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Abstract

Visual inspections is a common approach for the network-scale monitoring of bridges. One of the
main challenges when interpreting visual inspections is the observations being subjective and thus
the observation uncertainty varies among different inspectors. In addition, observations uncertainties
can be dependent on the structural element condition. These two factors introduce difficulties
in differentiating between measurement errors and legitimate changes in a structure’s condition.
This study proposes a state-space model suited for the network-scale analyses of transportation
infrastructure. The formulation of the proposed framework enables quantifying the uncertainty
associated with each inspector. In addition, the proposed model accounts for the uncertainty
of visual inspections based on the structure condition as well as the uncertainty specific to each
inspector. The predictive capacity and robustness of the proposed model is verified with synthetic
inspection data, where the true deterioration state is known. Following the verification step, the
proposed model is validated with real data taken from a visual inspections database.

Keywords: Visual Inspections, Inspector Uncertainty, Bridge Network, State-Space Models, Structural
Health Monitoring.

1 Introduction

The aging of transportation infrastructure has increased the demand for data-driven asset management.
Monitoring bridges through visual inspections is a common practice among many infrastructures
management agencies [24, 34, 23, 9]. The popularity of visual inspections can be attributed to
the advantage of providing direct information about the health of structures. These information
are based on a broad evaluation which does not target a specific type of damage or a structural
component [1]. Although visual inspections is a common monitoring approach, along with many
advantages, it suffers from shortages that limit its efficiency. Visual inspections are performed by
different individuals over time, therefore, it is common to have inconsistencies in the recorded data
[1, 35, 26, 5]. These inconsistencies introduce difficulties in differentiating between measurement errors
and legitimate changes in a structure’s condition. Therefore, it becomes challenging to accurately
model the deterioration behaviour.
Many studies have adopted discrete Markov models (DMM) for modeling the deterioration behaviour
based on visual inspections [34, 17, 18, 15, 11, 13, 36, 40]. While DMM-based models are easy to
implement, relying on this type of models is subject to inherent limitations that affect the deterioration
model’s overall performance. One of the common limitations in existing deterioration models is
omitting the inspector uncertainty from the model. Several studies have described the inspector
uncertainty as one of the main sources of variability in visual inspection data [1, 24, 4]. Current DMM
models have accommodated the epistemic uncertainty and the aleatory uncertainty in the inspection
data [40]; However, the inspectors uncertainty is typically overlooked. Theoretically, the inspector
uncertainty can be estimated in a Hidden Markov Model (HMM) [29] with an observation matrix for
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each inspector. However, in practice, given the large number of inspectors, estimating an observation
matrix for each inspector is seldom feasible. This is because the amount of data required for the model
parameters estimation is unattainably large, in addition to being computationally expensive. Another
limitation in the DMM models is attributed to the discretization aspect. Relying on discrete states
in representing a naturally continuous physical process can introduce approximation errors. These
approximation errors can result in additional flaws in forecasting the deterioration process [7]. In
addition, the speed of deterioration over time can not be directly quantified, as quantifying the speed
requires representing the deterioration by a continuous process. The importance of quantifying the
speed of deterioration arise from the prospect of enabling further analysis such as modeling the effect
of interventions. Further factors that add up to the limitations in Markov models are the stationarity
of the transition probabilities, the duration independence and the interpretability which are detailed
in the work of Zambon et al. [38]. Recent studies have addressed the stationarity and discretization
issues by using a semi-Markov process model [25, 27, 39], however, this type of Markov models may
require having an analytical deterioration model to enhance its performance [38].
Another perspective on modeling the deterioration behaviour in infrastructures is by employing
regression models in analyzing time series data. Various regression techniques are applied to structural
health monitoring problems [10, 8]. However, within the confines of visual inspections data, the use
of regression models is found to be limited in the literature [37, 14, 20]. This is due to some of
the characteristics in the visual inspection data. For example, in analyses on short time series, it is
challenging for a regression model to capture the temporal dependence in the time series and provide
reliable predictions [22, 12]. In addition, the processes of training and validating a regression model
are typically offline. Thus, at any point in time, if a new data becomes available, it is required to
repeat the training and the validation of the deterioration model. Other factors that can impact the
performance of regression models are the imbalanced representation of the system response and the
quality of the regression covariates [21]. These factors may impose additional challenges when working
with regression models.
This study propose a new method that is based on state-space models and that is suited for network-
scale analyses of transportation infrastructures. The core objective of this model is to forecast the
deterioration of different structural elements over time, along with quantifying the speed of deterioration.
In the proposed framework, the uncertainty associated with each inspector is quantified based on
the inspection data from the bridges network. In addition, the inspection uncertainty is considered
dependent on the structural element deterioration state as well as the inspector’s uncertainty. The
outcome of the study is a general data analysis framework that will help monitoring and maintaining
existing infrastructure by enabling tracking the performance of structural elements, forecasting the
deterioration and assessing the deterioration rate. The prediction capacity of the model is verified with
synthetic data and validated with real data acquired from a Canadian bridge network.

2 Methodology

This section describes the proposed framework for modeling the deterioration behaviour and quantifying
visual inspections uncertainty.

