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Abstract

Maintenance planning on bridges commonly faces multiple challenges, mainly related to complex-
ity and scale. Those challenges stem from the large number of structural elements in each bridge in
addition to the uncertainties surrounding their health condition, which is monitored using visual
inspections at the element-level. Recent developments have relied on deep reinforcement learning
(RL) for solving maintenance planning problems, with the aim to minimize the long-term costs.
Nonetheless, existing RL based solutions have adopted approaches that often lacked the capacity
to scale due to the inherently large state and action spaces. The aim of this paper is to introduce
a hierarchical RL formulation for maintenance planning, which naturally adapts to the hierarchy
of information and decisions in infrastructure. The hierarchical formulation enables decomposing
large state and action spaces into smaller ones, by relying on state and temporal abstraction. An
additional contribution from this paper is the development of an open-source RL environment that
uses state-space models (SSM) to describe the propagation of the deterioration condition and speed
over time. The functionality of this new environment is demonstrated by solving maintenance
planning problems at the element-level, and the bridge-level.

Keywords: Maintenance Planning, Reinforcement Learning, RL Environment, Deep Q-Learning,
Infrastructure Deterioration, State-Space Models

1 Introduction

Transportation infrastructure such as roads, tunnels and bridges are continuously deteriorating due to
aging, usage and other external factors [6]. Accordingly, maintenance planning for the aforementioned
infrastructure aims at minimizing maintenance costs, while sustaining a safe and functional state
for each structure [5, 33]. Maintenance strategies for bridges can be either classified as time-based
maintenance, such as recurring maintenance actions based on a fixed time interval, or condition-based
maintenance (CBM) [25]. In the context of CBM, the main components involved in the development of
any maintenance policy are quantitative measures for, 1) the structural health condition, 2) the effects
of interventions, and 3) costs of maintenance actions. The structural health of bridges is commonly
evaluated using visual inspections at the element-level [12, 22, 4]. An example of an element in this
context is the pavement in a concrete bridge. The information at the element-level are thereafter
aggregated to provide a representation for the overall deterioration state of a bridge [15]. Similarly,
maintenance actions are performed at the element-level, and their corresponding effect is aggregated at
the bridge-level [15, 14]. The hierarchical nature of condition assessments, and maintenance actions
presents challenges in formulating the bridge maintenance planning problem. First, the aggregation
of the health states from the element-level to the bridge-level results in additional uncertainties,
which render deterministic deterioration models insufficient [15]. Second, performing actions at the
element-level implies that a decision-making framework is required to search for maintenance policies at
the element-level in each bridge. Thus, the search-space for an optimal maintenance policy is typically
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large as it is common for a bridge to have hundreds of structural elements [23].
Existing approaches for solving the maintenance planning problem have adopted Markov decision
process (MDP) formulations [5, 33, 8, 21], relying on discrete states where transitioning from one
state to another depends only on the current state [29]. The MDP approach is well-suited for small
state-space problems, so that using MDP in the context of maintenance planning have incurred
simplifications on the state and the action space [5, 9]. An example of simplification is reducing the
search space by merging the state representation of structural elements with similar deterioration states
and maintenance actions [9].
The large state space has also motivated the application of reinforcement learning (RL) methods
to search for optimal maintenance policies [34, 5, 35]. Conventional RL methods are well-suited for
discrete action and state spaces, where the agent (or decision-maker) performs different actions and
receives a feedback (rewards), which can be used to update the value function corresponding to the
visited states [29]. Existing work in the context of maintenance planning have focused mainly on
multi-agent RL (MARL) methods, due to their compatibility with large action spaces [6, 36, 20, 1].
Applications include coordinated reinforcement learning (CRL) for joint decision-making of multi-
agents [20], and hierarchical RL where higher-level agents moderate the behaviour of lower-level agents
[1, 16]. This latter application has been further improved by combining the CRL with the hierarchical
reinforcement learning framework [36]. Despite the MARL extension, RL methods are inherently
limited to low-dimensional problems and lack the capacity to scale for large state spaces without
increasing the number of agents acting on the state space [5]. Accordingly, deep reinforcement learning
(DRL) and multi-agent DRL have been proposed as an alternative due to their capacity of handling
large and continuous state and action spaces. Specifically, frameworks with centralized training such as
the branching dueling Q network (BDQN) and the deep centralized multi-agent actor critic (DCMAC)
[30, 5]. A common limitation associated with the aforementioned frameworks is the stability of the
training, especially as the size of the action space increases. In addition, the policy obtained is not
interpretable, such that it is not possible to plot the decision boundaries for the policy, and with the
lack of a clear stopping criteria for training the agents in the context of planning problems, it becomes
difficult to evaluate the validity of the reward function or the policy in practical applications. Another
common limitation in the context of maintenance planning for transportation infrastructure is the use
of discrete Markov models (DMM) for modelling the deterioration process over time. The use of the
DMM framework in this context induces drawbacks related to overlooking the uncertainty associated
with each inspector, and the incapacity to estimate the deterioration speed [12].
The aim of this paper is to introduce a hierarchical reinforcement learning formulation that adapts
to the hierarchical nature of information in the maintenance planning problem. The hierarchical
formulation enables decomposing large state and action spaces into smaller ones, by relying on state
and temporal abstraction [2, 3]. State abstraction enables representing the state-space of the planning
problem by a hierarchy of states, such as, the element-level, the structural category level, and the
bridge-level. Each of the aforementioned levels has an action-space, where interdependent policies can
be learned and applied. Take for example, a bridge-level decision, where the action-space is defined
as maintain or do nothing; if a policy suggests doing nothing, then no intervention is applied on all
elements within the bridge, without assessing their health states.
The main contributions in this paper are: 1) formulating a hierarchical deep reinforcement learning
approach that adapts to bridge maintenance planning, and provides advantages in scalability, and
interpretability through visualizing the decision boundaries of the policies. 2) Incorporating the
deterioration speed alongside the deterioration condition in the decision-making analyses [12]. 3)
Developing a standard gym-based RL environment [7] for emulating the deterioration process of bridges,
based on state-space models (SSM) [15, 13].
The performance of the proposed hierarchical approach is demonstrated using an example application
for a bridge from the network of bridges in the province of Quebec, Canada. The analyses include
a comparison with the BDQN approach for planning maintenance on a multi-component system, in
addition to learning a bridge-level maintenance policies.
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1.1 Problem Formulation

