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Abstract
Several long span prestressed segmental box girder bridges were built in the early 1980’s

and many of them are affected by long-term residual deformations. Although models have been
proposed to describe their structural behavior, several uncertainties remain. This paper exam-
ines the effects of errors introduced by model simplifications on predicted values. These results
are used to improve the estimation of parameter values using model-based data-interpretation
strategies. The procedure is illustrated for the Grand-Mere bridge located in Canada. This
bridge is affected by excessive long-term vertical displacements. Model simplifications such as
the degree of complexity of a model are found to have an important influence on prediction er-
rors. Representing these errors by zero-mean independent Gaussian noise does not adequately
describe the relationships between errors observed in this case study. Estimated errors are used
during the interpretation of ambient vibration acceleration data recorded on the structure. The
interpretation approach employed is based on error-domain model falsification. The study pro-
vides ranges of parameter values that can subsequently be used to characterize more accurately
aspects such as long-term creep and shrinkage behavior.
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INTRODUCTION
Challenges associated with the preservation of aging existing structures require a

deeper understanding of structural behavior than what is required for design purposes.
Model-based structural identification compares model predictions with measurements
to infer the properties of structures and phenomena that influence structural behavior.

Many applications of structural identification are described in a recent state-of-the-
art review by Catbas et al. (2012). Traditional approaches generally assume that the
combination of modeling and measuring uncertainties can be represented by Gaus-
sian noise, independently affecting measurements and predictions. In most cases,
the error term does not include the systematic bias in model predictions due to omis-
sions and simplifications. This is because models are assumed to have been validated
(Oberkampf and Trucano 2008; Sankararaman and Mahadevan 2011; Mottershead
et al. 2011). For civil-engineering structures, it is often difficult to validate mod-
els to the point where the only discrepancy between predictions and measurements is
due to the choice of parameter values and measurement uncertainty. Little work has
been done to quantify uncertainties related to model simplifications. Exceptions in-
clude Nowak et al. (1985, 1998, 2004) who studied the importance of some secondary
structural elements in bridge models. Results indicated that for the structure studied,
secondary elements may have an effect up to 40% on the girder distribution factor.
Also, studies on mesh refinement have been performed by Topkaya et al. (2008) who
recommended the usage of 9-node shell of size no larger than 1.5 m for the analysis
medium span bridges (60-120 m).

This paper includes a study of the influence of modeling simplifications on static
and dynamic prediction errors. These results are then used as a starting point to assess
the condition of the Grand-Mere Bridge using ambient vibration monitoring. The first
section of the paper presents the structural identification methodology. In the second
section, the effect of modeling simplifications on predicted values is examined using
the Grand-Mere Bridge as a case-study. This involves the comparison of model predic-
tions for several levels of complexity and for combinations of element types. The third
section presents the condition assessment of the Grand-Mere Bridge using ambient
vibration monitoring data.

ERROR-DOMAIN MODEL FALSIFICATION
The error-domain model falsification approach using ambient vibration monitor-

ing data was developed by Goulet et al. (2012). The concept of error-domain model
falsification is based on the generation of possible model instances (sets of parame-
ters represented by the vector θ) using a model class g(θ); obtain predictions for each
of them; and then falsify instances having unacceptable differences (observed resid-
uals) between predictions and measurements. Falsification occurs when an observed
residual is outside threshold values that are calculated by combining modeling and
measurement uncertainties. The candidate model set is made from all instances that
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cannot be falsified. Threshold bounds Tlow,i and Thigh,i define to the smallest inter-
vals that simultaneously contain a probability φ ∈ ]0, 1] for the combined uncertainty
probability distribution function (pdf ), fUc,i

(εc,i),∀i ∈ {1, ..., nm}. Here, nm is the
number of comparison points for which predictions and measurements are available.
Uc,i is a random variable used to represent the possible outcomes of combined error
instances εc,i for comparison point i (the index c stands either for the combined error
or uncertainty).