2.1 Context & Notations

The hierarchy of visual inspection data can be subdivided into three levels: the network level, the
bridge level and the element level. The network level defines the transportation network regional
properties (i.e. inspection code, country, . . . , etc.). Following the network level, is the bridge level
defined by the set of bridges B = {b1, b2, . . . , bB}. The last level is the element level defined by the
set of structural elements E = {ej1, ej2, . . . , ejEj} ⊂ B. The deterioration information collected through
inspections are added to the hierarchy at the element level. These information include the inspection
time t, the engineer Ii from the group of inspectors I = {I1, I2, . . . , II} responsible for evaluating the
bridges in B and the condition of the structural element ỹ ∈ [l, u]. The domain [l, u] represent the
range of values in which an inspector can assign to a structural element, with u representing the best
health condition and l is the worst health condition. The symbol (∼) in ỹ is utilized to differentiate
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between observations in the bounded space [l, u] and unbounded space R which is further detailed in
Section 2.3.2.

2.2 State-Space Model

State-space models (SSM) are well suited for time series data and allow estimating the hidden states of
a system from imperfect observations. The term hidden states refers to the unobservable states of the
system. A state-space model is composed of two models: an observation model and a transition model.
The formulas describing each model are,

observation model︷ ︸︸ ︷
yt = Cxt + vt, vt : V ∼ N (v; 0,Rt)︸ ︷︷ ︸

observation errors

(1)

transition model︷ ︸︸ ︷
xt = Axt−1 +wt, wt : W ∼ N (w; 0,Qt)︸ ︷︷ ︸

process errors

, (2)

where yt represents the observations, C is the observation matrix, xt is the state vector at time t:
xt : X ∼ N (x,µt,Σt), A is the state transition matrix, vt, wt are the observation and process errors
and Rt, Qt represent respectively the observations and transition error covariance matrices. Different
algorithms for estimating hidden states exist in the literature for different types of problems [6, 19, 16].
In this study, the estimation of the hidden states is done through the Kalman filter (KF) [19] expressed
in the short form as,

(µt|t,Σt|t,Lt) = Kalman filter(µt−1|t−1,Σt−1|t−1,yt,At,Qt,Ct,Rt), (3)

where Lt represent the log-likelihood for observation yt, µt|t ≡ E[Xt|y1:t] the posterior expected value
and Σt|t ≡ cov[Xt|y1:t] the posterior covariance at time t respectively, given observations y1:t. In
addition to KF, the Kalman smoother (KS) [30] is utilized to propagate the knowledge acquired from
later observations onto previous hidden states.
In some applications, it is required to constrain the state estimates of the state-space ?models. This
is to prevent the model from providing or relying on state estimates that are incompatible with the
physics of the problem. Different approaches are described in the literature for imposing constraints in
the KF framework [32, 33]. In this study, the PDF truncation method [33] is utilized for handling the
deterioration model constraints. The PDF truncation method relies on the concept of truncating the
PDF of the states at the constraint bounds. Thereafter, the truncated area within the feasible bounds
is approximated by a Normal PDF representing the constrained state estimate.

2.3 Quantifying Visual Inspections Uncertainty

This section presents the proposed framework for quantifying the uncertainty associated with visual
inspection data.

2.3.1 Inspector-Dependent Uncertainty

Visual inspections are performed by different individuals Ii ∈ I = {I1, I2, . . . , II} over time, therefore,
it is common to observe variability in the recorded data [31, 4, 2]. This variability is mainly attributed
to the subjective nature of the evaluation. The variability in the observations is commonly quantified
in state-space models through estimating a single standard deviation parameter σV common for all
observations such that, for any structural element ejk in bridge bj , the observation error vjt,k : V ∼
N (v; 0, σ2

V ). Here, in order to account for the inspectors uncertainty, each inspector Ii is assigned
a standard deviation parameter σV (Ii). The standard deviations σV (Ii) are considered as model
parameters to be estimated from the data as detailed in Section 2.5.1. Such formulation allows
characterizing inconsistencies that may exist in a sequence of observations obtained from different
inspectors.
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2.3.2 State-Dependant Uncertainty

In addition to considering the uncertainty σV (Ii) as a function of the inspector, it is required to
take into account that inspection uncertainty can also be dependant on the structural element’s
condition [4]. For example, if the structural element ejk ⊂ B is in a perfect condition (x̃jk = u),
then an inspector Ii is less likely to misjudge its condition. Similarly for structural elements with
a poor condition (x̃jk = l). On the other hand, for structural elements with a partial damage (e.g.

x̃jk = l+u
2 ), the prospect of misjudging the structural element condition becomes higher. In order

to accommodate the aforementioned uncertainty characteristics, non-linear space transformation is
applied on the data. Space transformation is done by using a transformation function that maps each
point from the original space to a point in the transformed space (i.e. g : [l, u] → R). Applying a
proper transformation in this context allows the observation and transition uncertainty to become a
function of the structural element’s deterioration state x̃. In addition, space transformation can enable
constraining the deterioration state estimate x̃ within the feasible interval of the deterioration condition
[l, u]. To attain both of the aforementioned properties, a step function with special characteristics
is proposed. These characteristics are: a linear middle span with 1 : 1 slope ratio (i.e. dx

dx̃ = 1) and
non-linear ends, and for which the first derivative is known. A transformation function that fulfill the
desired characteristics, along with its inverse, is described by,

x = g(x̃) =


[

1
Γ(α)

∫ x̃
0 t

α−1e−tdt
]α
, u+l

2 < x̃ ≤ u,
x̃, x̃ = u+l

2 ,

−
[

1
Γ(α)

∫ x̃
0 t

α−1e−tdt
]α
, l ≤ x̃ < u+l

2 ,

x̃ = g−1(x) =


1

Γ(α)

∫ x 1
α

0 tα−1e−tdt, x > u+l
2 ,

x, x = u+l
2 ,

− 1
Γ(α)

∫ x 1
α

0 tα−1e−tdt, x < u+l
2 .

