4.41)

where the baseline component xB,T
t is used to model the average temperature, two Fourier-form

components [xF1P2,T xF2P2,T]ᵀt and [xF1P1,T xF2P1,T]ᵀt are employed to describe the daily (P1 = 1
day) and seasonal (P2 = 365.24 days) cycles, and the autoregressive component xAR,T

t is used
to capture the time-dependent model errors. The displacement observations are decomposed
into a vector of hidden state variables including a baseline component to model the average
displacement and an autoregressive component to capture the time-dependent model errors.
The vector of hidden state variables for the displacement data is given by

xD
t =

[
xB,D xAR,D

]ᵀ
t
, (4.42)

The dependency of the displacement on the temperature is described through the regression
(R) coefficients associated with the two Fourier-form components and the autoregressive
component [77]. The vector of hidden state variables for Model #6 includes the vector of
hidden state variables of the displacement and temperature data such that

xt =
 xD

xT


t

. (4.43)

Model #6 involves a vector of unknown model parameters that is given by

θ =
[
φAR,D σAR,D σD

v β
R
1 β

R
2 β

R
3 φ

AR,T σAR,T σT
v

]ᵀ
, (4.44)

where φAR,D is the autocorrelation coefficient for the displacement, σAR,D is autoregression
standard deviation for the displacement, σD

v is the observation error standard deviation for
the displacement, βR

1 is the regression coefficient for xF1P1,T
t , βR

2 is the regression coefficient
for xF1P2,T

t , βR
3 is the regression coefficient for xAR

t , φAR,T is the autocorrelation coefficient for
the temperature, σAR,T is the autoregression standard deviation for the temperature, and σT

v

is the observation error standard deviation for the temperature. These model parameters
are learned from data using the MLE approach presented in Section 4.3. The optimization
algorithms being used in the case study are BGA-NR and MGA-NR, ADAM, RMSProp,
AMMT, and MMT, as presented in Chapter 4. The complete model matrices defining Model
#6 are presented in Appendix A.6. Three runs with random initial values for the model
parameters are conducted for each optimization algorithm. The maximal number of epochs
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for each run is 30 and the number of data for a mini-batch is 3000 data points. The details of
initial configurations are summarized in Table 4.1.

Table 4.1 Summary of the initial configurations for the model parameters.

Random initial values
No Parameters Bounds Transformation

functions
True
values

θ1
0 θ2

0 θ3
0

#1 φAR,D [0, 1] logistic sigmoid 0.75 0.95 0.15 0.98
#2 σAR,D (0,+∞) natural logarithm 0.073 0.0095 0.015 0.02
#3 σD

v (0,+∞) natural logarithm 0.0073 0.013 0.13 0.05
#4 βR

1 (−∞,+∞) - 0.01 −0.04 0.5 0.1
#5 βR

2 (−∞,+∞) - −0.1 0.1 0.01 −0.05
#6 βR

3 (−∞,+∞) - 0.01 0.1 0.1 −0.05
#7 φAR,T [0, 1] logistic sigmoid 0.75 0.5 0.85 0.99
#8 σAR,T (0,+∞) natural logarithm 1.433 0.05 0.085 0.5
#9 σT

v (0,+∞) natural logarithm 0.143 0.01 1 0.1

Optimization Results

Figure 4.14 presents the average log-likelihood evaluated for the validation set over three
runs with respect to each optimization algorithm. The results show that the MGA- NR
and AMMT outperforms the other algorithms, because the average validation log-likelihoods
for BGA-NR and MGA-MMT are lower than for the other optimization algorithms. More
specifically, it only took a few epochs for them to reach the validation log-likelihood value
range that the remaining algorithms achieve in more than 10 epochs. During the 3rd run,
MGA-NR suffered from numerical instabilities for a few epochs because of a high variability
in the first and second derivatives. The MGA-AMMT yields a more stable performance than
the MGA with NR. Note that both MGA-NR and AMMT do not require tuning the learning
rate.

Table 4.2 presents the optimal vector of model parameters corresponding to the highest
validation log-likehood value of three runs for each optimization algorithm. The vectors
of model parameters obtained using the MGA-NR and AMMT are the closest to the true
parameter values. Their corresponding validation log-likelihood values are higher than those
obtained using the remaining optimization algorithms. The training time required for each
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Table 4.2 Optimal vectors of model parameters for each optimization algorithm. BGA: batch
gradient ascent; MGA: mini-batch gradient ascent; NR: Newton-Raphson; MMT: momentum;
RMSProp: root mean square propagation; ADAM: adaptive moment estimation; AMMT:
adaptive momentum; CPU: central processing unit.

Optimization algorithm
No Parameters True

valuesBGA MGA MGA MGA MGA MGA
NR NR MMT RMSProp ADAM AMMT

#1 φAR,D 0.962 0.978 0.771 0.980 0.981 0.981 0.98
#2 σAR,D 0.04 0.02 0.07 0.02 0.02 0.02 0.02
#3 σD

v 0.05 0.05 0.013 0.007 0.05 0.05 0.05
#4 βR

1 0.10 0.11 0.92 0.11 0.12 0.10 0.10
#5 βR

2 −0.07 −0.05 −0.05 −0.07 −0.05 −0.05 −0.05
#6 βR

3 −0.07 −0.05 −0.05 −0.04 −0.05 −0.05 −0.05
#7 φAR,T 0.989 0.989 0.94 0.995 0.993 0.991 0.99
#8 σAR,T 0.87 0.49 0.53 0.49 0.49 0.49 0.50
#9 σT

v 0.01 0.10 0.13 0.08 0.11 0.10 0.10

Lv 2889.7 6471.1 4292.9 6352.6 6443.5 6470.6 −
Training time (mins) 17.3 17.6 17.6 17.5 17.7 17.7 −
CPU (cores) 1 10 10 10 10 10 −
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Figure 4.14 Illustration of the average validation-log-likelihood over three runs with respect to
the optimization algorithm. BGA: batch gradient ascent; MGA: mini-batch gradient ascent;
NR: Newton-Raphson; ADAM: adaptive moment estimation; RMSProp: root mean square
propagation; MMT: momentum; AMMT: adaptive momentum.

optimization algorithm is approximated to 18 minutes, yet the BGA only uses one Central
Processing Unit (CPU) core during the optimization while the MGA employs 10 CPU cores.
This difference in the CPU usage is because the BGA can only perform a single possible
model parameter update at each epoch, so it cannot leverage the parallelism of multiple CPUs.
On the other hand, the MGA algorithm needs to evaluate multiple independent possibilities
for updating the model parameters, as presented in §4.3.5 so that it takes advantage of
the parallel computation of multiple CPU cores in order to reduce the computational time.
Note that as shown in Figure 4.14, the BGA might need more than 30 epochs in order to
achieve the same performance as the MGA, which requires more computational time. MGA
algorithms except the MGA-MMT could have been stopped at the 15th epoch where the
validation log-likelihood has reached a stationary stage, that is, the learning plateau. This
would allow reducing the training time by a factor of two. Overall, this case study shows that
the MGA algorithm is computationally more efficient than the BGA algorithms when dealing
with a large dataset.

4.6.2 Comparison of LAP-P with HMC-P on a Simulated Dataset

The objective here is to compare the performance of the LAP-P with the HMC-P method
using a simulated dataset for which the true values for the hidden state variables and the
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model parameters are known.

Data Description

The experiment is conducted on simulated data that are generated to be representative of the
data recorded on civil infrastructure such as a dam. For this purpose, a dataset of displacement
measurements is generated including a baseline (B) to represent the structural behaviour over
time, a seasonal sinusoidal cycle (P) to describe the thermal effect of environmental conditions
on the displacement, an autoregressive (AR) process to artificially introduce time-dependent
model prediction errors, and observation errors (vt). The observation model is formulated
following

yt = xB
t + xP

t + xAR
t + vt, (4.45)

where each component is generated using the following formulation

xB
t = 3 + wB

t , wB
t ∼ N (0, (10−5︸ ︷︷ ︸

σB
w

)2)

xP
t = 4 sin

[
2π

365.24 · (t+ 15)
]

xAR
t = 0.866︸ ︷︷ ︸

φAR

·xAR
t−1 + wAR

t , wAR
t ∼ N (0, (0.05︸ ︷︷ ︸

σAR
w

)2)

vt ∼ N (0, (0.1︸︷︷︸
σv

)2).

(4.46)

The four-year dataset (1461 observations) with a uniform time-step length of 24hours is
shown in Figure 4.15. For this case study, five tests on different training-set lengths (TSLs)
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Figure 4.15 Illustration of 4 years of simulated data.

are conducted for approximating the posterior PDF of model parameters as well as for the
estimation of the hidden state variables. The amount of data with respect to TSL is presented
in Table 4.3.
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Table 4.3 The amount of data points with respect to the training set length (TSL) for the
simulated dataset.