Threshold bounds having a probability smaller or equal to 1−φ of falsifying a cor-
rect model can be defined using the S̆idák correction (S̆idák 1967). S̆idák correction is
used in the field of hypothesis testing when multiple comparisons are performed. For
practical purposes, threshold bounds can be computed numerically for each compari-
son point i, as the shortest sets {Tlow,i, Thigh,i} such as

φ1/nm =

∫ Thigh,i

Tlow,i

fUc,i
(εc,i)dεc,i ∀i ∈ {1, . . . , nm} (1)

A model instance is falsified when Equation 2 is not satisfied; i.e. when the residual
between predicted gi(θ) and measured yi values is outside the threshold bounds for any
comparison point i.

∀i ∈ [1, . . . , nm] : Tlow,i ≤ gi(θ)− yi ≤ Thigh,i (2)

With this methodology, a correct model has a probability smaller or equal to 1 − φ to
be wrongly falsified. For engineering applications φ can be set to 0.95.

In this approach, modeling and measurement errors are combined because dur-
ing structural identification, residual calculations make them undistinguishable. The
probability density functions defining modeling and measurement errors are estimated
independently and then combined probabilistically. The combined uncertainty is used
to determine the minimal and maximal plausible errors for each comparison point i, i.e.
threshold bounds Tlow,i and Thigh,i. An advantage of this methodology is that it does
not require to know the relationships between prediction errors to identify the values
of parameters. Multiple prediction locations and predictions types (strains, rotations,
frequencies, etc.) are often affected by complex sets of relationships, particularly when
models includes significant omissions and simplifications. For full-scale structures the
challenge resides in understanding and in quantifying these relationships.

In order to identify parameter values using ambient vibration monitoring as an in-
put, time-domain acceleration data is converted into frequencies and mode shapes. The
model falsification process is divided into two steps. First, a correspondence check is
performed between the ny measured mode shapes (Φyj , j ∈ {1, . . . , ny}) and nl × nk
predicted mode shapes (Φgl(θk), l ∈ {1, . . . , nl}, k ∈ {1, . . . , nk}) to ensure that the
right modes are compared. Here, nl is the number of predicted modes and nk is the
number of model instances. Mode shape comparison is made using the Modal Assur-
ance Criterion (MAC) (Allemang and Brown 1982). The MAC criteria is presented in
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Equation 3, where H denotes complex conjugate transpose.

MAC(Φyj ,Φgl(θk)) =
|ΦH

yj
Φgl(θk)|2

|ΦH
yj

Φyj ||ΦH
gl(θk)

Φgl(θk)|
(3)

Only sets {j, k, l} satisfying

{(j, k, l) ∈ N3 : MAC(Φyj ,Φgl(θk)) ≥ φMAC} (4)

∀j ∈ {1, . . . , ny}, k ∈ {1, . . . , nk}, l ∈ {1, . . . , nl} are used to falsify model instances.
φMAC ∈]0, 1] is a target MAC value used to determine if two mode shapes are similar.
Predicted natural frequencies are compared with measurements only for the modes
that have passed the MAC test. A complete description of the approach is provided by
Goulet et al. (2012).

GRAND-MERE BRIDGE
In this section, the analysis performed on the Grand-Mere bridge is presented. The

effects of model simplifications are studied in terms of prediction errors for strain,
displacement, rotation and natural frequencies of the structure. Model simplifications
are related to the types and configurations of elements used in the models.

Bridge description
The bridge is a three-span prestressed concrete box-girder structure with variable

inertia. It was built in 1976-1977 and crosses the St-Maurice river to connect the towns
of Grand-Mere (west side) and Saint-Georges (east side). At time of construction, with
its main span of 181 m, it was the longest bridge of its type in North America. Figures
1 and 2 present the main dimensions of the structure. Along its length, the structure is
symmetric with respect to its stiffness and non-symmetric with respect to its mass due
to sand filling in the East-bound direction.