(4)
The function g(x̃) maps a deterioration state x̃ ∈ [l, u], labelled as the original space, to x ∈ [−∞,∞]
labelled as the transformed space. From Equation 4, the parameter α is given by: α = 2−n, where n is a
positive integer n ∈ Z+ . The role of the parameter n is to control the curvature at the transformation
function ends. Figure 1 illustrates the transformation function g(x̃) with different n values. For n = 1,
the transformation function has a low curvature. As the parameter n value increases, the curvature
becomes higher. However, for all n, the slope ratio remains fixed at 1 : 1 for the middle span. Moreover,
it is noted that for n ≥ 4, the change in the shape of the transformation function is insignificant in
which n = 5 is roughly equivalent to a linear transformation. Therefore, the possible values for the
parameter n can be limited to n ∈ {1, 2, 3, 4, 5}. Identifying the parameter n that best suit the problem
context is done through the parameter estimation framework described in section 2.5.1.
In order to demonstrate the role of the transformation function, Figure 2 presents two examples for the
application of space transformation using the function g−1(x) in Equation 4 on a Normal PDF defined
in x ∈ [−∞,∞]. The first example is demonstrated with the dashed-line PDFs in Figure 2a and 2b.
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Figure 1: Transformation function g(.) with different n values.

This example illustrates how the probability content is adjusted when the expected value of the state
in the unbounded space (x ∈ [−∞,∞]) has a value near the lower bound l = 25 of the bounded space
(x̃ ∈ [25, 100]). On the other hand, the second example demonstrated with the continuous-line PDFs in
Figure 2a and 2b, shows that when the expected value of the state is closer to the middle span, the PDF
in the bounded space reflects subtle differences from the PDF in the undounded space. In summary, the
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Figure 2: Examples of state transformation with the proposed transformation function.

purpose of introducing the transformation function g(.) is to enable the inspections uncertainty to be
dependent on the deterioration state of the structural element and restrict the estimated deterioration
state within the feasible deterioration condition bounds [l, u].

2.4 Deterioration Model Constraints

The uncertainty and insufficiency of the inspection data for each bridge may result in unrealistic trends
in the time series data of the structural elements. For example, a set of observations may wrongfully
indicate that an element’s condition is improving over time without interventions being made on
the structure. In order to prevent such a problem, constraints are applied for each time step. The
constraint ensures that the deterioration condition between any consecutive time steps t and t + 1
is not improving. This is achieved by constraining the speed to be negative through the following
criterion: µ̇+ 2σẋ ≤ 0, with µ̇ and σẋ are respectively the expected value and the standard deviation of
the speed ẋ. The PDF truncation method [33] is employed if the aforementioned constraint is violated
in the proposed model.

2.5 Deterioration Model

The proposed framework for modeling the deterioration process in structural elements is based on
state-space models. The goal of this framework is to model the deterioration behaviour with a kinematic
model [3], that includes the element condition x, degradation speed ẋ and acceleration ẍ as defined by,xtẋt

ẍt


︸ ︷︷ ︸
xt

=

 1 ∆t ∆t2

2
0 1 ∆t
0 0 1


︸ ︷︷ ︸

A

·

xt−1

ẋt−1

ẍt−1


︸ ︷︷ ︸
xt−1

+

wtẇt
ẅt


︸ ︷︷ ︸
wt

, (5)

where xt and xt−1 are the state vector at time t and t − 1, A describes the model kinematics for
transitioning from xt−1 to xt and wt is the model-error vector. The kinematic model in Equation 5
is employed within the proposed framework to characterize the degradation behaviour in bridges B.
Therefore, for each structural element ejk ∈ E ⊂ B, the transition model that describes the deterioration
process from time t− 1 to time t is,

xjt,k = Axjt−1,k +wt, (6)

where xjt,k is the state vector at time t consisting of the condition xjt,k, the speed of degradation ẋjt,k and

the acceleration ẍjt,k. The expected value of each component in the state vector xjt,k is represented by

µjt,k for the condition, µ̇jt,k for the speed and µ̈jt,k for the acceleration. The matrix A in the transition

5



Hamida, Z. and Goulet, J-A. (Preprint 2020). Modeling Infrastructure Degradation from Visual
Inspections Using Network-Scale State-Space Models. Structural Control and Health Monitoring.

model represents the transition matrix and wt : W ∼ N (w; 0,Qt) represents the model-error vector
with the model error covariance [3] Qt defined by,

Qt = σ2
W ×


dt5

20
dt4

8
dt3

6

dt4

8
dt3

3
dt2

2

dt3

6
dt2

2 dt

 .
The observation model for this SSM is described by,

yjt,k = Cxjt,k + vjt,k, (7)

where yjt,k is the observation in the transformed space, C is the observation matrix defined byC = [1 0 0]

and vjt,k : V ∼ N (v; 0, σ2
V (Ii)) is the observation error with σV (Ii) being the standard deviation of the

error associated with the observations of an inspector Ii ∈ I. Figure 3 illustrates the details and the
steps of the proposed degradation model for predicting and forecasting the deterioration behaviour of
a single structural element ejk from time t up to time T . In this context, time T represents the time
step associated with the last inspection point.