A bridge B from the network of bridges in the Quebec province is considered to demonstrate the
decision-making analyses presented in this paper. Figure 1 provides a summary for the hierarchy of
components and information in bridge B. The bridge is composed of K structural categories, each
of which is composed of E structural elements. An example of a structural category is the beams
category, which is the k-th category in bridge B with a total of P beams as in, Ck = {ek1, . . . , ekp, . . . , ekE}.
Visual inspections are performed on the elements of bridge B every three years to monitor their health
condition, represented by ỹkt,p. The health states of the elements are inferred using the inspection

data ỹkt,p, and are denoted by x̃kt,p. The element-level health states x̃kt,p are thereafter aggregated for
each structural category to provide the overall health states of the structural categories x̃ct,k. Similarly,

the overall health states of the bridge x̃bt are based on the aggregation of the health states from the
structural categories [14]. It should be noted that for all the aforementioned levels, the health states
are described by the same condition range defined by, x̃kt,p, x̃

c
t,k, x̃

b
t ∈ [l, u], and the deterioration speed

which is defined in R−. The ∼ in x̃kp,t refers to variables within the bounded space [l, u] = [25, 100],
while the absence of ∼ refers to the variables defined in the unbounded space [−∞,∞] [14]. An example
of a perfect health state is when the condition is, x̃t = 100, and the deterioration speed is near-zero.
Bridge B mainly undergo imperfect maintenance actions at the element-level, where the actions are
represented by the set Ae = {a0, a1, a2, a3, a4}, with a0: do nothing, a1: routine maintenance, a2:
preventive maintenance, a3: repair, and a4: replace [23]. Each action is associated with a cost, in
addition to other costs related to the service interruption and penalties for reaching a critical state.
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Figure 1: Hierarchy of components and information in a bridge B, where each structural category Ck
is composed of a number of structural elements ekp. The element-level inspection data ỹkt,p provides

information about the health states at the element-level x̃kt,p, structural category level x̃ct,k, and bridge-

level x̃bt .

2 Background

This section provides the theoretical background for the main concepts related to proposed decision
making framework.

2.1 Markov Decision Processes (MDP)

A MDP is an approach to describe sequential decision-making problems using the tuple 〈S,A, P,R〉,
where S is the set of states, A is the set of actions, P is the transition function, and R is the set of
rewards [29]. Taking an action a ∈ A results in a transition from the state st = s at time t, to the
state st+1 = s′ using a Markovian transition function P (s′|s, a), which implies that the next state is
only conditional on the pair of the current state s and action a. Each action a ∈ A taken in the MDP
can affect the expected immediate reward rt and the total rewards Gt [29]. In this context, the effect
of an action can be either deterministic and accordingly the MDP is considered deterministic where,
Pr(s′|s, a) = 1, or otherwise, the MDP is considered stochastic when Pr(s′|s, a) 6= 1 [26]. Similarly,
states can be either represented by deterministic exact information (i.e., true state s) in the case of a
MDP, or inferred information (i.e., belief about the true state s) in the case of a partially observed
MDP (POMDP) [29].
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A policy π in the context of MDP represents a mapping between states and actions, where a deterministic
policy provides deterministic actions such that, π(s) : s → a, while a stochastic policy provides
probabilities for taking each action in each state π(a|s) : s→ Pr(a) [29]. Following a policy π(·) in a
MDP would yield a total return at time t defined by,

Gt =

∞∑
i=0

γir(st+i, at+i), (1)

where γ is the discount factor that enables considering an infinite planning horizon when γ ∈]0, 1[, and
r(st, at) = E[Rt|St = s,At = a] denotes the expected reward given the state St = s and the action
At = a [29]. In this context, the rewards represent a feedback associated with action a taken at each
state s. Provided the notion of rewards driven by actions, evaluating a policy π is possible by using a
value function Vπ(s) and an action-value function Qπ(s, a). The value function represents the expected
discounted return for being in a state s, under policy π, such that,

Vπ(s) = Eπ [Gt|St = s] = r(st, at) + Eπ

[ ∞∑
i=1

γir(st+i, at+i)|St = s

]
, (2)

where Eπ is the expected value while following the policy π. On the other hand, the action-value
function Qπ(s, a) refers to the expected discounted return for taking an action a, in a state s, based on
policy π, which is described by,

Qπ(s, a) = r(st, at) + Eπ

[ ∞∑
i=1

γir(st+i, at+i)|St = s,At = a

]
. (3)

Accordingly, a policy π∗ is considered optimal when the state-value function and action-value function
are,

V∗(st) = max
π

Vπ(st), ∀st ∈ S,
Q∗(st, at) = max

π
Qπ(st, at), ∀st ∈ S, at ∈ A.