TSL Data
(days) (points)

30 30
90 90

180 180
365 365

1095 1095

Architecture of Model #7

Model #7 is built for this case study. In this model, each observation is decomposed into a
baseline (B) component to model the structural behaviour over time, a Fourier-form component
(§3.2.2) with a period of P = 365.24 days to model the environmental conditions, and an
autoregressive (AR) component to describe model prediction errors. Hence, the vector of
hidden state variables is defined as

xt =
[
xB xF1 xF2 xAR

]ᵀ
t
. (4.47)

The model involves a vector of unknown parameters that are defined following

θ =
[
σB
w φ

AR σAR
w σv

]ᵀ
, (4.48)

where σB
w is the baseline standard deviation, φAR is the autocorrelation coefficient, σAR

w is the
autoregression standard deviation, and σv is the observation error standard deviation. σB

w, σ
AR
w ,

and σv are positive real numbers ∈ R+, whereas φAR is defined in a range between 0 and 1.
The full model matrices can be found in Appendix A.7. The parameters being estimated
are transformed into unbounded spaces for an efficient estimation (see Section 4.5). For this
purpose, the base-10 logarithm and logistic sigmoid functions are applied to the standard
deviations and the autocorrelation coefficient. The initial parameter values in the original
space for the model are

θ0 =

10−4︸ ︷︷ ︸
σB

w

0.7︸︷︷︸
φAR

0.01︸ ︷︷ ︸
σAR

w

0.026︸ ︷︷ ︸
σv


ᵀ

. (4.49)

In the BDLM framework, the baseline standard deviation σB
w is expected to be small because
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the error between the model prediction and the observation at each time step will be captured
in the autoregressive component xAR. Hence, it yields high autocorrelations in the model
prediction errors between time steps. The autocorrelation coefficient φAR is assumed to be close
to one. This prior knowledge defines the prior PDF for σB

w and φAR in order to ensure a reliable
estimation [118,119]. The remaining model parameters are expected to be close to one. The
prior distributions in the transformed space (TR) associated with each parameter in Equation
4.48 are set as follows: f(σB,TR

w ) = N (−4, 22), f(φAR,TR) = N (1.5, 0.52), f(σAR,TR
w ) = N (0, 12),

and f(σTR
v ) = N (0, 12). Figure 4.16 illustrates the different prior distributions corresponding

to three parameters {σB
w, φ

AR, σv} represented in the original space. Because the LAP-P and
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(a) σB
w

0.80 0.87 0.93 1.00
φAR

(b) φAR

0.0 0.7 1.3 2.0
σv

(c) σv

Figure 4.16 Illustration of prior distribution choices for model parameters in the original
space.

HMC-P are different from each other, some setup options for the parameter estimation must
be tuned separately. In the LAP-P, the initial parameter values in the original space are equal
to θ0. The HMC-P employs 4 parallel Markov-chains (Cc) for each training-set length, where
each Markov chain has its own initial parameter values. These initial parameter values are
directly defined in the transformed space as follows

θC1
0 = θstart

{
θC2

0 ,θ
C3
0 ,θ

C4
0

}
= N (θstart, diag([1 1 1]ᵀ)) ,

(4.50)

where θstart is a vector of pre-estimated parameters as presented in §4.4.4. The mass matrix
M in Equation 4.23 is chosen as the diagonal Hessian matrix of − ln p(θ|y1:T). Here, the
stopping criterion is when the EPSR metric R̂ is less than 1.01 (see §4.4.1).

Results

Figure 4.17 shows the kernel density estimate [120] of the posterior PDFs for each model
parameter according to each TSL. The dashed line and the solid line represent respectively
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Figure 4.17 Each column illustrates the kernel density estimate of the posterior PDFs for
each model parameter p(θi|y1:T) in the original space with respect to the training-set length
of simulated data.
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the PDFs obtained using LAP-P and HMC-P. The true parameter values (θ̌) are presented
by the asterisks.

The results show that the posterior PDFs obtained using both procedures concentrate
around θ̌ as the training dataset length increases. However, for the TSL of 180 days, the
PDFs approximated using LAP-P are shifted away from those approximated using HMC-P
and θ̌. This behaviour can be explained by the sensitivity toward the initial parameter values
in LAP-P, leading to a local maximum. Furthermore, Figure 4.17a shows that the posterior
PDF for σB

w approximated using HMC-P has a larger posterior mass in the tail than the
other shorter TSLs. This behaviour is contrary to the general intuition that the more data
are available, the more posterior mass concentrates around θ̌. This behaviour justifies that
the extraction of information from data depends not only on the size of data, but also on
the interaction of the prior with the likelihood function and the model parameter being
estimated as noted by Gelman et al [119]. In the TSL of 1095 days, the posterior PDFs for
model parameters obtained with both procedures are identical, yet the posterior PDF for
σB
w obtained using LAP-P exhibits heavy tails. Overall, HMC-P shows a superior capacity

at approximating the posterior PDF for model parameters over LAP-P for less than a year
TSLs.

Biased estimation with LAP-P for the TLS of 180 days leads to the question of the
robustness of LAP-P with respect to the choice of initial parameter values. To answer this
question, an additional test using a different set of initial parameter values, is carried out
with the TLS of 1095 days. Figure 4.18 presents the kernel density estimate of the posterior
PDFs for each model parameter. Instead of concentrating around θ̌, the PDFs obtained using
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Figure 4.18 Illustration of the kernel density estimate of the posterior PDFs for each model
parameter in the original space with the training set of 1095 days.

LAP-P are far from them. Note that in the previous test, the LAP-P performed well for the
approximation of the posterior PDFs of model parameters, where these PDFs concentrated
around θ̌ (see Figure 4.17). It illustrates the effect of poor initial parameter values on the
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approximation of the posterior PDF for model parameters. Hence, a careful tuning of the
initial parameter values in LAP-P is essential for an accurate estimation. For this purpose,
different sets of initial parameter values should be tested during training.

For both procedures, the hidden state variables are estimated using 1000 samples from
the joint parameter posterior PDF. This number of samples provides a sufficient accuracy
for estimating the hidden state variables, because the same results are found for the larger
training set length. Figure 4.19 presents the hidden state variables estimated using the
Kalman smoother [28] for the different training set lengths. Only the baseline (xB) and
autoregressive (xAR) components are presented for this case study. The mean values and its
standard deviation at time t are µ(.)

t|t and σ
(·)
t|t , where the superscript (·) is associated with

either LAP-P or HMC-P being employed for the estimation task. The expected value µ̂LAP
t|t

and its uncertainty bound µ̂LAP
t|t ± σ̂LAP

t|t at time t are represented by the dashed line and the
shaded region delimited by the solid line. Meanwhile, µ̂HMC

t|t and µ̂HMC
t|t ± σ̂HMC

t|t are represented
by the solid line and the shaded region. The true hidden state variables (x̌t) are presented by
the dash-dot line.

Like the posterior PDFs for model parameters, the estimation of the hidden state variables
keeps improving as the amount of the training data increases. The mean values for the hidden
state variables tend to x̌t and their uncertainty bounds narrow down. More importantly,
these uncertainty bounds include with x̌t in almost all TLSs, except 180 days. Figure 4.19c
shows that the estimation of the hidden state variables using LAP-P for the TSL of 180
days is affected by the biased posterior PDF. The baseline and autoregressive components
obtained using LAP-P are not well separated even though their uncertainty bounds are smaller
than those obtained using HMC-P. Meanwhile, the uncertainty bounds for the baseline and
autoregressive components estimated using HMC-P are larger than those from the shorter
TSL of 90 days because of a poor approximation of the posterior PDF for model parameters.

The uncertainty bounds of the baseline component obtained using LAP-P are larger than
those obtained from HMC-P in almost all TLSs excepted for 180 days. The discrepancy
between both procedures is clearly observable in the TSLs of 30 and 1095 days, as illustrated
in Figures 4.19a and e. The heavy tailed posterior PDF for σB

w obtained using LAP-P (Figure
4.17a) is the cause for this behaviour. For the TSL of 365 days, the uncertainty bounds of
the autoregressive component estimated using LAP-P are unexpectedly smaller than those
estimated using HMC-P. This is explained by a more precise approximation with LAP-P than
with HMC-P for the posterior PDFs for φAR and σAR

w (see Figures 4.17b and c). Figure 4.20
presents the computational time of both procedures for approximating the posterior PDF for
this case study. It shows that the HMC-P requires significantly more computational resources
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(a) Training set of 30 days (30 data points)
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(b) Training set of 90 days (90 data points)
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(c) Training set of 180 days (180 data points)
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(d) Training set of 365 days (365 data points)
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(e) Training set of 1095 days (1095 data points)

Figure 4.19 Expected value µ̂ and standard deviation σ̂ for baseline (left) and autoregressive
(right) components using the Laplace approximation procedure (LAP-P) and the Hamiltonian
Monte Carlo procedure (HMC-P) with respect to the training-set length of the simulated
data.
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Figure 4.20 Computation time of LAP-P and HMC-P for approximating the parameter’s
posterior PDF in the simulated dataset. LAP: Laplace Approximation; HMC: Hamiltonian
Monte Carlo.

than the LAP-P.

These results illustrate a potential impact of the model parameter uncertainty on the
estimation of the hidden state variables. Also, the mean values and their uncertainty bounds
for the hidden state variables obtained using HMC-P are more reliable than those obtained
using LAP-P because of the lack of sensitivity with respect to the initial parameter values in
LAP-P.

4.6.3 Comparison of LAP-P with HMC-P on a Real Dataset

In this case study, the comparison between the LAP-P and the HMC-P method is illustrated
using the horizontal displacement data collected on a dam located in Canada.