Start

bj ∈ B

ejk ∈ bj

ỹjt,k

yjt,k = g(ỹjt,k)

µjt|T,k,Σ
j
t|T,k

Kalman smootherKalman filter

Log. Likelihood

µ̇+ 2σẋ > 0

Yes

PDF Truncation

µ̃jt|T,k, Σ̃
j
t|T,k

End

Figure 3: Structural degradation model for predicting and forecasting the deterioration state of
structural element ejk from time t to time T .

The framework starts with the observation ỹjt,k ∈ [l, u] representing the condition of structural element

ejk ∈ E ⊂ B. The observation ỹjt,k is passed in the transformation function g(.) presented in Equation 4 to

obtain the transformed state observation yjt,k ∈ R. Following the transformation step, the observations
are ready for the time series analysis through the Kalman filter and smoother. For any time series data
yjt,k, the Kalman filter starts at time t = 0 with an initial estimate for the state expected value vector

µj0,k =
[
µj0,k µ̇

j
0,k µ̈

j
0,k

]ᵀ
and the covariance matrix Σj

0,k = diag
[
σx0,k

j σẋ0,k
j σẍ0,k

j
]2

. In the covariance

matrix, the variance of the initial speed is described by the function,

(σẋ0 )2 = p2
1(u− µ̃c,1) + p2

2, (8)

where p1, p2 are model parameters to be estimated from the inspection data and µ̃c,1 is the expected
value of the condition at time t = 1. Initially µ̃c,1 is considered equal to the first observation µ̃c,1 = ỹ1,

6



Hamida, Z. and Goulet, J-A. (Preprint 2020). Modeling Infrastructure Degradation from Visual
Inspections Using Network-Scale State-Space Models. Structural Control and Health Monitoring.

however, after obtaining the smoothed states, µ̃c,1 is set equal to the expected value of the smoothed
state µ̃c,1 = µ̃1|T . Equation 8 is employed to facilitate the estimation of the initial speed, given that
few observations are available in each time series. Furthermore, the initial estimate for the expected
condition µj0,k is assumed to be equal to the average of the first three observations, while the initial

expected speed and acceleration are considered as µ̇j0,k = µ̈j0,k = 0. The initial state µj0,k, Σj
0,k is

propagated in time using the prediction step and the update step of the Kalman filter. After each
update step, the constraint µ̇jt|t,k + 2σẋ,jt|t,k ≤ 0 is examined (see Section 2.4). If the aforementioned
constraint is violated, the PDF truncation method is employed to constrain the estimate of the speed
ẋjt|t,k within the feasible bounds. Following the filtering step, the Kalman smoother is utilized to refine

the state estimates and the initial state at time t = 0. Because the number of observations yjt,k is limited

per structural element, the refined estimate for the initial state xj0,k can be further improved in the
parameter estimation framework described in the next section. After the smoothing step, the outputs
µjt|T,k, Σj

t|T,k are back-transformed to the original space µ̃jt|T,k, Σ̃j
t|T,k for interpretation and analysis.

This back-transformation step is done using the inverse transformation function g−1(.) described in
Equation 4. The next section describes the unknown model parameters and the estimation method.

2.5.1 Parameter Estimation

The unknown model parameters to be estimated from the inspection data are: the inspectors standard
deviations σV (Ii), the standard deviation of the transition model error σW , the transformation function
parameter n and the initial state parameters {σx0 , σẍ0 , p1, p2}. The parameters are grouped in the
following set:

θ =

{
σV (I1), σV (I2), · · · , σV (II)︸ ︷︷ ︸

Inspector std.

,

Process error std.︷︸︸︷
σW , n︸︷︷︸

Transform. Param.

,

Initial state.︷ ︸︸ ︷
σx0 , σ

ẍ
0 , p1, p2

}
. (9)

The parameter estimation framework for the parameters θ is based on the maximum likelihood estimate
(MLE) method. The MLE estimate is obtained through maximizing the joint prior probability of
observations while assuming the observations to be conditionally independent given the state x. Thus,
the likelihood for a sequence of observations can be obtained through the product,

f(y1:T|θ) =

T∏
t=1

f(yt|y1:t−1,θ). (10)

In order to avoid numerical instabilities, the natural logarithm is taken for the likelihood estimate.
Hence, Equation 10 becomes the log-likelihood estimate described by,

ln f(y1:T|θ) =

T∑
t=1

ln f(yt|y1:t−1,θ). (11)

Because the analysis in the proposed framework are performed on a network scale, the log-likelihood
estimate is taken for the inspection sequences of all the structural elements ejk ∀j, k combined. Therefore,
the network-scale log-likelihood becomes,

L(θ) =
B∑
j=1

Ej∑
k=1

Tk∑
t=1

ln f(yjt,k|y
j
1:t−1,k,θ), (12)

whereby B is the total number of bridges, Ej is the total number of structural elements in the j-th
bridge and Tk is the total number of observations for the k-th structural element. From Equation 12,
in order to identify the set of parameters θ∗ that maximizes the log-likelihood estimate, the following
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optimization problem is to be solved,

θ∗ = arg max
θ

L(θ),

subject to: σW , σ
x
0 , σ

ẍ
0 > 0,

p1, p2 > 0,

σV (Ii) > 0, ∀Ii ∈ I,
n ∈ {1, 2,3, 4, 5}.