(4)

2.2 Semi-Markov Decision Process

A semi-Markov decision process (SMDP) formulation is similar to a MDP, with the exception that a
SMDP considers actions to have a duration T̄ to be performed [26]. An example for a SMDP action is
the task of maintaining a bridge, which requires a duration T̄, to perform the maintenance actions for
each element within the bridge. From this example it can be inferred that actions (or tasks) in the
SMDP are performed at different levels (i.e., element-level and bridge-level). The expected rewards
r̄(st, a

`
t) associated with the task a`t at level ` are estimated using,

r̄(st, a
`
t) = Eπ`−1

[
T̄∑
i=0

γir(st+i+1, a
`−1
t+i+1)|St = s, a`−1

t = π`−1(st)

]
, (5)

where r̄(st, a
`
t) is the expected cumulative discounted reward while following the policy π`−1 from

time t until the termination of the task a`t after T̄ time-steps. Based on Equation 11, the application
of the SMDP formulation generally relies on state and temporal abstractions [26, 2, 3]. The aim of
state abstraction is to reduce the state space by aggregating states having similar properties without
changing the essence of the problem [2, 3]. This implies the feasibility of mapping a state s ∈ S to an
abstract state sφ ∈ Sφ while maintaining a near-optimal policy search, where the space Sφ has a fewer
states (i.e., |Sφ| � |S|) [2]. Figure 2 shows an illustrative example, where the real state is represented
by different levels of abstraction. On the other hand, a temporal abstraction is applied when actions
are taking place at different time scales [29]. For example, applying an intervention on a bridge bj
from time t to time t+ 1, involves many actions performed at the element-level over a sub-timestamps
τ , such that, t < (t+ τ) < t+ 1.
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Reality

Abstraction Level

Figure 2: Illustrative example showing two levels of abstraction starting from the state of reality on
the left.

2.3 Deep Reinforcement Learning

Typical RL approaches rely on interactions between a decision maker (the agent) and an environment
in order to learn a policy that maximizes the total cumulative rewards. A common technique for
learning from interactions is the use of the temporal difference (TD) [32], to perform recursive updates
on the action-value function Q(st, at) such that,

Q(st, at)← Q(st, at) + η

[
r(st, at) + γ max

at+1

Q(st+1, at+1)−Q(st, at)

]
, (6)

where η denotes the learning rate. Updating the Q(st, at) function using Equation 6 requires a table
for all pairs of states and actions, which can be challenging for large and continuous state and action
spaces [29]. Therefore, Deep RL methods have provided a scalable alternative to the tabular Q-learning,
which enables approximating the optimal action-value function such that, Q(s, a;θ) ≈ Q∗(s, a). Similar
to Equation 6, deep RL relies on temporal difference (TD) to estimate the set of parameters θ using,

Li(θi) = E
[
r + γ max

a′
Q(s′, a′;θ−)−Q(s, a;θi)

]2

, (7)

where Li(θi) is the loss function associated with the parameters θi, and θ− represents the parameters
of the target model, which is a delayed replica of the Q(·) function. The role of a target model is to
stabilize the learning process where the parameters of the target model θ− are updated based on θi by
using a soft update approach [19]. Equation 7 is the foundation for many different DRL methods for
identifying an optimal policy, nonetheless, the choice of an approach mainly depends on the design and
properties of the MDP [29].

2.4 Hierarchical Reinforcement Learning

Hierarchical RL enables applying the principles of RL on SMDP environments, where there are multiple
tasks occurring simultaneously at different time scales [26]. The hierarchy here refers to multiple layers
of policies, where the higher level policy dictates the behaviour of the lower level policies [24]. For
example, the higher level policy observes the overall deterioration state of a bridge x̃bt and provides a
target state x̃bt + δb, which the lower level policies will try to match by observing and acting on the
deterioration states of the structural elements. Based on the definition above and Equation 5, the
action-value function Q(st, a

`
t) for an optimal policy can be defined as,

Q(st, a
`
t) = r̄(st, a

`
t) +

∑
st+T̄

∑
T̄

γT̄P (st+T̄, T̄|st, a`t) max
a`
t+T̄

Q(st+T̄, a
`
t+T̄). (8)

From Equation 8, the transition model P (st+T̄, T̄|st, a`t) and the reward r̄(st, a
`
t) depend directly on the

subsequent policy π`−1 [26].
Learning the hierarchical policies can be done by using either an end-to-end approach where all policies
are trained simultaneously, or a bottom-to-top approach starting from the lower level policies [26, 11].
The latter approach is favoured for large-scale problems provided the instability issues for centralized
joint training of multiple policies [11].
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3 Hierarchical Deep RL for Bridge Maintenance Planning

Figure 3 shows an illustration for the hierarchical maintenance planning architecture, where the state
of the environment at time t is represented using different levels: a bridge level with state sbt , a
structural-category level with sct,k, and an element-level with set,p. Each of the aforementioned states
provide information about the health of the bridge at its corresponding level. For example, the state of
each element set,p contains information about the deterioration condition x̃kt,p and speed ˜̇xkt,p of the p-th

structural element ekp.

The hierarchical framework is composed of a centralized agent for the bridge level with policy πb, and
decentralized agents for each structural category represented by the policy πk. The centralized agent
proposes a target improvement δb ← πb(sbt) for the health condition of the bridge xbt , such that the
health condition of the bridge at time t + 1 is xbt+1 + δb. If the improvement value δb = 0, then no
maintenance is applied on the bridge; otherwise, maintenance actions are performed according to the
improvement value δb, defined within, δb ∈ [0, (u− l)], where l is the lower bound and u is the upper
bound for the condition.
As shown in Figure 3, the hierarchical framework aims to decode the bridge-level target improvement δb

to a vector of actions for all structural elements in B. This can be achieved sequentially by distributing
δb on the structural categories according to their current deterioration condition x̃ct,k using,

δck(δ
b) =

u− x̃ct,k
u · K−∑K

k=1 x̃
c
t,k

· K · δb, (9)

where δck is the target improvement for the k-th structural category Ck, K is the total number of
structural categories within the bridge, and u is the perfect condition. From Equation 9, if δck > 0,
then the structural element ekp ∈ Ck is maintained according to the policy πk. Thereafter, the states of

the structural category s̃ct,k, and the bridge s̃bt are updated with the state after taking the maintenance

action akt,p ← πk(set,p) on the structural element ekp. In order to determine if the next structural element

p+ 1 requires maintenance, the target improvement δck and δb are updated using,

δck = max
(
x̃ct,k(before maintenance) + δck − x̃ct,k (updated), 0

)
,

δb = max
(
x̃bt(before maintenance) + δb − x̃bt (updated), 0

)
.