Data Description

The horizontal displacement data along the X-direction (see Figure 3.10) are collected over
the period of 4 years from 2010 to 2014 with a total of 2679 data points. The entire dataset is
shown in Figure 4.15. A descending trend and a periodic pattern with a period of one year can
be observed from the raw data. The periodic pattern reaches its maximum during winter and
minimum during summer. Such a behaviour is attributed to the effect of temperature. Figure
4.22 shows that the data are collected with a non-uniform time-step length. The time-step
length varies in the range from 1 to 216 hours, where the most frequent time-step is 12 hours.
A reference time-step length [77] corresponding to the most frequent time-step according
to the studied training-set is selected. As with the case involving simulated data, five tests
conducted on different TSLs have been carried out using both the LAP-P and HMC-P for
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Figure 4.22 Time step size

this case study. The amount of data with respect to TSL is presented in Table 4.4.

Architecture for Model #8

Similarly to Model #7 detailed in §4.6.2, Model #8 is constructed using the same vector of
hidden state variables, with an additional local trend (LT). Because of the descending trend
behaviour observed from the raw data (see Figure 4.21), the local trend is needed to model
the rate of change in the baseline component. Therefore, the vector of hidden state variables
is written as

xt =
[
xB xLT xF1,P xF2,P xAR

]ᵀ
t
. (4.51)

The parameter vector θ corresponding to the model is defined following

θ =
[
σLT
w φAR σAR

w σv
]ᵀ
, (4.52)

where σLT
w is the local trend standard deviation and the remaining parameters are the same as

defined in Equation 4.48. The complete matrices for the Model #8 are detailed in Appendix
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Table 4.4 The amount of data points with respect to the training set length (TSL) for the
real dataset.

TSL Data
(days) (points)

30 51
90 161

180 328
365 651

1095 2142

A.8. The initial parameter values in the original space for the model are

θ0 =

10−4︸ ︷︷ ︸
σLT

w

0.8︸︷︷︸
φAR

0.02︸ ︷︷ ︸
σAR

w

0.03︸ ︷︷ ︸
σv


ᵀ

. (4.53)

The other settings such as the transformation functions and the prior PDFs related to the
LAP-P and HMC-P remain identical as for Model #7.

Results

Figures 4.23 and 4.24 show the posterior PDFs for each model parameter as well as the hidden
state variables estimated using Kalman smoother. The convention for these figures remains
identical as for the simulated case presented in §4.6.2. The dashed and solid lines represent
the kernel density estimate for the parameter’s posterior PDF obtained using the LAP-P and
HMC-P. For hidden state variables, the dashed line and the shaded region delimited by the
solid line represent the mean values µ̂LAP

t|t and its uncertainty bounds µ̂LAP
t|t ± σ̂LAP

t|t at time t,
whereas µ̂HMC

t|t and µ̂HMC
t|t ± σ̂HMC

t|t are illustrated by the solid line and the shaded region.

The results show that the posterior PDF for σLT
w and σAR

w approximated using both the
LAP-P and HMC-P converges to the same PDF when the size of the training data increases.
However, it is not the case for the posterior PDFs for σAR

w and σv, for which there is a lack of
consistency between the posterior PDFs regarding the TSL. More specifically, Figure 4.23c
and d show that the expected values of these posterior PDFs slightly change with respect to
the TLS.

The estimation accuracy of hidden state variables obtained using both the LAP-P and
HMC-P improves with the dataset size. Their expected values tend to the same values and
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Figure 4.23 Illustration of the kernel density estimate of the posterior PDFs for each model
parameter p(θi|y1:T) in the original space with respect to the training-set length. The data are
collected on a dam in Canada. HMC: Hamiltonian Monte Carlo; LAP: Laplace Approximation.
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(a) Training set of 30 days (51 data points)
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(b) Training set of 90 days (161 data points)
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(c) Training set of 180 days (328 data points)
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(d) Training set of 365 days (651 data points)
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(e) Training set of 1095 days (2142 data points)

Figure 4.24 Expected value µ̂ and standard deviation σ̂ for baseline (left) and autoregressive
(right) components using Laplace approximation procedure (LAP-P) and Hamiltonian Monte
Carlo procedure (HMC-P) with respect to the training-set length. The data are collected on
a dam in Canada.
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their uncertainty bounds are reduced as the TSL increases. For the TSL of 30 and 90 days,
the uncertainties for the hidden state variables obtained using HMC-P are smaller than those
obtained using LAP-P. The estimation results for the TSL of 1095 days presented in Figure
4.24e outperform the others in the remaining TSLs. It confirms that the uncertainties of
both the model parameters and state estimates can be reduced through an increase in the
dataset size. The autoregressive component xAR shows a stationary behaviour with a small
amplitude even though an abnormal peak with a high amplitude is identified at the end of
the year 2013. This jump is likely to have been caused by the presence of a malfunction
in the measurement device. Figure 4.25 presents the computational time required for both
procedures for approximating the parameter’s posterior PDF in this case study.
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Figure 4.25 Computation time of LAP-P and HMC-P for approximating the parameter’s
posterior PDF on the real dataset. LAP: Laplace Approximation; HMC: Hamiltonian Monte
Carlo.

The results show that HMC-P is again more reliable than LAP-P for small datasets such
as 30 and 90 days presented in Figures 4.24a and b. Yet, Figures 4.24c, d and e show that
the differences in the estimation between the LAP-P and HMC-P become unnoticeable for
the TSLs of 180, 365, and 1095 days.

4.7 Conclusion

The results show that the MGA algorithms are computationally more efficient than the BGA.
Among the MGA algorithms, the NR and AMMT algorithms yield a faster convergence
than the remaining algorithms, as they do not require tuning the learning rate. The MGA
algorithms are thus an appropriate choice to handle large datasets. Nevertheless, there are not
enough evidences to support which MGA algorithm is generally best-suited to optimize the
model parameters in BDLMs because the performance may depend on the model architecture
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as well as on the datasets.

The comparative studies between the HMC-P and LAP-P allow exposing the advantages
as well as the limitations of both LAP-P and HMC-P. More specifically, the LAP-P provides
a fast method for the approximation of model parameter posterior PDFs, yet it is prone to be
trapped in a local maximum due to its sensitivity towards the selection of initial parameter
values when short training sets are employed, for example, less than a year training data. In
addition, the accuracy and feasibility of evaluating the model parameter covariance matrix
become challenging for either high-dimensional parameter spaces, or for a small dataset size.
To ensure a reliable approximation, the model must be (i) trained with a large amount of
data and (ii) tested with the different sets of the initial parameter values. On the other hand,
the HMC-P is less sensitive towards the initial parameter values and provides more reliable
estimation than LAP-P, especially when the amount of data in the training set is limited.
However, the computational cost for HMC-P is much higher than for the LAP-P. The results
also show that both LAP-P and HMC-P provide a similar estimation accuracy in the case of
large training datasets. Therefore, the LAP-P is well suited for the estimation task during
model development. The HMC-P should be then compared with the estimation obtained
using LAP-P.
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CHAPTER 5 ONLINE LEARNING

5.1 Introduction

A key role of SHM is to detect changes in the behaviour of structures, that is, anomalies. The
purpose of anomaly detection is to allow for preventive infrastructure maintenance in time.
Existing sensor technologies allow civil infrastructure to be monitored continuously over time.
To leverage this sensing capacity, there is a need for anomaly detection methodologies that are
capable of performing real-time analysis, while being robust towards false alarms. Real time
hereby means performing the data analysis as the new observations become available. The
batch learning approach presented in Chapter 4 assumed that the vector of model parameters
θt is constant over time and are learned from a fixed training dataset. This assumption is
no longer suitable for real-time anomaly detection where the underlying process in stream
data can change over time [59, 60]. Furthermore, with batch learning, when a new data point
arrives, the entire model needs to be retrained in order to estimate the new model parameters,
thus making it computationally inefficient.

This chapter presents a new method combining the anomaly detection approach presented
in Section 3.4 with the Rao-Blackwellized Particle Filter (RBPF) [121] for performing real-time
anomaly detection in BDLMs. RBPF employs the analytical Kalman equations presented
in Section 3.2 for estimating the posterior PDF of hidden state variables xt and Sequential
Importance Sampling (SIS) [122, 123] to approximate the posterior PDF of model parameters,
θt. The main contributions of this chapter are:

− adapting the RBPF method to BDLMs.

− proposing a framework architecture to perform real-time anomaly detection in BDLMs.

− validating the new framework on several real-world datasets.

This chapter is organized as follows. Section 5.2 presents the adaptation of the mathe-
matical formulation of RBPF for BDLMs. Section 5.3 presents the framework architecture
designed for BDLMs to perform real-time anomaly detection. Section 5.4 illustrates the
potential of new approach on several real datasets collected on different structures.
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5.2 Rao-Blackwellized Particle Filter

The posterior PDF for both the hidden state variables and the model parameters, is theoreti-
cally defined as

p(x1:t,θ0:t|y1:t) = p(x1:t|θ0:t,y1:t) · p(θ0:t|y1:t), (5.1)

where p(x1:t|θ0:t,y1:t) is evaluated using the filtering equations presented in Section 3.2, and
p(θ0:t|y1:k) is obtained using SIS with a set of particles. According to Bayes theorem, the
posterior PDF of model parameters can be written as follows

p(θ0:t|y1:t) ∝ p(yt|y1:t−1,θ0:t) · p(θt|θ0:t−1,y1:t−1) · p(θ0:t−1|y1:t−1)

∝ p(yt|y1:t−1,θt) · p(θt|θt−1) · p(θ0:t−1|y1:t−1),
(5.2)

where the second formula takes advantage of Markov’s assumptions for the transition prior
p(θt|θt−1), and where p(θ0:t−1|y1:t−1) is the posterior from the previous time step. Equation
5.2 is written as being proportional to the posterior because the normalization constant
is analytically intractable. The PDF of model parameters can be approximated using the
importance sampling method. If the proposal distribution is chosen following

q(θ0:t|y1:t) = q(θt|θ0:t−1,y1:t) · q(θ0:t−1|y1:t−1), (5.3)

where the previous sets of particles θ0:t−1 do not depend on future observations yt, that is,
q(θ0:t−1|y1:t−1) ≡ q(θ0:t−1|y1:t). The importance weights can then be defined following

wt = p(θ0:t|y1:t)
q(θ0:t|y1:t)

∝ p(yt|y1:t−1,θt) · p(θt|θt−1)
q(θt|θ0:t−1,y1:t)

· p(θ0:t−1|y1:t−1)
q(θ0:t−1|y1:t−1)

= p(yt|y1:t−1,θt) · p(θt|θt−1)
q(θt|θ0:t−1,y1:t)

· wt−1.