181.4 m39.6 m12.2 m 39.6 m 12.2 m

sand fillingconcrete filled volume
observed cracks

Z

Y

X

West bound East bound

Pinned fixed support

Pinned roller support

Figure 1. Grand-Mere Bridge elevation view

The bridge experienced problems after completion (Massicotte et al. 1994; Mas-
sicotte and Picard 1994). Vertical displacements at mid-span started to increase and
in 1987, 10 years after construction, reached 300 mm. Localized cracks appeared on
the east side of the bridge (see Figure 1), on the upper deck and on the southern web.
In 1992, additional prestressing cables were added, and the cracks, attributed to the
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Figure 2. Grand-Mere Bridge cross-section detail

differential shrinkage between the webs and the upper flange of the section, were filled
with mortar. The techniques used to strengthen the bridge are described by Massicotte
et al. (1994). The causes of these problems were attributed to inaccurate estimates of
the loss in prestressing, the use of poor quality materials, and the poor quality control
during execution work.

Model-class descriptions
The choice of model-class complexity depends on the goals of the analysis. While

it is generally acknowledged that beam-based models are adequate for design pur-
poses, they usually include too many simplifications for structural identification tasks.
A more technically specific reason for not using beam-like models for structural iden-
tification is because these models do not automatically include the effects of shear lag
(Bazant et al. 2008; Bazant et al. 2010). Not including the non-uniform stress distribu-
tion caused by shear lag can lead to large prediction biases that would undermine the
capacity to identify structural properties. Nevertheless, many other modeling possibil-
ities exist and therefore, the models used in this study are developed to be illustrative
examples.

For the Grand-Mere Bridge, three finite-element model classes have been devel-
oped based structural drawings: a simplified shell-based model, a composite shell-
solid model, and a full solid-based model. In all models, the parabolic shape of the
lower flange has been approximated to have a constant radius. Also, sand filling, used
as dead weight in the east-bound side-span, is represented in the model using discrete
mass elements located on the bottom flange of the girder. The structure has been as-
sumed to be fully prestressed, so pretension forces are not included in the models. Full
uncracked sections have been modelled and the prestressing cables were assumed to
act elastically. Figure 3 presents a general overview of the finite-element models.

Simplified shell-based model
The shell-based model is built with shell elements as presented in Figure 4(a). This

model class is representative of models that are commonly used by researchers and
practitioners for the purpose of model calibration and data interpretation. The wedge-
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Figure 3. Grand-Mere Bridge finite-element model general overview

Z

Y

X
Shell elements

pavement

(a) Schematical view of the simplified shell-based
model

(b) Cross-section view of the
simplified shell-based model

Figure 4. Grand-Mere Bridge cross-section and isometric view of the
simplified shell-based model

shaped ends of the structure are made of solid concrete, and are therefore modeled
as solid elements. The transversal and longitudinal slopes of the deck are neglected
and the openings in the diaphragms are not modeled. The different thicknesses of the
cross-sectional elements (web, upper flange and cantilevered deck) are averaged over
the length of the bridge. The variation of the lower flange thickness is approximated
by stepwise thicknesses changes along the main span. The fillets of the cross-section
are not modeled. Support conditions are simplified to linear discrete supports in the
transversal direction. The cross-section of the model is presented in Figure 4(b).

Shell-solid model
The shell-solid model is built from a combination of shell and solid elements as

presented in Figure 5(a). The level of refinement used in this model class is above
what is usually employed in practice because of the increase in modeling and compu-
tational effort required. Structural elements that have a small thickness compared to
their other dimensions, such as the web, the upper flanges and the cantilevered deck,
are modeled as shell elements. Elements having variable thickness are approximated
by step-wise constant thicknesses. The wedge-shaped ends are modeled as solid ele-
ments, as well as the fillets of the cross-section and the roadway barriers. To ensure the
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(a) Schematical view of the shell-solid model (b) Cross-section view of the
shell-solid model

Figure 5. Grand-Mere Bridge cross-section and isometric view of the
shell-solid model

compatibility between 6 degrees of freedom per node (DOF) shell and 3 DOFs solid
elements, constraint equations are applied to the nodes located at the shell-solid inter-
faces. For support conditions, bearing plates are represented using constraint equations
where supports are defined for relevant master nodes only. The cross-section of the
shell-solid model is presented in Figure 5(b).

Solid-based model
The solid-based model is built from solid elements as present in Figure 6(a). It

is the model with the highest geometrical accuracy. For support conditions, bearing
plates are modeled using constraint equations and supports are defined to master nodes
only. For the purpose of structural identification, obtaining several thousand solutions
from such a complete model class can be computationally prohibitive. The solid-based
model cross-section is presented in Figure 6(b). In this model, shell elements are used
to represent the pavement layer.