(10)

Once the updated target improvement δck reaches δck = 0, the remaining structural elements within Ck
are assigned the action (a0:do nothing). The aforementioned steps are repeated for each structural
category Ck in bridge B until all elements ekp are assigned a maintenance action akp ∈ Ae.

The element-level actions are defined by the set Ae = {a0, a1, a2, a3, a4}, where a0: do nothing, a1:
routine maintenance, a2: preventive maintenance, a3: repair, and a4: replace [23]. The corresponding
effect associated with each of the aforementioned actions is estimated using a data-driven approach
[14]. Moreover, the cost associated with each element-level maintenance action is defined as a function
of the deterioration state of the structural element, and for each structural category. Further details
about the effect of interventions and maintenance costs are provided in B.3.
In addition to the maintenance action costs, there are costs related to the bridge service-stoppage
and penalties for reaching a critical state. The service-stoppage costs are defined to prevent frequent
interruptions for the bridge service, as well as to encourage performing all of the required maintenance
actions at the same time. On the other hand, the penalties are applied when a predefined critical state
is reached and no maintenance action is taken. The critical state in this work is defined in accordance
with the definition provided by the Manual of Inspections [23], for a deterioration state that requires
maintenance.
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Figure 3: Hierarchical deep RL for performing maintenance using a hierarchy of policies composed of,
a centralized policy πb for the bridge level, and decentralized element-level policies πk. The centralized
policy πb produces a target improvement δb based on the bridge state sbt . The improvement δb is
distributed on the structural categories to provide the category-wise improvements δck, which are
sequentially translated to a vector of maintenance actions at the element-level using the policies πk.

3.1 Learning the Policies in the Hierarchical DRL

Learning the policies in the hierarchical DRL framework is done using a bottom-to-top approach
starting from the element-level policies, and by relying on decentralized element-level agents with a
centralized bridge-level agent [26, 11]. Such an approach offers flexibility in using transfer learning
for structural elements that share similar properties. In this context, structural elements from the
same structural category (e.g., all the beams) are assumed to have a similar deterioration dynamics
and similar cost function for maintenance actions. Therefore, the number of element-level agents that
require training is equivalent to the number of structural categories in bridge B.
Training the element-level agents is done based on a MDP environment that mimics the deterioration
process and provides information about the deterioration condition x̃kt,p and speed ˜̇xkt,p of the structural

elements (see Section 3.2). Accordingly, the state space for the element level is, set = [x̃kt,p, ˜̇x
k
t,p] and the

action space is defined by the set Ae. Training the element-level agents can be done using off-policy
methods, such as deep Q-learning with experience replay [29].
After learning the policies π1:K, it becomes possible to learn the centralized bridge-level policy, which
observes the state sbt = [x̃bt , ˜̇x

b
t , σ

b
t ], where x̃bt is the overall health condition of the bridge, ˜̇xbt is the

overall deterioration speed of the bridge, and σbt is the standard deviation for the condition of the
structural categories in the bridge σbt = std.(x̃ct,1:K). The environment at the bridge level is a SMDP
due to the assumption that all element level maintenance actions are occurring between the time steps
t and t+ 1. Training the centralized agent is done using an off-policy deep Q-learning approach with
experience replay. The bridge-level agent experience transition is composed of, (sbt , δ

b
t , r

b
t , s

b
t+1), where

rbt is the total costs from all actions performed on the bridge and is defined by,

rb(sbt , δ
b
t ) = rs +

K∑
k=1

P∑
p=1

r(set,p, a
k
t,p). (11)

From Equation 11, rs is the service-stoppage cost for performing the maintenance actions. The next
section describes the environment utilized for emulating the deterioration of bridges over time.

3.2 Deterioration State Transition

The RL environment is built based on the deterioration and intervention framework developed by
Hamida and Goulet [15, 14], and is calibrated using the inspections and intervention database for
the network of bridges in the Quebec province, Canada. The environment emulates the deterioration
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process by generating true states for all the elements ekp, using the transition model,

transition model︷ ︸︸ ︷
xkt,p = Atx

k
t−1,p +wt, wt : W ∼ N (w; 0,Qt)︸ ︷︷ ︸

process errors

, (12)

where xkt,p : X ∼ N (x;µt,Σt) is a hidden state vector at time t associated with the element ekp. The

hidden state vector xkt,p is a concatenation of the states that represent, the deterioration condition xkt,p,

speed ẋkt,p, and acceleration ẍkt,p, as well as the improvement due to interventions represented by, the

change in the condition δet,p, the speed δ̇et,p, and the acceleration δ̈et,p. At is the state transition matrix,
and wt is the process error with covariance matrix Qt. Equation 12 represents the dynamics of a
transition between the states in the context of a MDP. In order to emulate the uncertainties about the
deterioration state, synthetic inspection data ykp,t are sampled at a predefined inspection interval using,

observation model︷ ︸︸ ︷
ykt,p = Cxkt,p + vt, vt : V ∼ N (v;µV (Ii), σ

2
V (Ii))︸ ︷︷ ︸

observation errors

, (13)

where C is the observation matrix, and vt : V ∼ N (v;µV (Ii), σ
2
V (Ii)), is the observation error associated

with each synthetic inspector Ii ∈ I. The role of the synthetic inspection data is to provide imperfect
measurements similar to the real world context. The information from this measurement at time t
can be extracted using the Kalman Filter (KF), where the state estimates from the KF at each time t
represent a belief about the deterioration state [17]. The belief states from the KF provide a POMDP
representation of the deterioration process. Figure 4 shows an illustrative example for the deterioration
and effect of interventions on a structural element, where the true state x̃1

t,1 is represented by the black

dashed line, and the expected value µ̃1
t|t,1 is represented by the red dashed line with the confidence

region ±σt|t and ±2σt|t for the condition.
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Figure 4: Illustrative example for a deterministic deterioration curve (MDP environment) in Figure 4a,
and an uncertain deterioration curve (POMDP environment) in Figure 4b.