(13)

Solving this optimization problem is achieved through an iterative gradient-based optimization frame-
work. The framework is illustrated in the pseudocode shown in Appendix 1. In this framework, the
model parameters θ are optimized initially with the assumption that the standard deviation σV of the
observation uncertainty is equal across all inspectors, σV (I1) = σV (I2) = · · · = σV (II) = σV . Therefore,
the initial optimization step is performed on the set of parameters θs = {σW , σV , σx0 , σẍ0 , p1, p2}. This
step provides an initial value for the model parameters along with an initial value for the standard
deviation associated with each inspector σV (I1:I) = σV . Thereafter, the optimization algorithm iterates
over the σV (Ii) parameters while keeping the rest of the model parameters in θ fixed. The framework
keeps iterating over the inspectors parameters σV (Ii) until the improvements in the objective function
L(.) are less than the tolerance threshold ε or the stall limit is met. The stall limit is a predefined
number of iterations where improvements in the objective function L(.) are less than 5%. Following the
convergence of the parameters σV (Ii), the optimization algorithm revisits the model parameters in the
subset θm = {σW , σx0 , σẍ0 , p1, p2} ⊂ θ. The iterative framework keeps alternating between the σV (Ii)
parameters and the parameters in the subset θm until the global convergence criteria is met. As for
the parameter n, since the number of possible values for n is limited, the full optimization procedure is
repeated with different n values in order to identify the value that maximizes the objective function.
In this optimization scheme, the upper and lower bounds for the model parameters are defined as
follows: σW ∈ [10−3, 0.01], σV ∈ [1, 10], σx0 ∈ [1, 10], σẍ0 ∈ [10−3, 0.05], p1 ∈ [0, 0.05], p2 ∈ [0, 0.15].
The aforementioned bounds were obtained from experimentation with real and synthetic inspection
data in order to ensure the deterioration model is consistent with realistic structural deterioration
curves.

3 Data Description

This section presents the datasets employed for verifying and validating the performance of the proposed
deterioration model.

3.1 Visual Inspection Data

This dataset includes information from a network of approximately B ≈ 10000 bridges B = {b1, b2, . . . , bB},
located in the province of Quebec, Canada. Visual inspections in this dataset are performed on a yearly
scale with dates ranging from late 2007 up to early 2019. During that time-window, the majority of
bridges have been inspected from 3 to 5 times. Each structural element ejk is evaluated according to a
codified procedure [23]. The evaluation method requires the inspectors to break down the evaluation
into four categories according to the damage severity. The categories are: A: Nothing to little, B:
Medium, C: Important and D: Very Important. An example of a structural element inspection data at
a given time t is: ya = 80%, yb = 20%, yc = 0%, yd = 0%. In the example, the inspection data implies
that 80% of the structural element area has no damages (category A), while the remaining 20% of
the element area has medium damages (category B). Accordingly, the sum of the values under each
category (A, B, C, and D) for a single element must be equal to 100% (i.e. ya + yb + yc + yd = 100%),
and the evaluation in each category must pertain to 0% ≤ ya, yb, yc, yd ≤ 100%.

3.1.1 Data Preprocessing

Representing the deterioration level using four interdependent metrics increases the complexity of
the analysis. This is because of the need to model the deterioration according to each metric while
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accounting for the dependency across other metrics. Therefore, data aggregation is applied to transform
the four metrics of any inspection point into a single metric. The data aggregation method is similar in
concept to the expected utility theory approach [28], where the utilities ωi are assigned to each state
category. Hence, the aggregation formula for any inspection data is,

ỹ = ω1ya + ω2yb + ω3yc + ω4yd, (14)

whereby ỹ is the aggregated observation representing the inspection data (ya, yb, yc, yd). In this study,
the values proposed for the utilities are: ω1 = 1, ω2 = 0.75, ω3 = 0.5, ω4 = 0.25. Employing the
aforementioned utility values restrain the aggregated measure within the range ỹ ∈ [25, 100]. Hence,
a structural element with (ỹ = 100) corresponds to the state undamaged (ya = 100%, yb = 0%, yc =
0%, yd = 0%), while a structural element with (ỹ = 25) corresponds to the state Very Important
damage (ya = 0%, yb = 0%, yc = 0%, yd = 100%). All numerical analysis are carried out using the
aggregated observation ỹ.