Solid elements

pavement

(shell elements)

Z

Y

X

(a) Schematical view of the solid-based model (b) Cross-section view of the
shell-solid model

Figure 6. Grand-Mere Bridge cross-section and isometric view of the
solid-based model
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Quantification of the effect of model simplifications on prediction errors
In a model, omitting elements and otherwise simplifying the geometry of a struc-

ture might modify significantly its mass and stiffness distribution. The effect of model
simplifications on both static and dynamic predictions is studied by comparing pre-
dicted values from the solid-based model with predictions from less accurate model
classes relying on simplifying assumptions. Quantifying errors using the direct com-
parison of model predictions and measurements may be misleading for two reasons.
The first reason is that the correspondence between model predictions and observa-
tions only reflects the aggregation of all error sources. In such cases, the validity of
the error quantification is limited to the context where measurements were made. The
second reason is that all models have inherent uncertainties related to their physical
constitutive parameters such as material properties and boundary conditions. Without
an accurate knowledge of physical constitutive parameters, it is not possible to quantify
the specific contribution of modeling simplifications. The comparison of several model
classes is used to estimate the lower bounds associated with model simplification un-
certainties and to obtain knowledge of relationships between prediction locations and
prediction types. For the comparison of static predictions, loads corresponding to four
trucks of 35 Tons each, are positioned at mid-span as presented in Figure 7.

L/2 = 90.7 m

Z

Y

X

Z

Y

X

Figure 7. Load-case description for Grand-Mere Bridge

Displacement, rotation and strain predictions obtained from the three model classes
described previously are compared in order to observe the effects of model simplifica-
tions on the relationships between errors and to obtain a lower-bound estimate for
model simplification uncertainties. The results obtained from the simplified shell-
based model and the refined shell-based model are compared with those given by the
solid-based model according to Equation 5 & 6.

εSS,i =
rSS,i − rS,i

rS,i
(5)

εSO,i =
rSO,i − rS,i

rS,i
(6)

In these equations, εSS,i εSO,i are respectively the modeling simplification relative error
at location i for shell-solid and shell-based model class. rS,i is the value predicted by
the solid model, rSS,i is the value predicted by the shell-solid model and rSO,i is the
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value predicted by the shell-based model. The solid model is chosen as a reference
because it is the most accurate geometrical representation of the structure.

The most detailed model (i.e. solid-based) is expected to be more rigid than the
shell-solid model and the latter more rigid than the shell-based model. This is due
to load-carrying elements that are neglected in both the simple shell-solid and shell-
based models. More rigid models lead to smaller static predictions and higher natural
frequencies. Therefore, modeling simplification errors are expected to be positive for
the static predictions, and negative for frequencies. Furthermore, errors are expected
to be larger for the shell-based model than with the shell-solid model.

Vertical displacement
Relative errors computed for vertical displacements on the four central prediction

locations of the main span are presented in Figure 8. The average relative error on

X

Y

Z

SO: Shell-based model

SS: Shell-solid model

SO:+20%

SS:-3%

SO:+18%

SS:-12%

SO:+18%

SS:+2% SO:+13%

SS:+2%

SO:+11%

SS:+2%

SO:+11%

SS:+2%

SO:+13%

SS:+2%

SO:+19%

SS:+2% SO:+25%

SS:-8%

SO:+25%

SS:+1%

Figure 8. Relative error for vertical displacement predictions due to
model simplifications.

the central part of the main span is +12% for the shell-based model, and +2% for the
shell-solid model. The error from the shell-based model increases at locations near
the intermediate supports. Close to supports the structure has a complex geometry
(simultaneous variation in web, lower flange and fillet dimensions) that is not well
captured by simplified shell-models.

The errors obtained for the shell-solid model are smaller because less geometrical
simplifications are made. In the shell-solid model, negative errors are observed at the
supports and on the side spans due model simplifications that affected load redistribu-
tion. The relative errors shown in Figure 8 for side-spans are not symmetric due to the
lack of symmetry in the load-case. The effect of asymmetry is most visible for side
spans because those values are more than 10 times smaller than those predicted in the
centre span.