(5.4)

With the additional assumption that the transition PDF for new samples only depend on the
most recent parameters and observations, q(θt|θ0:t−1,y1:t) ≡ q(θt|θt−1,yt), Equation 5.4 is
rewritten as

wt ∝
p(yt|y1:t−1,θt) · p(θt|θt−1)

q(θt|θt−1,yt)
· wt−1. (5.5)

The choice for the proposal distribution q(θt|θt−1,yt) can be, among others, the prior sampling
or the optimal sampling [124]. The prior sampling can lead to inefficient exploration because
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it does not take into account the current observation yt. Contrarily, in the optimal sampling,
the current observation is included into the proposal distribution, yet it is commonly difficult
to sample from this proposal distribution because of its analytical intractability [125]. The
limitation can be addressed using the auxiliary sampling method [124] that resamples the
particles using their marginal likelihood. The idea behind this sampling technique consists in
preselecting the particles θt−1, that is, surviving particles that are likely to evolve into highly
plausible particles θt by considering the current observation. The proposal distribution is
defined as

q(θt|θkt−1,yt) = p(yt|y1:t−1,θ
k
t−1) · p(θt|θkt−1) · wkt−1, (5.6)

where k ∈ K = {1, 2, . . . , K} is the auxiliary index of the particle at time t− 1. Therefore, the
importance weight wkt in Equation 5.5 becomes

wkt ∝
p(yt|y1:t−1,θ

k
t )

p(yt|y1:t−1,θkt−1) .
(5.7)

Because the auxiliary sampling method only prioritizes the surviving particles, it is prone to
diversity loss in the particles over time. This issue can be tackled by adding artificial noise
to the particles in order to increase the exploration capacity [126]. Assuming that there is a
set of particles at the time t, θKt = {θ1

t ,θ
2
t , . . . ,θ

K
t }, the transition model for the particles is

defined as
θkt = θkt−1 + ut, (5.8)

where ut is assumed to be a multivariate Gaussian distribution with zero mean and covariance
matrix Dt. Assuming that the artificial noise associated with each model parameter in the
particle θkt is independent from each other, Dt becomes diagonal matrix following

Dt = diag([σ2
u,1 σ

2
u,2 . . . σ2

u,p]ᵀ︸ ︷︷ ︸
σ2

u,t

),
(5.9)

where p is defined as the number of unknown model parameters in the particle vector θkt and
σu,p corresponds to the standard deviation of the artificial noise for the pth model parameter
of θkt . σu,t, are unknown hyperparameters to be estimated from data. The main steps of the
RBPF for BDLMs are summarized in Algorithm 1.
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Algorithm 1: Rao-Blackwellized Particle Filter (RBPF) for BDLMs
1 Given θK0 ∼ p(θ0), Dt, K = {1, 2, . . . , K}, w0 = 1

K , η;

2 for t = 1 : T do
3 for k = 1 : K do
4 (∼,∼, L̃kt ,∼) = SKF(µkt−1|t−1,Σk

t−1|t−1,yt,Ak
t−1,Ck

t−1,Qk
t−1,Rk

t−1,Zk
t−1,π

k
t−1|t−1);

5 Sample indices P from K with probability proportional to Lt �wt−1;

6 θKt−1 = θPt−1, µKt−1|t−1 = µPt−1|t−1, ΣKt−1|t−1 = ΣPt−1|t−1, πKt−1|t−1 = πPt−1|t−1, L̃Kt = L̃Pt ;

7 for k = 1 : K do
8 θkt = θkt−1 + ut, ut ∼ N (0,Dt);

9 (µkt|t,Σk
t|t,Lkt ,πkt|t) = SKF(µkt−1|t−1,Σk

t−1|t−1,yt,Ak
t ,Ck

t ,Qk
t ,Rk

t ,Zk
t ,π

k
t−1|t−1);

10 Compute weight wkt = Lk
t

L̃k
t
;

11 Normalize weights wt = wt∑K
k=1 w

k
t

;

5.3 Framework Architecture

This section presents the framework architecture for BDLM’s online learning procedure.
Figure 5.1 illustrates the entire workflow where the framework architecture is separated
into three main steps: model construction, warm-up, and online estimation. The model
construction consists in pre-defining a vector of hidden state variables included in the model
for interpreting the time-series data. The warm-up is employed for approximating the initial
distribution for each model parameter. For this purpose, it can employ either the HMC
or LAP methods presented in §4.4.4. This step ensures that the algorithm does not waste
particles at places where the model parameter values are unlikely. Note that the warm-up
step is operated in a batch learning procedure (see Chapter 4) with a small training period.
The online estimation is performed using the RBPF, as described in Algorithm 1. Each
particle, k ∈ K = {1, 2, 3, . . . , K}, represents a realization of the posterior PDF of model
parameters, thus there are K Gaussian PDFs describing the hidden state variables. For an
intuitive interpretation, we employ the Gaussian mixture approximation presented in §4.4.3
for approximating the posterior predictive PDF of the hidden state variables with a single
multivariate Gaussian PDF. The mean and covariance matrix of this distribution are given
by Equation 4.30, where wkt is the normalized importance weight of the particle θkt . The
online-estimation step is recursively repeated as each new data point arrives. Note that
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Figure 5.1 Illustration of the general framework of the online learning for the the Bayesian
Dynamic Linear Models. RBPF: Rao-Blackwellized Particle Filter; MCMC: Markov Chain
Monte Carlo; LAP: Laplace Approximation; GMAP: Gaussian Mixture Approximation.

the warm-up step is optional because in some cases, there are no data available for gaining
the prior knowledge about the model parameters. Hence, the online estimation step can be
performed directly as new observations become available.

In the context of anomaly detection, the model parameters in the BDLMs are categorized
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into stationary and non-stationary model parameters. The stationary model parameters
denoted as θst , are constant over time. For these model parameters, the introduction of
artificial noise, as presented in Section 5.2, can cause a high variability in the hidden state
estimation. Therefore, the standard deviations of the artificial noise, σsu, t, need to vanish
overtime, so that

σsu, t = 1
α
· σsu, t−1, (5.10)

where α > 1 is a time-scaling factor. The non-stationary model parameters denoted as θdt ,
are time-varying quantities that allow BDLMs to adapt to the changes of the underlying
process in the data such as the occurrence of abnormal events. A key challenge is that the
model parameters θdt may struggle to adapt to the situation where the underlying process in
data goes from one regime to another. In such a case, θdt tends to be stuck to the values of a
particular regime. This limitation leads to an increase in the uncertainties during the hidden
state estimation. Hence, it can jeopardize the timing as well as the accuracy of anomaly
detection. One solution to tackle this issue is to initialize these model parameters when the
following conditions are satisfied

πt−1|t−1(abnormal) ≥ ζ

πt|t(abnormal) < ζ,
(5.11)

where πt|t(abnormal) is the probability of the abnormal state at the time t and ζ ∈ (0, 1) is a
probability threshold. In addition, the artificial noises of the stationary model parameters θst
need to be increased in order to provide a better exploitation. These artificial noises are set
to its initial values, σsu,0, when the conditions in Equation 5.11 are met.

In the online learning procedure, the standard deviations for the artificial noises, σu, 0, are
initialized based on the variance of the initial distribution for each model parameter. Each
model-parameter group is defined following

σsu,0 = γs
√
Var(θs0)

σdu,0 = γd
√
Var(θd0),

(5.12)

where γs, γd are the scaling factors for the stationary and non-stationary model parameters
and both of them are assumed to be constant over time. In practice, the value of γd is usually
greater than the one of γs. By increasing the exploration capacity of the non-stationary model
parameters, it allows the model to rapidly adapt to the changes in the observations. The
hyparameters α, γs, γd, ζ, and the number of particles K need to be tuned before data analysis.
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One solution to this issue is to employ an empirical study where different values of these
hyperparameters are tested on multiple datasets collected on several structures. Furthermore,
the number of particles K can be identified by testing different values of K on a small training
set during the warm-up step. In common cases, the posterior PDF of model parameters will
reach a stationary stage for which the difference in the posterior PDF of model parameters
becomes unnoticeable after a specific number of particles. Note that there is a trade-off
between the computation time and accuracy for the proposed method. More specifically, a
large number of particles reduces the variance of the posterior PDF, yet it requires more
computational time as well as more memory storage. A small number of particles requires
less computational resources, yet it may yield a high variability in the posterior PDF.

5.4 Applications

This section presents the application of the real-time anomaly detection methodology proposed
for BDLMs on displacement datasets that are collected on a dam located in Canada.