The deterioration states x̃kt,p at the element-level are aggregated to obtain the overall deterioration
state of the structural category xct,k, which are similarly aggregated to obtain the deterioration states

estimates of the bridge xbt . Further details about the aggregation procedure as well as the deterioration
and interventions framework are provided in B.
Throughout the deterioration process, the effectiveness of repair actions is distinguished from the
replacement action by introducing a decaying factor on the perfect state ut, such that, up,t+1 = ρ0×up,t,
where 0 < ρ0 < 1. This implies that repair actions are unable to restore a structural element to the
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original perfect health condition (i.e., ut = 100) as it advances in age. Figure 6a shows an illustration
for the decay in the perfect condition ut that can be reached by repair actions. Other practical
considerations in this environment are related to preventing the observation of the same effect after
applying the same repair action multiple times within a short period of time (e.g., ∆t ≤ 2). For
example, if an action a3 has an effect of δet = +20, applying a3 action two times in two consecutive
years should not improve the structural element condition by, δet + δet+1 = 20 + 20, but rather should
improve the condition by, δet + ρ1δ

e
t+1, where 0 < ρ1 < 1. Figure 6b illustrates the decayed effect of

intervention caused by applying the same action twice within a short time interval. Further details
about the choice of decaying factors in this context are provided in B.2.

Effect of
RepairsC

on
di

tio
n

Time (Years)

xj
t,p

ut

(a) Example for the decayed effect of
intervention due to the perfect state
ut (gray line) being decayed with the
age of the structural element.

e.g., ∆t ≤ 2 Years

Same Repair

Time (Years)

{
xj

t,p

(b) Example for the decayed ef-
fect of intervention due to apply-
ing the same repair action twice
within a short period of time.

Figure 5: Decaying factors for the perfect state u and the effect of interventions over time.

4 Example of Application

The performance of the proposed HRL framework is demonstrated on a case study for a bridge within
the province of Quebec. Note that both the deterioration and interventions models are calibrated on
data from the bridge network in the Quebec province, Canada [15].

4.1 Maintenance Policy for a Bridge with One Structural Category

The goal in this example is to demonstrate the capacity of the HRL to achieve a near-optimal solution
in a toy-problem, with a simple hierarchy of actions. In this context, the planning scope on bridge B
considers only one structural category K = 1, which corresponds to the beams structural category C1.
The beam elements in C1 have a common critical deterioration condition x̃t and deterioration speed ˜̇xt
defined as, x̃t = 55, ẋt = −1.5. The aforementioned values are derived from the manual of inspections
[23], and imply that the structural element requires a maintenance action when the critical state is
reached; accordingly, taking no-action after reaching the critical state will incur a cost penalty on the
decision-maker.
As described in Section 3.1, the first step to train the proposed hierarchical framework is to learn the
task of maintaining beam structural elements at the element level. The policy πk decides the type
of maintenance actions based on the information about a deterministic deterioration condition x̃1

t,p

and a deterministic deterioration speed ˜̇x1
t,p of the structural element such that, set,p = [x̃kt,p, ˜̇x

k
t,p]. The

action set in this MDP is defined as, Ae = {a0, a1, a2, a3, a4}, which corresponds to a0: do nothing, a1:
routine maintenance, a2: preventive maintenance, a3: repair, and a4: replace [23]. The costs and effects
associated with each of the aforementioned actions are described in B.3. Learning the maintenance
policy πk is done using a vectorized version of the RL environment which is detailed in Section 3.2
and A. The experimental setup for the training include a total of 5× 104 episodes with the episode
length defined as, T = 100 years. The episode length is determined such that it is long enough to
necessitate a replacement action, provided that the average life-span for a structural element is about
60 years [14]. Despite the fixed episode length, there is no terminal state as the planning horizon is
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considered infinite with a discount factor γ = 0.99. Moreover, the initial state in the RL environment
is randomized where it is possible for a structural element to start the episode in a poor health state
or a perfect health state. Figure 6 shows the training and average performance for DQN and Dueling
agents, along with two realizations for the optimal policy map obtained at the end of the training for
each agent. The configuration for the DRL agents are provided in A. From Figure 6a, it is noticeable
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(b) Two realizations for the optimal policy maps π∗k=1 based on the DQN
agent (left) and the Dueling agent (right), and according to the action space
Ae. The area within the red frame represents the predefined critical state
region for the condition x̃t and speed ˜̇xt.