Rotation around Z-axis
Relative errors in rotation predictions around the Z-axis are presented in Figure 9.

Errors computed from the shell-based model are all similar with an average value of
+10%, except in the zones of intermediate supports where they double. Small varia-
tions are obtained in the error given by the shell-solid model. The two values for the
central span are of +2%.
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Figure 9. Relative error for rotation predictions around Z-axis due to
model simplifications.

Longitudinal strain
Strain relative errors are shown in Figure 10. Predictions for the cantilevered deck

are taken on the upper fibre whereas other prediction locations are made on the inside
of the box girder. The results obtained show that strain predictions are very sensitive
to local model simplifications.
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SO:+16%
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SO:+11%
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Figure 10. Relative error in strain prediction along X-axis due to model
simplifications.

Even if the predicted values are taken at the same locations in the section (e.g.
on the upper fibre of the lower deck in the box girder), these locations may not have
the same distance to the neutral axis in each model. This is a direct consequence of
modeling simplifications. Furthermore, this also affects the load path in the structure.
In cases where a single model is calibrated using strain data, such errors may remain
unnoticed. Due to the large variability in error values computed, these models may
not accurately predict strain patterns in the structure. Therefore, there are non-trivial
relationships between errors at several locations and for several predictions types and
furthermore errors are not centered on zero.

Dynamic properties
The relative errors for natural frequencies are presented in Table 1. The shell-based
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Table 1. Relative error in predicted natural frequencies (%) due to model
simplifications and MAC values.

Errors in natural frequencies (%) MAC values

Mode
number

Description Shell-based
model

Shell-solid
model

Shell-based
model

Shell-solid
model

1 Vertical bending* -4.4 -0.5 1.00 1.00
2 Lateral bending* -4.1 -9.6 1.00 0.99
3 Vertical bending* -4.4 -1.1 1.00 1.00
4 Lateral bending -3.1 -16.3 1.00 0.89
5 Vertical bending* -2.6 -0.2 0.98 0.99
6 Torsion* -7.5 -18.9 0.99 0.51

Torsion-2 - +3.6 - 0.59
7 Vertical bending* -5.3 -1.4 1.00 1.00
8 Torsion -8.8 +1.9 0.97 0.61
9 Vertical bending -6.1 -1.2 0.99 1.00

*: measured mode

model systematically predicts lower frequencies than the solid-based model. In the
case of the shell-solid model, prediction errors are smaller than the shell-based model
for vertical bending modes. The accuracy of the shell-solid model is less for modes
corresponding to lateral bending and torsion.

Mode-shape vectors are extracted for each model and for each natural frequency
reported in Table 1. A MAC test is performed on mode shapes. The results of the
comparison are shown in Table 1. For the shell-solid model, there are two close modes
that present a mix of torsion and lateral bending (Mode 6) and both fail the MAC
test with a value below 0.6. Mode number 8 (torsion) also has a poor MAC value.
This indicates that torsional behavior is not adequately captured by the refined shell-
solid model. Therefore, this model class should not be used to explain observations
involving torsional behavior.

A comparison of the mass of the three models reveals that the simplified shell
model has a total mass that is 1% lower than the solid model. For the shell-solid
model the total mass is 4% lower than the solid model. The solid model has the most
accurate mass because it is the most accurate geometric representation of the structure.
The simplified shell model has a total mass higher than the shell-solid model because
of the approximations made in its transverse and longitudinal cross-sections. For the
shell and shell-solid models, the effect of the neglected stiffness partially compensates
for the effect of the reduced mass. The relative errors reported in Table 1 include the
effects of reduced mass and stiffness.

Result summary
The level of complexity of the model in terms of geometry simplification and

element-type combination has a significant influence on predictions. Zones having
localized simplifications, such as intermediate supports that present complex geome-
tries, are more sensitive to simplifications and result in higher prediction errors. Fur-
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thermore, simplified models may not adequately represent local behavior such as strain
for the direct comparison of model predictions with measurements. Prediction errors
associated with longitudinal strain may be important (>100%) due to local changes
in stress distribution that are caused by model simplifications. Global behavior, such
as natural frequencies, displacements and rotations around the transversal axis, should
be favored as quantities to be compared with measurements during structural identi-
fication. Although the solid-based model accurately represents the geometry of the
bridge, it remains an approximation of the real structure. Additional errors should be
expected between the predictions given by this model and the real behavior. The re-
sults of this study provide lower bounds of model simplification errors that can be used
for structural identification.