5.4.1 Horizontal Displacement of a Dam

This case study examines the capability to detect anomalies in real time through an application
on a displacement dataset.

Experiment Setup

This case study uses the same displacement dataset and model architecture as the Model #5
in §3.7.3. The initial values for model parameters are defined using expert judgment and
experience as well as prior data analysis so that

θ0 =

0.5︸︷︷︸
`KR

0.95︸ ︷︷ ︸
φAR

0.095︸ ︷︷ ︸
σAR

w

0.9999︸ ︷︷ ︸
Z11

10−7︸ ︷︷ ︸
σLA

w

0.95︸ ︷︷ ︸
Z22


ᵀ

. (5.13)

Note that for this case study, {`KR, φAR, σAR
w , Z

11} are defined as the stationary model parameters,
and {σLA

w , Z
22} are defined as the non-stationary model parameters. As presented in Section

5.3, the hyperparameters are α = 1.01, ζ = 0.5, γs = 0.01, γd = 0.1, and K = 60 000. The
values of α, ζ, γs, and γd are obtained using an empirical study where different values of these
hyperparameters are tested on multiple datasets. The number of particles K is obtained by
testing different values such as K = {10 000, 20 000, 30 000, 60 000 80 000, 100 000} on a small
training dataset consisting of 1024days (1004data points). The initial distribution for each
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model parameter is obtained using the Laplace approximation (LAP) with the same training
period of 1024 days.

Results

Figure 5.2 presents the probabilities of the abnormal state for the displacement data over
time. The solid line presents the median probability of the abnormal state, p̃(st = 2). The
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Figure 5.2 Probability of abnormal state for the displacement data.

shaded region presents the 68% credible interval. The new approach identifies that there was
an anomaly occurring on July 9, 2010. The detection timing for this anomaly matches the
one obtained using the batch learning procedure presented in §3.7.3. This anomaly was due
to the refection work taking place on the dam in early July. The displacement behaviour
returns to the normal state once the work is completed.

Figure 5.3 shows the estimates of the hidden state variables. The mean values µ̂t|t are
presented by the solid line and the uncertainty bounds µ̂t|t ± σ̂t|t are presented by the shaded
region. Figure 5.3a, b, and c show that there is an abrupt change in the baseline component
(xB), local trend (xLT), and local acceleration (xLA) when the anomaly occurred. Figure 5.3d
shows the periodic pattern caused by the external effect. The autoregressive component
presented in Figure 5.3e shows a stationary process. It is noted that a large variability is
shown across all hidden state variables at early stage because of the lack of information, yet
this variability vanishes over time as more data are collected. This case study shows how the
baseline behaviour can be separated in real time from the reversible external effect.

Figure 5.4 presents the evolution of the model parameters over time. The median values
θ̃t are presented by the solid line and the 68% credible interval are presented shaded region.
Figure 5.5 illustrates the kernel density estimate of the PDF for each model parameter on
June 30, 2014. Figures 5.4a, b, c, and e show that the large uncertainty in the stationary
model parameters during the initial period is due to the imperfect initial conditions. The



101

02-12 06-03 09-07 12-10 16-02−33.3

−15.2

4.2

Time [YY-MM]

x
B
,
[m
m
] µ̂t|t

µ̂t|t ± σ̂t|t

(a) baseline component

02-12 06-03 09-07 12-10 16-02−2.2

−0.4

1.4
·10−2

Time [YY-MM]

x
L
T
[m

m
/d
a
y
]

(b) local trend

02-12 06-03 09-07 12-10 16-02−8.3

0

8.3
·10−4

Time [YY-MM]

x
L
A
,
[m

m
/d
a
y
2 ]

(c) local acceleration

02-12 06-03 09-07 12-10 16-02−4.5

0.0

4.5

Time [YY-MM]

x
K
R

0
,
[m

m
]

(d) kernel pattern

02-12 06-03 09-07 12-10 16-02−1.1

0.0

1.1

Time [YY-MM]

x
A
R
,
[m

m
]

(e) autoregressive component

Figure 5.3 Hidden state estimates.
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Figure 5.4 Illustration of the estimation of model parameters using Rao-Blackwellized particle
filter.
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Figure 5.5 Kernel density estimate of the posterior PDFs for each model parameter taken at
3 am on June 30, 2014. (a) Autoregression coefficient; (b) Kernel lengthscale; (c) Autoregression
standard deviation; (d) Local acceleration standard deviation; (e) Transition probability of
the normal state; (f) Transition probability of the abnormal state.

uncertainty then reduces over time as the number of data points increases. When the anomaly
took place, there is an abrupt change across all model parameters. However, the most
significant change is found in the local acceleration standard deviation, σLA associated with
the abnormal state. When the abnormal events are absent, a large variability can be observed
in the non-stationary model parameters such as Z22 and σLA

w (see Figure 5.4d and f). This
behaviour can be explained by the heavy tailed distribution of σLA

w and the presence of a
bimodal distribution in Z11, as illustrated in Figure 5.5d and f.

5.4.2 Horizontal Displacement of a Dam with Artificial Anomalies

This case study illustrates the potential of the real-time anomaly detection methodology on a
dataset including multiple anomalies.

Experiment Setup

This case study employs the same dataset as in §4.6.1 except that two artificial anomalies
are introduced to this dataset. The first anomaly is added from January 10 to February 6,
2009 with a slope of 15% of the displacement baseline. The second one is introduced from
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July 12 to August 1, 2011 with the same slope as the previous one. Each anomaly period
(≈ 1month) consists of 60 data points. Figure 5.6 shows the superposition of the original and
artificial-anomaly dataset. The other settings such as the initial values for model parameters,
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Figure 5.6 The superposition of the original and artificial-anomaly dataset.

hyperparameters, training period for LAP, and number of particles remain identical as the
previous case study.

Results

In addition to the anomaly associated with the intervention occurring on July 9, 2010, two
other anomalies are identified on February 6, 2009 and August 6, 2011. These two anomalies
correspond to the times where the artificial anomalies were introduced in the original dataset.
Figure 5.7 presents the probability of abnormal state for the displacement dataset over time.
The median values of the abnormal state probability p̃(st = 2) are presented by the solid line.
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Figure 5.7 Probability of abnormal state for the displacement data.

The 68% credible intervals are presented by the shaded region. The probabilities of abnormal
state for the artificial anomalies p̌(st = 2) are presented by the dashed line. Because the
anomaly is introduced by gradually adding a small slope to the original data, it takes time
to create a significant change in their underlying process. This explains why the timing of
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anomaly detection provided by the model, does not match exactly with the starting dates of
the artificial anomaly. Figure 5.8 presents the estimates of hidden state variables for the entire
dataset. The solid line represents the expected values, µ̂t|t and the shaded region represents
the uncertainty bounds, µ̂t|t ± σ̂t|t. As for the previous case study, the sudden changes are
found in the baseline, local trend, and local acceleration when the anomalies occurred. The
large variability across all hidden state variables during the initial period decreases over time
as more data become available. As illustrated in Figure 5.8d, despite the presence of multiple
anomalies, the model is capable of separating the structural behaviour from the external
effect. In addition, Figure 5.8e shows that the autoregressive component follows a stationary
process.

The estimation of model parameters for this case study is presented in Figure 5.9. The
median values of the model parameters, θ̃t, and its 68% credible interval, are presented by the
solid line and shaded region. This case study shows the same behaviour as the previous case
study. More specifically, a large variability in the stationary model parameters is observed at
an early stage, and it then vanishes as more data are collected. A sudden change is identified
across the model parameters in the presence of the abnormal events. Figure 5.9 shows that
the major changes corresponding to the abnormal events are found in the local acceleration
standard deviation σLA

w . Figure 5.9f shows that when the anomalies occurred, the changes in
Z22 were not as clear as the one observed in the previous case study (see Figure 5.4f). This
can be explained by the two following reasons:

1. When the anomalies are absent, the non-stationary model parameters such as the
transition probability Z22 does not have an impact on the importance weight wt in
Equation 5.7. Therefore, the values of Z22 can be within a range between 0 to 1. This
results in a bimodal distribution in Z22 for the previous case study (see Figure 5.5f)
where the majority of particles are found close to either 0 or 1. In the presence of an
anomaly, a sudden change has been observed in the median of Z22 because the particle
values close to 0 move toward 1.

2. In this case study, most particle values are found in a range from 0.5 to 1 and the
median of Z22 is close to 1. Hence, there are no significant changes in Z22 when the
anomalies occurred.
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Figure 5.8 Illustration of the estimation of the hidden state variables.
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Figure 5.9 Estimation of model parameters using Rao-Blackwellized particle filter.
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5.4.3 Three-Dimensional Displacement of a Dam

This case study illustrates the potential of the real-time anomaly detection methodology in
the context of an application on a small dataset. For this purpose, the three displacement
datasets corresponding to the X, Y, and Z-directions (see Figure 3.10) are employed in this
case study.

Data Description

Figure 5.10 presents the displacement data in three directions X, Y, and Z. The displacement
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Figure 5.10 Illustration of the raw displacement data in three directions.

data are collected from February, 2010 to December, 2018. The number of data points for the X,
Y, and Z directions are 57, 57, and 56. The observation-error standard deviation σv = 0.3mm
was provided by the instrumentation engineers. Figure 5.11 presents a superposition of the
time-step length for all three directions. Note that the data collection frequency is extremely
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Figure 5.11 Superposition of three time-step lengths.

low during the entire recording period of 8 years. It is observed that there is a periodic
pattern and a trend in all three directions for the displacement.