3.2 Synthetic Visual Inspection Data

A synthetic dataset is generated to be quantitively and qualitatively representative of the real inspection
database. The total number of structural elements ejk in the synthetic dataset is E = 10827. The
structural elements considered in this analysis are for the element type beam, with an average lifespan of
T = 60 years. The health condition of the structural elements is represented by a continuous numerical
value within the range ỹ ∈ [25, 100].
To start generating the synthetic data, the true state of deterioration is generated for each synthetic
structural element ejk through the transition model in Equation 6. The generated true state of the
deterioration is ensured to match the qualitative characteristics of a real deterioration by passing
through several criteria. These criteria are obtained through empirical experiments and analyses with
real and synthetic data. The criteria are,

a) Slow deterioration: xT
2
> 0.85× x1.

b) Plateau in the deterioration curve: xT > 0.5× x1.

c) Speed threshold: ẋ1 < 0.01× x1 − 1.3.

d) Acceleration threshold: ẍ1 < 0.001× x1 − 0.13.

A deterioration curve with any of the above-mentioned conditions is rejected and excluded from the
synthetic database.
After generating the true deterioration curves, a set of 194 synthetic inspectors I = {I1, I2, . . . , II=194}
is generated. Each synthetic inspector is assumed to have a zero-mean error with vt : V ∼ N (0, σ2

V (Ii)).
The standard deviation σV (Ii) is generated for each synthetic inspector from a uniform distribution
σV (Ii) ∼ U(λ1, λ2). The parameters considered in this study are λ1 = 1 and λ2 = 6 representing the
minimum and maximum values of a uniform distribution. Thereafter, the observation model described
in Equation 7 is utilized to generate an observation sample from the true deterioration state. Moreover,
in the real dataset, the majority of structural elements has a time series with 3 to 5 observations yjt,k,
while few structural elements have 6 or 8 inspections. This property is also accommodated in the
synthetic dataset through weighted sampling. The true state and the observations are generated in the
transformed space with a transformation function parameter n = 3. The standard deviation of the
process error is assumed to be σW = 5× 10−3.

4 Deterioration Model Analyses

This section presents the analyses performed using the proposed deterioration framework using synthetic
as well as real inspection data.
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4.1 Model Verification & Analyses with Synthetic Data

The main goal of performing analysis with synthetic data is to verify the predictive capacity of the
proposed deterioration model with a dataset that is representative of the real dataset. The use of
synthetic data can also enable verifying the performance of the parameter estimation framework since
the model parameters are known in the synthetic case. Estimating the model parameters based on the
synthetic data is done as described in Section 2.5.1. The set of model parameters θ estimated through
the parameter estimation framework is shown in Table 1, while Figure 4 shows the estimation results
of the σV (Ii) parameters. In Figure 4, the dashed line corresponds to σV , which is the initial estimate

Table 1: Estimated model parameters from synthetic inspection data.

σW σx0 σV σẍ0 p1 p2 n

2.1× 10−3 1.241 3.001 0.0498 0.0421 0.0611 3
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Figure 4: Scatter plot of inspectors true σV (Ii) vs. estimated σV (Ii) with a dashed line representing
the initial value at the start of the optimization.

for all σV (Ii), ∀Ii ∈ I. By considering the alignment among the true and estimated σV (Ii), the scatter
plot in Figure 4 confirms that the proposed parameter estimation method is capable of estimating the
inspectors uncertainties σV (Ii) from network-scale inspection data.
Following the assessment of the estimated model parameters θ∗, the performance of the deterioration
model is examined at the structural element level for time series. Examples that demonstrate the
predictive capacity of the deterioration model for structural elements are shown in Figures 5, 6 and
7. These examples demonstrate the deterioration model performance for different cases, verified by
the true deterioration for the synthetic structural element. The deterioration forecast in the examples
is considered for a period of 10 years. The first example shows a low variability case represented
by the set of observations ỹ837

t,1 from the synthetic structural element e837
1 . The deterioration model

performance in this example is illustrated in Figure 5, where it can be noticed that the model estimates
are consistent with the true deterioration during the prediction phase and stays consistent throughout
the total forecast period. The good performance in this case can be attributed to having inspectors with
relatively small uncertainties along with consistent inspection data. The speed estimates associated
with this case are shown in Figure 6a, in which the speed estimate starts with a low uncertainty when
the deterioration speed is near zero due to the model constraints, thereafter, the uncertainty grows
larger as the deterioration speed increases. The true deterioration speed, in this case, nearly overlaps
with the model estimate throughout the forecast period which demonstrates an excellent forecast
performance.
The second example illustrates the deterioration model performance with a series of inspections that
has high variability. This case is demonstrated by the set of observations y792

t,1 of synthetic structural

element e792
1 . The model performance in forecasting the deterioration condition is shown in Figure

7. The three observations in this time series came from inspectors that have high uncertainties. This
justifies the deviation of the deterioration model from the true state in the prediction phase. In
addition, this case emphasizes the importance of estimating the inspectors uncertainties σV (Ii), given
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t,1 ∈ [25, 100] of the synthetic

structural element e837
1 with error bars representing the inspectors true (wide whiskers) & estimated

(narrow whiskers) uncertainties.

20
07

20
09

20
11

20
13

20
15

20
17

20
19

20
21

20
23

−1.5

−1

−0.5

0

Time (Year)

D
et

er
io

ra
ti

on
R

at
e

of
e8

3
7

1

˜̇µ837
t|T,1 Median
±2σModel
±σModel
˜̇x837t,1 True

(a) Deterioration speed estimate for e8371 .