The most important aspect of this study is that it shows that model simplifications
and omissions systematically affect the relationships between errors. This means that
when an aspect of a structure is neglected in the model, it may systematically affect
the prediction errors for several prediction locations and several prediction types to
varying degrees. Modeling each of these errors by zero-mean independent Gaussian
noise would not represent the relationships between errors observed in this case study.

Structural identification using dynamic data
This section presents the condition evaluation of the Grand-Mere Bridge using am-

bient vibration monitoring data. A flowchart summarizing the main steps involved in
the diagnosis are presented in Figure 11. The first step is to define what parameters
need to be identified. These parameters are used to generate a population of model
instances that are potentially representative of the structure behavior. Independently,
uncertainties involved in the diagnosis are quantified. Modeling uncertainties, such as
those arising from the model simplifications estimated in the previous section, are in-
cluded in the analysis along with measurement uncertainties. All uncertainty sources
are combined together and threshold bounds are computed. These thresholds are used
when comparing model predictions and measurements to decide which models remain
candidates and which are falsified.

Ambient vibration recordings
Ambient vibrations were recorded on the bridge under traffic in 2003. Twelve com-

ponents were recorded simultaneously during 10 min at a 200 Hz sampling frequency.
Seven recording positions with two reference points allowed measurement of 16 points
in both vertical and transverse directions plus 28 points in the vertical direction (Figure
12). Accelerometers were positioned inside the box girder on the web faces at about
500 mm above the lower flange.

In order to be interpreted, measured accelerations have to be synthesized into nat-
ural frequencies and mode shapes (experimental modal analysis). The technique used
here is the Frequency Domain Decomposition (FDD) method (Brincker et al. 2001).
This technique was already successfully used for civil structures (Michel et al. 2008;
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Figure 11. Flowchart summarizing the steps involved in the Grand-Mere
Bridge diagnosis.
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Figure 12. Accelerometer layout for Grand-Mere bridge monitoring sys-
tem.

Michel et al. 2010). The six first singular values of the averaged power spectral den-
sity matrices (FDD spectrum) are shown in Figure 13. The number of singular values
showing a peak in a given frequency range corresponds to the number of modes in
this range. For instance, around the frequency 1 Hz, two singular values show a peak
indicating the presence of two modes. The four first vertical modes represented in Fig-
ure 14 were identified with confidence. In addition, the first transverse as well as the
first torsion modes are identified, but with a lower accuracy in the mode shape. The
low number of components recorded in the transverse direction and the low amplitude
of vibration in this direction led us to dismiss the transverse mode in the following
analyses. In any case, not including a mode in the model-falsification process is con-
servative. Predicted and measured mode shapes are compared using the MAC test to
verify that the comparison of natural frequencies is performed over the right modes.
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Figure 13. Averaged singular values of the power spectral density matri-
ces for Grand-Mere Bridge.

Modes number 1, 3, 4 and 6 passed the MAC test with value larger than 0.8.

Parameter values to be identified and model instance generation
A sensitivity analysis revealed that predicted natural frequencies are most sensitive

to variation in the concrete Young’s modulus, in the bearing device condition, and in
the level of cracking (see Figure 15 & Table 2). These structural properties are chosen
as parameter values to be identified. For the Young’s modulus, the value sought (E0)
is an average over the structure. The bearing device condition is described by a pa-
rameter accounting for the possibility that longitudinal support displacement may be
restrained under ambient vibrations due to friction forces as shown for another struc-
ture by Goulet et al. (2012). This phenomenon is simulated using longitudinal springs
having unknown stiffness constants (K).