Architecture for Model #9

The vector of hidden state variables for Model #9 includes a baseline (B) component, a local
trend (LT), a local acceleration (LA), and a kernel-regression component with a period of
365.24 days. The baseline component is used to model the displacement behaviour over time.
The local trend is employed to model the rate of changes in the baseline component. The local
acceleration is used to model the rate of changes in the local trend. The kernel-regression
component including 11 hidden state variables describes the periodic pattern. The vector of
hidden state variables for Model #9 defined as

xt =
[
xB xLT xLA xKR

0 xKR
1 . . . xKR

10

]ᵀ
t
. (5.14)

Note that like for Model #5 (see §3.7.3), two model classes, normal and abnormal, are built
for Model #9 in which the local acceleration of the abnormal model class is forced to be equal
to zero. The vector of unknown model parameters for Model #9 is

θt =
[
`KR σKR

w,0 σ
KR
w,1 Z

11 σLA
w Z22

]ᵀ
, (5.15)

where `KR ∈ (0,+∞) is the kernel lengthscale, σKR
w,0 ∈ (0,+∞) is the standard deviation of

the kernel pattern, σKR
w,1 ∈ (0,+∞) is the standard deviation of the hidden state variables

associated with the control point’s values, Z11 ∈ [0, 1] is the transition probability of the
normal state, σLA ∈ (0,+∞) is the local acceleration standard deviation, and Z22 ∈ [0, 1]
is the transition probability of the abnormal state. The natural logarithm transformation
function is used for the kernel lengthscale and the standard deviations; The logistic sigmoid
function is applied to the transition probabilities. The full model matrices are presented in
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Appendix A.9. The initial values of model parameters for all three directions are defined in
the original space using expert judgment and experience as well as prior data analysis such
that

X-direction θ0 = [0.5 0.27 0.027 0.9999 10−7 0.95]ᵀ

Y-direction θ0 = [0.5 0.62 0.062 0.9999 10−7 0.95]ᵀ

Z-direction θ0 = [0.5 0.41 0.041 0.9999 10−7 0.95]ᵀ ,
(5.16)

where the ordering of model parameters remains identical as in Equation 5.15. Because the
number of data points in each direction is limited, the warm-up step is not employed for
approximating the initial distribution of each model parameter in the transformed space. For
this case, the initial distribution for each model parameter is assumed to be a Gaussian

f
(
θTR

0,p

)
= N

(
θTR

0,p,
(
0.1 · θTR

0,p

)2
)
,∀p = 1, 2, . . . , 6, (5.17)

where θTR
0,p correspond to pth model parameter value of θ0 in the transformed space. The

hyperpameters remain identical as the previous case studies: α = 1.01, ζ = 0.5, γs =
0.01, γd = 0.1, and K = 60 000. Note that these initial setups are selected using the empirical
study as shown in Section 5.3.

Results

Figure 5.12 presents the probabilities of the abnormal state for the displacement data in three
directions over time. The solid line presents the median probability of the abnormal state,
p̃(st = 2). The shaded area presents its 68% credible interval. An anomaly has been identified
in all three directions in 2016. In addition, another anomaly is found in the X-direction
displacement in 2018. Here, the causes of these possible anomalies remain unknown.

Figures 5.13-5.15 show the estimates of hidden state variables for the displacement data in
three directions. The mean values, µ̂t|t and its uncertainty bounds, µ̂t|t± σ̂t|t, are presented by
the solid line and shaded region. Like the previous case studies presented in §5.4.1 and §5.4.2,
when the anomalies occurred, sudden changes in the baseline component (xB), local trend
(xLT), local acceleration (xLA) have been observed for all three directions. Figures 5.13d, 5.14d,
and 5.15d show that Model #9 is able to separate the structural behaviour from the periodic
external effect. A high variability is found at early stage across all hidden state variables for
three directions because of the lack of information. This variability then reduces over time as
more data are collected.

Figures 5.16-5.18 present the estimation of model parameters over time for three directions.
The median values, θ̃t, and its 68% credible interval, are presented by the solid line and
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Figure 5.12 Probability of the abnormal state for the displacement data in three directions.

shaded area. As for the previous case studies, a major change is found in the local acceleration
standard deviation σLA in the presence of the anomaly for all three directions, as presented in
Figures 5.16d, 5.17d, and 5.18d.
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Figure 5.13 Estimation of the hidden state variables for X-direction displacement.
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Figure 5.14 Estimation of the hidden state variables for Y-direction displacement.
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Figure 5.15 Estimation of the hidden state variables for Z-direction displacement.
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Figure 5.16 Estimation of model parameters for the X-direction using Rao-Blackwellized
particle filter.
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Figure 5.17 Estimation of model parameters for the Y-direction using Rao-Blackwellized
particle filter.
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Figure 5.18 Estimation of model parameters for the Z-direction using Rao-Blackwellized
particle filter.
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5.5 Conclusion

The new approach is capable of detecting the anomaly caused by the refection work and also
the anomalies being artificially introduced to the original dataset. The approach also shows
its ability to detect anomalies on small datasets for which data collection frequency is low
and non-uniform. The changes in the structural behaviour can influence multiple sensors as
shown in the third case study. In addition to the real-time anomaly detection, the proposed
method allows estimating the hidden state variables as well as model parameters as the data
is collected. Because the new approach leverages the parallelism of the GPU computation, the
estimation task of each time step was completed within the second range. This computational
time is negligible in comparison with the data collection frequency in which the most frequent
time-step is in the hour range.

The initial distribution of model parameters can be obtained using either the LAP approach
as shown in the first and second case studies or an empirical study like for the third case study.
For all three case studies, the period of the external effect is a known quantity. Therefore, a
small dataset should be available for carrying on the prior data analysis. Furthermore, the
hyperparameters need to be tuned before performing the anomaly-detection task. The generic
hyperparameters can be obtained using the empirical study. The observation-error standard
deviation, σv, in all three case studies is assumed to be constant over time. In practice, this
hypothesis might no longer be valid because of the presence of either the sensor drift or the
imperfect installation conditions.

Future work should investigate the possibility (i) of processing several time series simul-
taneously and (ii) of taking into account the phenomena such as the sensor drift and the
imperfect installation conditions in the current framework in order to increase the timing
accuracy of anomaly detection as well as reduce the number of false alarms.
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CHAPTER 6 CONCLUSION

6.1 Summary of Research Findings

This thesis proposes several new machine learning methods for interpreting time-series data in
the context of structural health monitoring. A brief summary of the findings for each chapter
are presented below.

Chapter 3 presented a kernel regression approach for modeling periodic external effects and
a switching-Kalman-filter-based method for detecting anomalies in the observed structural
responses. The case study has shown that the kernel regression approach was able to handle
complex non-harmonic periodic patterns such as the traffic load data collected on a bridge.
Also, it requires less computational time than the existing methods in BDLMs. For the
anomaly detection methodology, its mechanism considers the prior probability of anomalies,
the anomaly kinematic model, and the probability to transition from a normal to an abnormal
state. The advantages of this mechanism are that it increases robustness towards false
alarms and it does not require training data labeled with normal and abnormal conditions.
The application on the displacement data collected on a dam has shown that the proposed
methodology succeeded in detecting the changes in the behaviour of the displacement data
recorded on a dam.

Chapter 4 introduced Maximum Likelihood Estimate (MLE) and Bayesian approaches for
learning unknown model parameters in BDLMs. More specifically, the MLE approach employs
either batch or mini-batch gradient ascent algorithms for finding an optimal vector of model
parameters. The comparative case study has demonstrated that the mini-batch gradient
ascent algorithm outperformed the batch gradient ascent when it comes to large datasets. On
the other hand, the Bayesian approach enables the BDLMs to take into account the parameter
estimate uncertainties. For this purpose, two procedures based on Hamiltonian Monte Carlo
(HMC) and Laplace approximation (LAP) methods are proposed for approximating the
posterior PDF of model parameters. The case study carrying on a dam’s displacement data
has shown that both procedures provided a similar estimation accuracy in the case of large
training datasets. When dealing with small training datasets, the HMC-based procedure
yielded a more reliable estimation than LAP-based procedure, yet it was more computationally
demanding. Therefore, the LAP-based procedure is well suited for the estimation task during
model development. The HMC-based procedure should be then compared with the estimation
obtained using the LAP-based procedure.
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Chapter 5 proposed a general framework for real-time anomaly detection. This framework
employs the Rao-Blackwellized Particle Filter (RBPF) for estimating the hidden state variables
as well as the posterior PDF of model parameters for each time step. Also, it involves the
methodologies being proposed in the previous chapters. The results obtained from case studies
have shown that the proposed framework was capable of detecting the anomalies caused
by the refection work and also the anomalies being artificially introduced on the original
displacement dataset. Furthermore, this framework has illustrated its capability to perform
the real-time anomaly detection on small datasets for which data collection frequency is
extremely low and non-uniform. Because the new framework leverages the parallelism of the
GPU computation, the estimation task of each time step was completed within the second
range. This computational time is negligible in comparison with the data collection frequency,
and thus allows for the deployment on a large number of structures for real-time data analysis.