Figure 6: The training process of deep RL agents along with two realizations for the optimal policy
π∗k=1 of a beam structural element.

that the DRL agents reach a stable policy after 3 × 106 steps. Moreover, Figure 6b shows optimal
policy maps obtained by the DQN agent (left) and the Dueling agent (right), for the action space Ae,
with the critical state region highlighted by the area within the red boundary. From the policy maps, it
can be noticed that the element’s critical state region is dominated by major repairs, which is expected
due to the penalties applied on the DRL agent if the structural element reaches that state. Despite the
slight differences between the two optimal policy maps in Figure 6b, the policy map by the DQN agent
is favourable because the action a0 : do nothing did not leak into the predefined critical state region
for the condition x̃t and speed ˜̇xt. The leakage of the action a0 : do nothing in the critical state region
can occur due to interpolating the Q function values for states that are rarely visited by the agent,
such as structural elements with a perfect condition x̃t = 100, and high deterioration speed ˜̇xt = −1.6.
The optimal policy π∗k provides the basis for decision-making at the bridge level, which corresponds to
learning the bridge level policy πb. The state-space is defined as, sbt = [x̃bt,1,

˜̇xbt,1, σ
e
t ], where x̃ct,1,

˜̇x1
t,1

represent the overall deterioration condition and speed for the bridge, and σet is the standard deviation
for the condition of the elements at each time step t. The action-space has one action δb, which
corresponds to the target improvement, with δb = 0 being equivalent to do nothing, and 0 > δb ≥ (u− l)
is maintain the beam structural elements using π∗k. Learning the policy πb can be done using the
vectorized RL environment at the bridge level, and the same DQN agent described in A. In this study,
the continuous action space is discretized with δb = {δb1, . . . , δbA} to make it compatible with discrete
action algorithms [18]. Accordingly, δb is represented by A = 10 discrete action equally spaced over its
continuous domain.
In order to assess the scalability and performance of the proposed HRL framework, the total number
of the structural elements in C1 ∈ B is varied with P = {5, 10, 15} beam elements. The performance
of the HRL framework is evaluated based on 5 different environment seeds, and is compared with
branching dueling DQN (BDQN) framework. The BDQN framework architecture, hyper-parameters
and configuration are adapted from Tavakoli et al. [30]. Figure 7 shows the comparison of results based
a structural category C1 with P = 5 beam elements in Figure 7a, a C1 with P = 10 beam elements in
Figure 7b, and a C1 with P = 15 beam elements in Figure 7c. From Figure 7, the performance of the
proposed HRL framework is reported while considering the pre-training phase required for learning the
element level policy πk=1, which extends over 3× 106 steps. Based on the results shown in Figure 7a
for the case with P = 5, the HRL and BDQN frameworks achieve a similar total expected rewards,
however, the BDQN approach shows a faster convergence due to the end-to-end training. Nonetheless,
when the number of beam elements increases in the case of P = 10 and P = 15, the HRL framework
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Figure 7: Comparison between the proposed HRL and BDQN for learning the maintenance policy of
a structural category C1 with P = 5 elements in Figure 7a, a C1 with P = 10 elements in Figure 7b,
and a C1 with P = 15 elements in Figure 7c. The training results are reported based on the average
performance on 5 seeds, with the confidence interval represented by ±σ.

outperforms the BDQN approach in convergence speed and in the total expected return achieved in
this experiment setup. This can be attributed to the BDQN considering each additional beam element
as a distinct branch which leads to a significant increase in the size of the neural network model, and
thus requiring a higher number of samples for the training.

4.2 Maintenance Policy for a Bridge with Multiple Structural Categories

This example extends the application of the proposed formulation to a planning problem involving
K = 6 structural categories within a bridge B. Each structural category consists of a different number
of structural elements which are summrized in Figure 8. In this example, the bridge’s health state is
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Figure 8: Number of structural elements within each structural category in bridge B, where C1

represents the beams, C2 is the front-walls, C3 is the slabs, C4 is the guardrail, C5 is the wing-wall, and
C6 represents the pavement.

represented by, sb = [x̃bt , ˜̇x
b
t , σ

c], where σc is the standard-deviation for the deterioration condition of
the structural categories within B. Similarly to the previous example, the bridge-level action is the
target improvement δb which is represented by 10 discrete action bins uniformly covering the continuous
domain. Solving this maintenance planning problem is done by first identifying the optimal policy for
the structural elements ekp within each structural category Ck, where the element-level actions in each
structural category have different costs and effects on the element’s state (see B). Figure 9 shows the
optimal policy maps as learned by a DQN RL agent for the elements within each type of structural
category. It should be noted that the characteristics of structural elements (e.g., critical thresholds)
within each structural category are assumed to be identical, which allows learning a single policy per
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Figure 9: The element-level policy maps for the action space A`0 , where each policy map is learned
independently by a DQN agent.

structural category. After obtaining the policies π∗1:K, the hierarchical RL framework is trained using
the environment at the bridge level. The training process for the DQN agent at the bridge-level is
reported using the average performance on 5 different seeds for the environment, as shown in Figure
10, where it can be noticed that the policy’s training became stable after 2× 106 steps.
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Figure 10: Average performance based on 5 seeds for DQN agents in learning the maintenance policy
πb for a bridge composed of multiple structural categories.

In order to use the hierarchical DRL agent for decision making on bridge B, it is required to obtain
the deterioration state estimates for each structural element, as well as the overall deterioration
state of the bridge B. This step can be achieved by relying on the element-level inspection data and
using the SSM-based deterioration model for estimating and aggregating the deterioration states [15].
Accordingly, the policy πb in the HRL framework relies on sb = [µ̃bt , ˜̇µbt , σ

c], where µ̃bt and ˜̇µbt are the
expected values for the deterioration condition and speed, respectively. On the other hand, each
policy πk depends on the expected values of the deterioration condition µ̃kt,p and speed ˜̇µkt,p at the

element level, as in sbt = [µ̃kt,p, ˜̇µkt,p]. Figure 11 illustrates the deterioration state estimates and the
effect of maintenance on the deterioration condition and speed of the bridge B. In this context, the
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decision making analyses are performed using a window of 10 years, starting from the year 2021. The
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Figure 11: Deterioration state estimates for the condition and the speed of bridge B, based on the
aggregation of the deterioration state estimates of the structural categories C1:K, with the aggregated
inspections ỹbt ∈ [25, 100] represented by the blue diamond, and their corresponding uncertainty
estimates represented by the blue error bars. The inspections represented by a magenta square
correspond to synthetic inspections on a trajectory of deterioration that is generated based on the RL
agent interventions, which are suggested at years 2022 and 2029.