20
07
20

09
20

11
20

13
20

15
20

17
20

19
20

21
20

23
20

25
−1.5

−1

−0.5

0

Time (Year)

D
et

er
io

ra
ti

on
R

at
e

of
e7

9
2

1

˜̇µ792
t|T,1 Median
±2σModel
±σModel
˜̇x792t,1 True

(b) Deterioration speed estimate for e7921 .

Figure 6: Deterioration speed estimate for synthetic structural elements.

that the model estimate puts more weight on the data from the inspector I2 because he has a lower
uncertainty. The deterioration speed estimate along with the true speed are shown in Figure 6b. The
deterioration-speed estimates, as shown in Figure 6b, shows a similar performance to the deterioration
condition prediction phase with the true speed being within the ±2σModel interval. It can be noticed
that the poor initial speed estimate is associated with an inferior model performance in estimating
the deterioration condition. This assert the importance of having a good initial state estimate for the
deterioration model especially in short time-series data.
In order to examine the overall performance of the deterioration model, a test dataset of Es = 3250
(≈ 30% of E) structural elements ejk are analyzed. The deterioration forecast is assessed for a period

of 10 years for each structural element ejk ∈ E . The yearly average of the forecast absolute error

in the expected condition µjt|T,k, the expected speed µ̇jt|T,k and the expected acceleration µ̈jt|T,k are
shown in Figure 8. In this graph, it can be noticed that the yearly average of the absolute errors
in each category increases over the forecast time except for the acceleration; because the condition
and the speed are changing monotonically, the errors can accumulate during the forecast; however,
the acceleration is locally constant over time so that the errors has the possibility to average out.
Moreover, the bias in the expected condition of the forecast is examined with scatter plots generated
at different years. The graphs shown in Figure 9 illustrates the true condition x̃jt,k versus the model

expected condition µ̃jt|T,k generated at forecast years {1, 5, 10}. It is noticed from Figure 9 that the
deterioration model maintains a good predictive capacity over time for the majority of structural
elements. Further analysis includes assessing the confidence interval of the model estimates. Specifically,
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Figure 9: Scatter plot for the model estimate of the condition µ̃jt|T,k vs. the true condition x̃jt,k at
forecast years 1, 5 and 10.

the probability of the true deterioration condition being within the 95% confidence interval (i.e. µ±2σ)
of the model state estimate. For that end, the probability of the true state being within the range of
µjt|T,k ± 2σx,jt|T,k is computed at each year and for all structural elements ejk. Figure 10 illustrates the
aforementioned probability of the model state estimate over the forecast time. In Figure 10, the dashed
line represents the average probability of xjt,k being within µjt|T,k ± 2σjt|T,k for a deterioration model

with true parameters (including the true initial speed and acceleration for each time series) while the
solid line represents the average probability of xjt,k being within µjt|T,k ± 2σjt|T,k for a deterioration
model with estimated parameters. It can be noticed that the model with the estimated parameters
achieves a probability of ≈ 87% when forecasting one year ahead, while the same model with the true
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parameters has a probability of ≈ 98%.

4.2 Model Validation & Analyses with Real Data

Following the verification step, the proposed deterioration model is validated using real inspection
data. The dataset considered in the analyses is the inspection dataset for structural elements of type
Beam taken from bridges B = {b1, b2, . . . , bj}. The total number of structural elements employed in the
estimation is E = 10827 structural elements representing a sample of 2593 bridges. The majority of the
selected structural elements has 3 to 5 inspections per element, performed by different inspectors (a
total of 194 inspectors). In this dataset, the health condition of the structural elements is represented
by a continuous numerical value within the range ỹ ∈ [25, 100]. It should be noted that the number of
structural elements is obtained after excluding time series data that is identified as excessively noisy
or insufficient. In this study, an excessively noisy or insufficient time series of a structural element is
identified by:

a) The total number of observations in the time series is less than three.

b) The number of observations that indicate significant improvement yt+∆t−yt > 5 in the structural
element is greater than the number of observations indicating otherwise. ∆t here refers to the
time span between two consecutive observations.

c) The time series has excessively high observation errors |yt+∆t − yt| > 15.

The parameter estimation results for the deterioration model are shown in Table 2 except for the
estimated σV (Ii) values which are represented in a histogram shown in Figure 11. In order to validate

Table 2: Estimated model parameters from real inspection data.

σW σx0 σV σẍ0 p1 p2 n

5.236× 10−3 1 4.021 0.049 0.045 0.002 4

the deterioration model performance, different examples for patterns of inspection data are analyzed.
The first example for the real inspection data considers the model performance in the case where the
set of inspections has a low variability. This case is illustrated in the inspection data shown in Figure
12 for structural element e14

1 in bridge b14. In Figure 12, the model estimate has a small uncertainty in
the prediction phase. This is attributed to the structural element e14

1 being in a near perfect condition
according to the inspection data as well as having consistency and low uncertainty in the inspection
data. It can be noticed that inspector I20 appears to have two different σV (Ii) showing in the first
and the second inspection points. This is because the uncertainty associated with each observation is
dependent on the structural element deterioration state xjt,k as previously detailed in Section 2.3.2.
Moreover, the inspection data point at year 2017 (represented by the asterisk symbol) is a validation
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Figure 12: Condition deterioration analysis based on observations ỹ14
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element e14
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point which was not included when estimating the model parameters θ∗. It can be noticed that the
deterioration model forecast is consistent with this new inspection data. The deterioration speed
associated with this condition estimate is shown in Figure 13a.
The next example, shown in Figure 14, demonstrates the model performance in the case where the
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Figure 13: Deterioration speed estimate for real structural elements.