The conclusion we can draw from the findings summarized above is that the proposed
methodologies are capable of (i) isolating the structural behaviour from raw data including
the external effects caused by environmental conditions as well as observation errors, (ii)
automatically finding optimal model parameters as well as approximating, online and offline,
the posterior probability density function of model parameters, and (iii) detecting anomalies
in real time without human supervision and without requiring labeled training data. The
applications of these methodologies on different structural responses from a dam and a bridge
show their ability to be easily transferable from one structure to another and from one
measurement type to another. Putting this all together, the proposed methodologies offer a
promising path toward the large-scale deployment of SHM systems for monitoring health and
conditions of a population of structures in real time.

6.2 Limitations

This section discusses the limitation of the methodologies proposed in this dissertation.
Although the potential of the proposed methodologies have been illustrated on several
applications, some aspects need to be addressed in order to further increase their robustness
and applicability.

6.2.1 Criterion for Detecting Anomalies

For the anomaly detection methodology proposed in this dissertation, the occurrence of an
anomaly currently relies on the probability of abnormal state. If the probability of abnormal
state is above a certain threshold, an anomaly is detected. With a criterion, a high threshold
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value may miss anomalies, while a low threshold value may increase false alarms. Therefore,
the abnormal probability alone is not a sufficient criterion for defining anomalies. One possible
solution could be to rely on the probability of abnormal state as well as the structural
behaviour including the baseline component, local trend, and local acceleration in identifying
anomalies. This could help separate legitimate and illegitimate alarms.

6.2.2 Non-Structural Anomaly

In the context of SHM, non-structural anomalies can be sensor drifts and sensor faults caused
by the environmental conditions, installation conditions, and physical changes in the sensors.
As a result, non-structural anomalies may lead to inaccurate measurement recordings of the
structural responses. The framework proposed for the anomaly detection does not take into
account these phenomena. Therefore, it makes the anomaly detection task more challenging
when interpreting time series from a structure that contains non-structural anomalies. The
reason for this challenge is that the proposed framework cannot distinguish the structural
anomalies from the non-structural ones, and as a consequence, it typically increases the rate
of false alarm.

6.2.3 Initializing Model Parameters and Hyperparameter Tuning

The performance of the proposed methodologies depends on the initialization of model
parameters and the hyperparameter tuning. For instance, good guesses for the value of initial
parameter such as the pattern period (see §3.6.2) might be needed to ensure an efficient
optimization. The initialization task is currently done using the prior data analysis such as
data visualization and statistical data analysis. Therefore, a small dataset is required for
carrying out this analysis. On the other hand, the hyperparameters are selected using an
empirical study where the different values of these hyperparameter are tested on multiple
datasets. However, these values may no longer be valid for several datasets. For addressing
this challenge, it is required to develop a generic procedure for tuning hyperparameters that
can adapt to each individual dataset.

6.3 Future Research

In addition to limitations mentioned in §6.2 to be addressed, this section lays out some of
directions for future research.
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6.3.1 Topology Learning

Topology learning is a technique that identifies relationships between different sensors [127]. In
the context of SHM, a monitoring system for a structure commonly comes with multiple sensors
measuring different structural responses, where some structural responses may be spatially
related to each other. These dependencies induce spatial patterns into observed structural
responses. For instance, multiple sensors measuring displacements are deployed across a dam
in order to monitor its deformation. Therefore, these displacement sensors are likely to be
correlated [128]. An approach capable of finding spatial patterns can potentially improve the
performance for the anomaly detection and forecasting. To extract spatial patterns, a possible
framework architecture we could consider is to couple the BDLMs with the convolutional
LSTM (ConvLSTM) [129]. In the field of transportation, several applications [130,131] using
the ConvLSTM for modeling spatial patterns in traffic networks have shown promising results.

6.3.2 Anomaly Detection and Information Redundancy

False alarms are the main factor limiting the economic viability of SHM applications. For
instance, the methodology proposed in Chapter 5 can only be used to detect anomalies for an
individual dataset. As mentioned in §6.3.1, the structures being monitored are commonly
equipped with multiple sensors, and some of them may be correlated. As a result, there is a
high likelihood that anomalies may occur on several correlated datasets at the same time.
For example, the case study presented in §5.4.3 has shown that the anomaly affected all three
displacement datasets. Hence, a methodology that allows using the information redundancy
contained in multiple datasets has the potential to reduce false alarms.

Figure 6.1 presents a framework describing the possible steps for Multiple-Datasets Analysis
(MDA). In this example, we assume that the states are defined for two levels; a dataset-level
si = {normal, abnormal},∀i = 1 : D, and a system-level ssystem = {normal, abnormal}. The
abnormal state is presented by a warning sign. For each dataset Di, p(si|Di) is estimated
independently using the online learning framework (OLF) presented in Section 5.3. These
probabilities will then be combined in a second conditional probability model that will estimate
p(ssystem|Di). The main challenge associated with this framework will be to develop this
conditional probability model. The specificities of this model remain to be further investigated.

6.3.3 Non-Periodic Pattern Modeling

In practice, time-series data can exhibit both periodic and non-periodic patterns. For instance,
the structural responses such as the flow rate and pressure data recorded on a dam mostly
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Structural Health Monitoring.

display non-periodic patterns. Figure 6.2 illustrates the raw data of both the flow rate
and pressure that exhibit non-periodic patterns. The current form of BDLMs is unable
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Figure 6.2 Illustration of non-periodic patterns. (a) Flow-rate data; (b) Pressure data.

to effectively model non-periodic patterns. More speciffically, non-periodic patterns are
commonly considered as the model errors captured by the autoregressive component, leading
to a poor predictive capacity. For this reason, the current BDLMs need to be extended to deal
with non-periodic patterns. One potential solution to this issue could be to combine BDLMs
with Long Short Term Memory (LSTM) [132] which specializes in modeling non-periodic
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pattern in time series.
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APPENDIX A MODEL MATRICES

This appendix presents the mathematical formulations of the transition matrix (At), the
observation matrix (Ct), the observation error covariance matrix (Rt), and the model error
covariance matrix (Qt) for the models being used in this dissertation. Let us introduce the
notation[

k̃KR
t

]
1×n

= [k̃KR
1 k̃KR

2 . . . k̃KR
n ]t normalized kernel value vector

In =


1 0 0 · · · 0
0 1 0 · · · 0
... ... ... . . . ...
0 0 0 · · · 1

 n-by-n identity matrix

0n×m =


0 0 0 · · · 0
0 0 0 · · · 0
... ... ... . . . ...
0 0 0 · · · 0

 n-by-m zero matrix

∆t = timestampt − timestampt−1 time-step length.

(A.1)

A.1 Model #1

At = block diag
 1 ∆t

0 1

 ,
 0

[
k̃KR
t

]
1×6

01×6 I6

 , φAR


Ct = [1 0 1 01×6 1]

Rt =
[
(σv)2

]
Qt = block diag

(
02×2,06×6, (σAR

w )2)
.

(A.2)
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A.2 Model #2

At = block diag
 1 ∆t

0 1

 , 1, φAR


Ct = [1 0 h(t,D) 1]

Rt =
[
(σv)2

]
Qt = block diag

(
02×2, 0, (σAR)2)

(A.3)

A.3 Model #3

At = block diag
 1 ∆t

0 1

 ,
 cosωP1 sinωP1

− sinωP1 cosωP1

 ,
 cosωP2 sinωP2

− sinωP2 cosωP2

 , φAR


Ct = [1 0 1 0 1 0 1]

Rt =
[
(σv)2

]
Qt = block diag

(
02×2,02×2,02×2, (σAR)2)

,

(A.4)
where ω is the angular frequency with the periods of P1 = 365.24 days and P2 = 182.62 days.

A.4 Model #4

At = block diag
1,

 0
[
k̃KR
t

]
1×100

0100×1 I100

 , φAR


Ct = [1 1 01×101 1]

Rt =
[
(σv)2

]

Qt = block diag

(σB
w)2

,


(
σKR
w,0

)2
01×100

0100×1
(
σKR
w,1

)2
· I100

 , (σAR
w )2

 .

(A.5)
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A.5 Model #5

A.5.1 Normal model class

A1
t = block diag




1 ∆t 0

0 1 0

0 0 0

 ,
 0

[
k̃KR
t

]
1×10

010×1 I10

 , φAR


C1
t = [1 0 0 01×11 1]

R1
t =

[
(σv)2

]
Q1(1)
t = block diag

(
03×3,011×11, (σAR)2)

Q2(1)
t = block diag

(
03×3,011×11, (σAR)2)

.

(A.6)

A.5.2 Abnormal model class

A2
t = block diag




1 ∆t ∆t2

2

0 1 ∆t

0 0 1

 ,
 0

[
k̃KR
t

]
1×10

010×1 I10

 , φAR


C1
t = [1 0 0 01×11 1]

R2
t =

[
(σv)2

]
Q1(2)
t = block diag

(
03×3,011×11, (σAR)2)

Q2(2)
t = block diag

(σLA)2 ·



∆t2
20

∆t4
8

∆t3
6

∆t4
8

∆t3
3

∆t2
2

∆t3
6

∆t2
2 ∆t

 ,011×11, (σAR)2

 .

(A.7)
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A.6 Model #6

At = block diag
1, φAR,D, 1,

 cosωP1 sinωP1

− sinωP1 cosωP1

 ,
 cosωP2 sinωP2

− sinωP2 cosωP2

 , φAR,T



Ct =
 1 1 0 βR

1 0 βR
2 0 βR

3

0 0 1 1 0 1 0 1


Rt =

[
(σv)2

]
Qt = block diag

(
0, (σAR,D)2

, 0,02×2,02×2, (σAR,T)2)
,

(A.8)

where ω is the angular frequency with the periods of P1 = 1 day and P2 = 365.24 days.