aggregated synthetic inspections illustrated in the magenta squares on Figure 11 are generated using
the mechanism described in Section 3.2 for generating synthetic data. From Figure 11, and based on
the bridge state sb, the HRL agent suggests to perform maintenance actions at years 2022 and year
2029. The breakdown for the maintenance actions at the element level is shown in Figure 12, where
the majority of the proposed maintenance actions are a1 : routine maintenance with the exception to
a wing-wall element that is suggested to undergo a replacement in the year 2022. The replacement
action is suggested by the policy πk mainly due to a high deterioration speed as ˜̇µkt,p < −1.5, which
bypasses the critical state’s speed threshold.
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Figure 12: Scatter plot for the expected deterioration condition versus the expected deterioration speed
for all elements of bridge B, with maintenance actions suggested by the HRL agent at the years 2022
(on the left) and year 2029 (on the right).

4.3 Discussion

Typical bridges have hundreds of structural elements, many of which exhibit a similar structural
deterioration behaviour. Capitalizing on the structural similarities can enable tackling maintenance
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planning for bridges at scale, in a sense that learning the task of maintaining a beam structural element,
can be either generalized for other similar beam structural elements, or can provide a source policy
that would accelerate the learning of maintenance tasks (e.g., maintaining slabs). The latter falls under
transfer learning in RL [37], and is not covered in the scope of this work, yet it shows potential for
future work. The proposed HRL approach offers the capacity to take advantage of the aforementioned
aspects, in addition to providing an interpretable decision maps that enable verifying the coherence of
the optimal maintenance policy. This is important because in the context of maintenance planning there
is no clear definition for the stopping criteria during the training, unlike some classic RL benchmarks,
where the stopping criteria can be defined based on the success rate of the agent in accomplishing the
task.
The advantages in the proposed HRL coincide with limitations that are mainly related to state
abstraction and learning the policies. The level of abstraction in representing the state is dependent on
the number of structural elements in the bridge, such that, for a bridge with many structural elements
E > 100, the overall bridge condition and speed may not be sufficient to fully describe the health
state, and accordingly the abstract state space should be augmented with additional information such
as, the overall health condition and speed for each structural category. The other limitation in the
proposed HRL is the use of a bottom-to-top approach for learning the policies with fixed policies πk
[10]. Alleviating these limitation could be done by using the policies πk as a source policy that provide
demonstrations for an end-to-end hierarchical RL training.

5 Conclusion

This paper introduce a hierarchical formulation and a RL environment for planning maintenance
activities on bridges. The proposed formulation enables decomposing the bridge maintenance task
into sub-tasks by using a hierarchy of policies, learned via deep reinforcement learning. In addition,
the hierarchical formulation incorporates the deterioration speed in the decision-making analyses by
relying on a SSM-based deterioration model for estimating the structural deterioration over time. A
case study of a bridge is considered to demonstrate the applicability of the proposed approach which is
done in two parts. The first part considered varying the number of structural elements to examine
the scalability of the proposed framework against the branching dueling Q-network (BDQN). The
comparison of results have shown that the proposed hierarchical approach has a better scalability
than BDQN while sustaining a similar performance. The second part in the case study addressed a
maintenance planning problem for a bridge with multiple structural categories. In this case, the HRL
agent performance is demonstrated by the element-level maintenance actions performed over a span of
10 years.
Overall, this study has demonstrated the capacity to learn a maintenance policy using hierarchical
RL for a bridge with multiple structural categories. In addition, the analyses have highlighted
the role of the deterioration speed in the decision-making process. Further extensions to this
framework may include a multi-agent setup to learn a network-level maintenance policies under
budgetary constraints, as well as designing and testing RL frameworks that can handle the uncer-
tainty associated with the deterioration state in a POMDP environment. The contributions in this
paper also include an open-source RL benchmark environment (link: https://github.com/CivML-
PolyMtl/InfrastructuresPlannerhttps://github.com/CivML-PolyMtl/InfrastructuresPlanner), which is
made available for contributions by the research community. This RL environment provides a common
ground for designing and developing maintenance planning policies, in addition to comparing different
maintenance strategies.
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A Deep Reinforcement Learning

A.1 Dueling Deep Network

In the context where a state s has similar q(s, a;θ) values for different actions a ∈ A, learning the
value function v(s) for each state can facilitate in learning the optimal policy π∗. The dueling network
architecture enables incorporating the value function v(s) in the Q-learning by considering,

Q(s, a;θα,θβ) = V (s;θα) + adv(s, a;θβ), (14)

where adv(s, a) is the approximation for the advantage of taking action a in state s, and θα,θβ are the
set of parameters associated with value function and the advantage function, respectively. Further
details about the dueling network architecture are available in the work of Wang et al. [31].

A.2 DRL Hyperparameters

The RL agents at all levels are trained using a discount factor 0.99, while relying on a batch size of
50 samples. The environment is vectorized to accelerate the training process and improve the sample
independence, as the agent simultaneously interacts with n = 50 randomly seeded environments. The
exploration is performed using ε−greedy, which is annealed linearly over the first 200 episodes with
minimum εmin = 0.01. Furthermore, the target model updates are performed every 100 steps in the
environment. All neural networks have the same architecture (for the structural categories and the
bridge) which consists in 2 layers of 128 hidden units and relu(·) activation functions. The learning
rate starts at 10−3 and is reduced to 10−5 after 800 episodes.