inspection data display high variability. The deterioration model in this case maintains a downward
deterioration curve while accounting for the inspections data according to their respective estimated
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Figure 14: Condition deterioration analysis based on observations ỹ8233
t,1 ∈ [25, 100] of the real structural

element e8233
1 with error bars representing the inspectors estimated uncertainties.

uncertainties. Moreover, and similarly to the previous example, the model forecast stays consistent
with the new inspection data point at year 2018. The deterioration speed associated with the condition
estimate for e8233

1 is shown in Figure 13b.
In order to assess the bias in the deterioration model for the real database, a scatter plot for the model
forecast versus new inspection data points is presented in Figure 15a. The term ”new inspections”
refers to observations that were never used in training the deterioration model. Each point in Figure
15a represent a model forecast µ̃t|T versus a new inspection ỹt at time t for a population of structural

elements ejk. The symbol associated with each point represents the number of years until the new

inspection data (observation) has arrived. For example, in a structural element ejk, a duration of 4 years
refers to the time between two consecutive inspections, in which one of them is the new inspection point.
It is worth mentioning that the model forecast is not required to perfectly match the observations
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Figure 15: Deterioration condition validation for real structural elements.

due to the presence of observations uncertainties. Considering the same scatter plot, the uncertainty
associated with each new observation can be illustrated by the symbol size as shown in Figure 15b.
In Figure 15b, the points with the lowest uncertainty are the closest to the diagonal, however, for
points with the uncertainty σV > 4, the scatter tend to spread away from the diagonal. Furthermore,
it can be noticed that the model does not show any significant sign of bias toward overestimating
or underestimating the deterioration condition. In order to further assess the bias, a normalized
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histogram is shown in Figure 15c in order to examine the difference between the model forecast and the
new observations. The histogram shows that the normalized bias and dispersion in the deterioration
model forecast are compatible with the standard Normal distribution. From the analyses above, the
deterioration model have displayed a performance similar to the analyses with the synthetic inspection
data. This validates the conclusions taken from the analyses with the synthetic data.

5 Conclusion

In this study, a continuous-state deterioration model for visual inspections of bridge-network is proposed.
This model enables quantifying the uncertainty of visual inspections through estimating the standard
deviation associated with each inspector as well as considering the inspection uncertainty dependent
on the deterioration state. The analyses with synthetic data have demonstrated a good performance
for the model in estimating the uncertainty associated with each inspector (a total of 194 inspectors).
In addition, the deterioration analyses with the synthetic data have shown a good predictive capacity
for the proposed framework. The assessment considered a forecast period of 10 years for each synthetic
structural element. From the analyses, the probability of the true condition being within the confidence
interval µ ± 2σ of the model forecast is estimated at 87%. The deterioration model has been also
validated with real inspection data. The analyses included validation with inspection data that were
not included at the model parameter estimation phase. The assessment have shown that the model
is unbiased towards overestimating or underestimating the structural elements condition. Overall,
the deterioration analyses have shown that the proposed framework has a consistent and robust
performance with respect to highly noisy data. Future improvements to the proposed framework can
include examining the inspectors bias as well as a Bayesian framework for the estimation of the model
parameters. Including the inspector bias can be done through estimating the mean parameter in the
observations error term. Furthermore, the analyses with the deterioration speed and acceleration have
shown that further improvements on the model are required. Specifically, improving the initial state
estimate of the speed and acceleration. This can directly result in improving the model long-term
performance. In addition, structural attributes could be factored in the deterioration model to further
improve the overall predictive capacity on a network scale.
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Appendix 1
Algorithm 1 Parameter Estimation Framework

Require: : θs0: Initial parameters vector
1: L1 ← −1010 (Initial log-likelihood)
2: ε← 10−3 (Convergence tolerance)
3: ρ1 ← 10, ρ2 ← 10 (Stall limits)
4: s1 ← 1, s2 ← 1 (Initial stall)
5: ν1 ← 300, ν2 ← 1 (Iteration limit per parameter)
6: θs1 ← NewtonRaphson(L(θs),θs0, ν1)
7: σV (I1:I) = σV , σV ∈ θs1
8: L2 ← L(θs1)
9:

10: for n := 1 to 5 do
11: while |Lj+1 − Lj | ≤ ε or s1 ≥ ρ1 do
12: while |Lj+1 − Lj | ≤ ε or s2 ≥ ρ2 do
13: Lj ← Lj+1

14: for i := 1 to I do
15: σV (Ii)← NewtonRaphson(L(σV (Ii)), σV (Ii0), ν2)

16: Lj+1 ← L(σV (I1:I))
17: if |(Lj+1 − Lj)/Lj | ≤ 0.05 then
18: s2 = s2 + 1

19: θmj+1 ← NewtonRaphson(L(θm),θmj , ν1)
20: Lj ← L(θmj+1)
21: s1 = s1 + 1

22: return θmj+1 and σV (I1:I) (Resulting parameters)
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