A.7 Model #7

At = block diag
1,

 cosωP1 sinωP1

− sinωP1 cosωP1

 , φAR


Ct = [1 1 0 1]

Rt =
[
(σv)2

]
Qt = block diag

(
1,02×2, (σAR)2)

,

(A.9)

where ω is the angular frequency with the periods of P1 = 365.24 days.

A.8 Model #8

At = block diag
 1 ∆t

0 1

 ,
 cosωP1 sinωP1

− sinωP1 cosωP1

 , φAR


Ct = [1 0 1 0 1]

Rt =
[
(σv)2

]
Qt = block diag

(
02×2,02×2, (σAR)2)

,

(A.10)

where ω is the angular frequency with the periods of P1 = 365.24 days.
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A.9 Model #9

A.9.1 Normal model class

A1
t = block diag




1 ∆t 0

0 1 0

0 0 0

 ,
 0

[
k̃KR
t

]
1×10

010×1 I10




C1
t = [1 0 0 01×11]

R1
t =

[
(σv)2

]
Q1(1)
t = block diag (03×3,011×11)

Q2(1)
t = block diag (03×3,011×11) .

(A.11)

A.9.2 Abnormal model class

A2
t = block diag




1 ∆t ∆t2

2

0 1 ∆t

0 0 1

 ,
 0

[
k̃KR
t

]
1×10

010×1 I10




C1
t = [1 0 0 01×11]

R2
t =

[
(σv)2

]
Q1(2)
t = block diag (03×3,011×11)

Q2(2)
t = block diag

(σLA)2 ·



∆t2
20

∆t4
8

∆t3
6

∆t4
8

∆t3
3

∆t2
2

∆t3
6

∆t2
2 ∆t

 ,011×11

 .

(A.12)
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APPENDIX B OPTIMIZATION ALGORITHMS FOR BDLMS

This appendix presents the implementation of the algorithms for optimizing the model
parameters in BDLMs. Let us introduction the notation

sum sum of array elements
cumsum cumulative sum operation of a vector
rand uniformly distributed random numbers
find find indices and values of nonzero elements
min minimum elements of an array
all determine if all array elements are nonzero
round round to nearest integer
repmat repeat copies of array
diag get diagonal elements of matrix

(B.1)

B.1 Evaluation of First and Second Derivatives

This section presents the algorithm used for evaluating the first and second derivatives of
the function F with respect to the pth element of a vector of model parameters θ. These
derivatives are evaluated numerically using the central differentiation method.

Algorithm 2: Evaluation of gradient and Hessian
1 function evalGradientHessian(F ,θ,y1:t, δθ, p)
2 θ+(p) = θ(p) + δθ; θ−(p) = θ(p)− δθ;

3 gp = F(θ+,y1:t)−F(θ−,y1:t)
2δθ

; hp = F(θ+,y1:t)−2F(θ,y1:t)+F(θ−,y1:t)
(δθ)2

B.2 Model parameter update

This section presents the algorithm including five optimizers for updating the model parame-
ters.
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Algorithm 3: Model parameter update
1 function parameterUpdate(gp, hp,θn−1, rn−1,νn−1, sn−1, h̄n−1, ε, β, β1, β2, η, p, optimizer)

2 if optimizer = NR then
3 θn(p) = θn−1(p) + (hp)−1gp;
4 else if optimizer = MMT then
5 θn(p) = θn−1(p) + βrn−1 + ηgp;
6 else if optimizer = RMSprop then
7 νn(p) = β1ν

n−1(p) + (1− β1)(gp)2;

8 θn(p) = θn−1(p) + η
(√
νn(p) + ε

)−1
gp;

9 else if optimizer = ADAM then
10 νn(p) = β1ν

n−1(p) + (1− β1)(gp)2;
11 sn(p) = β2sn−1(p) + (1− β2)gp;
12 ν̂n(p) = νn

1−(β1)n ;
13 ŝn(p) = sn

1−(β2)n ;

14 θn(p) = θn−1(p) + ηŝn(p)
(√
ν̂n(p) + ε

)−1
;

15 else if optimizer = AMMT then
16 sn(p) = βsn−1(p) + (1− β)gp;
17 h̄n(p) = βh̄n−1(p) + (1− β)hp;
18 θn(p) = θn−1(p) + (h̄n(p))−1sn(p);

B.3 Objective Function

This section presents the algorithm used for evaluating the log-likelihood function.

Algorithm 4: Objective function
1 function objectiveFun(F ,θ,y, Ttr, T)
2 Ltr = F(θ,y1:Ttr);
3 if Ttr < T then
4 Lv = F(θ,yTtr+1:T);
5 else
6 Lv = NaN ;
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B.4 Index Selection

The section presents the algorithm for selecting the model parameter to be updated for the
next epoch.

Algorithm 5: Selection of the index for the next epoch
1 function getIndex(d)
2 rs = rand; pd = cumsum(d)/sum(d); pr = pd − rs; pr(pr < 0) = +∞;
3 p = find(pr == min(pr), 1, ‘first’)

B.5 Convergence Check

This section presents the stopping criteria for the batch gradient ascent (BGA) and mini-batch
gradient ascent (MGA) algorithms. For this purpose, Convergence check 1 is used for the
BGA algorithm and Convergence check 2 is employed for the MGA algorithm.

Algorithm 6: Convergence check 1
1 function convergenceCheck_1(Ln, Ln−1, c, n, NmaxEpoch, tol, p)
2 cond1 = Ln > Ln−1&

∣∣∣Ln−Ln−1

Ln−1

∣∣∣ < tol;
3 if cond1 or n = NmaxEpoch then
4 c(p) = 1;
5 converged = all(c);
6 else
7 c(p) = 0;

Algorithm 7: Convergence check 2
1 function convergenceCheck_2(Lnv , Ln−1

v , n, NmaxEpoch, tol)
2 if Lnv < tol · Ln−1

v or n = NmaxEpoch then
3 converged = 1;
4 else
5 converged = 0;

B.6 Batch Gradient Ascent

This section presents the details of the batch gradient ascent algorithm implemented for
BDLMs.
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Algorithm 8: Batch Gradient Ascent (BGA)
1 function BGA(F ,θ0,y1:T, δθ, NmaxEpoch, ε, β, β1, β2, tol, optimizer)
2 n = 0; L0 = F(θ0); Ttr = T;
3 while converged do
4 n = n+ 1;
5 Find p = getIndex (d);
6 Compute gp, hp = evalGradientHessian (F ,θn−1,y1:Tt , δθ, p);
7 θn = parameterUpdate(gp, hp,θn−1, rn−1,νn−1, sn−1, h̄n−1, ε, β, β1, β2, η, p, optimizer);
8 Lntr = objectiveFun(F ,θn,y1:T, Ttr, T);
9 if Lntr > Ln−1

tr then
10 d(i) = Lntr − Ln−1

tr ;
11 else
12 θn = θn−1; Lntr = Ln−1

tr ;

13 converged, c = convergenceCheck_1(Lntr, Ln−1
tr , c, n, NmaxEpoch, tol, i);

B.7 Mini-Batch Gradient Ascent

This section presents the details of the mini-batch gradient ascent algorithm implemented for
BDLMs.
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Algorithm 9: Mini-Batch Gradient Ascent (MGA)
1 function MGA(θ0,y1:T,F , δθ, NmaxEpoch, ε, β, β1, β2, τ, tol, λ, optimizer)
2 n = 0; L0 = F(θ0,y1:T); NmaxM = round(T/lMB); p = length(θ0);

3 Mθ = repmat(θ0, [1, p]); Ttr = round(τT);
4 while converged do
5 n = n+ 1; m = 0; θm−1 = θn−1;
6 while m < NmaxM do
7 m = m+ 1;
8 Shuffle ts ∈ [1, T− lMB];
9 for p = 1 : p do

10 Compute gp, hp = evalGradientHessian (F ,θm−1,yts:ts+lMB , δθ, p);
11 Mθ(p, p) = parameterUpdate(gp, hp,θn−1, rn−1,νn−1, sn−1, h̄n−1, ε, β, β1, β2, η, p, optimizer);

12 Mθ = [Mθ, diag(Mθ)];
13 for p = 1 : p + 1 do
14 ttr = round(τ lMB);
15 Lm

v (p) = objectiveFun(F ,Mθ(:, p),yts:ts+lMB , ttr, ts + lMB);

16 Find index pmax corresponding to the maximal value of Lm
tr ;

17 θm = Mθ(:, pmax);

18 Lntr, L
n
v = objectiveFun(F ,θm,y1:T, Ttr, T);

19 if Lntr > λLn−1
tr then

20 θn = θm;
21 else
22 θn = θn−1; Lnv = Ln−1

v ;

23 converged = convergenceCheck_2 (Lnv , Ln−1
v , n, NmaxEpoch, tol);
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APPENDIX C MEASURE OF FORECAST ACCURACY

The mathematical formulations for the Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), and Log Predictive Density (LPD) are written as following

MAE = 1
T

T∑
t=1
|µyt − yt|

RMSE =

√√√√√√
T∑
t=1

(µyt − yt)
2

T
,

LPD =
T∑
t=1

lnN (yt;µyt , σ
2
yt

+ σ2
v),

(C.1)

where µyt is the forecast value, yt is the observation at time t, σŷt is the model-prediction-error
standard deviation, and σv is the observation error standard deviation.
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