B Environment Configuration

This section presents some of the predefined functions in the environment which are based on previous
work and numerical experiments.

B.1 SSM-based Deterioration Model

The Kalman filter (KF) describes the transition over time t, from the hidden state xt−1 to the hidden
state xt using the prediction step and the update step. The prediction step is described by,

E[Xt|y1:t−1] ≡ µt|t−1 = Atµt−1|t−1

cov[Xt|y1:t−1] ≡ Σt|t−1 = AtΣt−1|t−1A
ᵀ +Qt,

where E[Xt|y1:t−1] the expected value and cov[Xt|y1:t−1] represent the covariance associated with the
hidden state vector xt given all the observations y1:t−1 up to time t− 1, At is the transition matrix and
Qt is the model process-error covariance. In this context, the transition matrix At is time dependent
such that,

At=τ =

[
Aki I3×3

03×3 I3×3

]
, At6=τ =

[
Aki 03×3

03×3 I3×3

]
, Aki =

 1 dt dt2

2
0 1 dt
0 0 1

 ,
where τ is the time of the element-level maintenance action, and I is the identity matrix. Accordingly,
the covariance matrix Qt is described by,

Qt=τ =

[
Qki +Qr 03×3

03×3 Qr

]
, Qt6=τ =

[
Qki 03×3

03×3 03×3

]
,

with Qr and Qki defined as,

Qr = diag
([
σ2
wr
σ̇2
wr
σ̈2
wr

])
, Qki = σ2

w

 dt5

20
dt4

8
dt3

6
dt4

8
dt3

3
dt2

2
dt3

6
dt2

2 dt

 ,
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where dt is the time step size, σw is a model parameter that describes the process noise and Qr is a
diagonal matrix containing model parameters associated with the element-level intervention errors
[14]. Following the prediction step, if an observation is available at any time t, the expected value and
covariance are updated with the observation using the update step,

f(xt|y1:t) = N (xt;µt|t,Σt|t)

µt|t = µt|t−1 +Kt(yt −Cµt|t−1)

Σt|t = (I −KtC)Σt−1|t−1

Kt = Σt−1|t−1C
ᵀG−1

t

Gt = CΣt−1|t−1C
ᵀ + ΣV ,

where µt|t ≡ E[Xt|y1:t] is the posterior expected value and Σt|t ≡ cov[Xt|y1:t] represents the covariance,
conditional to observations up to time t, Kt is the Kalman gain, and Gt is the innovation covariance.
The monotonicity throughout the estimation process is imposed by relying on the deterioration speed
constraints: µ̇t|t + 2σẋt|t ≤ 0; which are examined at each time step t, and enacted using the PDF

truncation method [28].
Aggregating the deterioration states is performed using a Gaussian mixture reduction (GMR) [27],
which is employed to approximate a PDF of Em Gaussian densities into a single Gaussian PDF by
using,

µj,∗t|T,m =

Em∑
p=1

λjpµ
j
t|T,p,

Σj,∗
t|T,m =

Em∑
p=1

λjpΣ
j
t|T,p +

Em∑
p=1

λjp(µ
j
t|T,p − µ

j,∗
t|T,m)(µjt|T,p − µ

j,∗
t|T,m)ᵀ,

where µj,∗t|T,m is the aggregated expected value, and λjp is the weight associated with the contribution
of the deterioration state of the structural element. The merging of the Em Gaussian densities is
moment-preserving, where the total covariance Σj,∗

t|T,m consists in the summation of the within-elements

contribution to the total variance, and the between-elements contribution to the total variance [27, 15].

B.2 Decaying Factors for Effect of Interventions

Decaying factors are introduced to prevent having the same improvement effect on structural elements
while applying the same action within a short a period of time. The decaying factors in this context rely
on the estimate for the expected time (number of years) to return to the state prior to the intervention
[14]. Accordingly, the effect of intervention for any element-level action ae, at time t is,

δe = ρ1 × δe,

where α1 is the decaying factor defined as, ρ1 ∝ Pr(Xτ+t ≤ xτ−1|ae), and τ is the time of intervention.

B.3 Maintenance Actions Effects & Costs

Maintenance actions at the element level have different effects depending on the structural category
type. The deterministic maintenance effects associated with each action are defined in Table 1. It
should be noted that the values defined in Table 1 have been derived from estimates that are based on
data from the network of bridges in the province of Quebec [14].
As for the cost of maintenance actions, the cost functions are considered to be dependent on the
deterioration state using,

xc(x̃
k
t,p, a) = β1(a)

1

x̃kt,p
+ β2(a),

where β1(a) is the cost of performing the maintenance action a as a function of the deterioration state
xet,p, and β2(a) is a fixed cost associated with maintenance action a. The derivation of this relation
is empirical and mimics the cost information provided by the ministry of transportation in Quebec.
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Table 1: Table of the true effects associated with element-level maintenance actions within each
structural category.

Structural Category
Beams Front Wall Slabs Guardrail Wing Wall Pavement

a0 0 0 0 0 0 0
a1 0.5 0.1 1 0.25 0.25 8
a2 7.5 19 12 9 8 20
a3 18.75 20.5 20 14 17 28
a4 75 75 75 75 75 75

Figure 13 shows the proportional cost function for the elements within each structural category. From
the graphs in Figure 13, it is noticeable that the replacement cost is considered fixed and independent
of the structural condition. Moreover, in some cases, the cost of performing an action may exceed the
cost of replacement.
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Figure 13: The proportional cost of each element-level action as a function of the deterioration
condition.

Based on the cost function xc(·), the element-level rewards r(set,p, a
k
t,p) are defined as,

r(set,p, a
k
t,p) = xc(x̃

k
t,p, a

k
t,p) + rp,

where rp is the penalty applied when a predefined critical state is reached and no maintenance action
is taken.
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