Finally, the possibility that cracked zones affect the behavior of the structure is
tested by reducing the Young’s modulus of concrete in regions located on the upper
flange at the intermediate supports and on the lower flange at mid-span. This simplified
representation of the cracking mechanism is intended to identify the eventual presence
of undetected cracks. Five parameters are selected to describe these zones: an effective
Young’s modulus of the cracked concrete for each zone (E1, E2, E3) is expressed as
a fraction of the average Young’s modulus (E0); the length of the effective cracked
zones at the supports (L1), and the length of the effective cracked zone at mid-span
(L2). Overall, there are seven parameters that need to be identified as shown in Figure
15. The values used for each parameter are presented in Table 2.

An initial model set is made of 2187 (37) combinations of these parameters. These
combinations were selected over a seven-dimensions grid where each parameter value

14
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Figure 14. Measured mode shapes and frequencies for Grand-Mere
Bridge. Each mode is shown with the undeformed profile.
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Figure 15. Parameter values to be identified for the Grand-Mere Bridge.

Table 2. Values for parameters (3 for each parameter) used to create the
initial model set for the Grand-Mere Bridge.

Parameter value to be identified Units Values

Concrete Young’s modulus (E0) GPa {15, 27.5, 40}
Bearing device restriction (K) kN/mm {0, 2E2 2E4}

Effective value of Young’s modulus of cracked concrete at west pile (E1) - {0.1, 0.5, 1}
Effective value of Young’s modulus of cracked concrete at mid-span (E2) - {0.1, 0.5, 1}
Effective value of Young’s modulus of cracked concrete at east pile (E3) - {0.1, 0.5, 1}

Length of crack zone over supports (L1) m {4, 10, 16}
Length of crack zone at mid-span (L2) m {4, 10, 16}

can take the lower, higher and midrange of its interval. This choice of discretization
is governed by the computing time. From the three model classes available, the shell-
based class is chosen as a template model to evaluate the predictions for each instance
of the initial model set. It has been shown in the previous section that except for tor-
sional modes, the shell-based model adequately captured the dynamic characteristics
of the solid-based model. It took 48 hours to evaluate the 2187 model instances us-
ing a workstation having 48GB of ram memory and two Intel Xenon X5560 8-core
processors. Solving these models is computationally demanding. When computation
time exceeds available resources, other stochastic sampling and surrogate modeling
techniques could be used (Tarantola 2005; Sudret and Der Kiureghian 2000).

Uncertainties
Secondary parameters are those that have a marginal effect on the structural re-

sponse and are considered as uncertainties. Natural frequencies are influenced by the
mass and the rigidity of the structure. Therefore, the secondary-parameters are the
concrete, pavement, and sand-filling densities, the pavement Young’s modulus and the
steel reinforcement Young’s modulus. Except for the uncertainty attributed to the steel
Young’s modulus that follows a Gaussian pdf with a mean of 202 GPa and a standard
deviation of 6 GPa, other secondary-parameter uncertainties are represented by uni-
form pdf s. Uniform pdf is used because, based on the principle of maximum entropy,
it corresponds to the lowest level of information it is possible to represent in a proba-
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bility distribution (Jaynes 2003). The details of each uniform uncertainty distribution
are presented in Table 3. These uncertainties on secondary parameters are propagated
in the template model to obtain the uncertainties associated with predicted frequencies.
During this process, parameter values to be identified are set to their mean value.

Table 3. Secondary-parameter uncertainties for Grand-Mere Bridge.

Uncertainty source
(Uniform distribution) Unit min max

Concrete density T/mm3 2.2E-9 2.6E-9
Pavement Young’s modulus MPa 1000 10000

Pavement density T/mm3 2.0E-9 2.4E-9
Sand density T/mm3 1.1E-9 2.0E-9

Details of other uncertainty sources are summarized in Table 4. These sources are

Table 4. Other uncertainty sources for Grand-Mere Bridge.

Uncertainty source
(Extended uniform distribution) Lower bound Upper bound β

AVM epistemic variation -2% 2% 0.30
Model simplifications

Mode 1 -8% -1% 0.30
Mode 3 -8% -1% 0.30
Mode 4 -7% -0% 0.30
Mode 6 -9% -2% 0.30

Mesh refinement 0% 1% 0.30
Additional uncertainties -1% 1% 0.30

described by the extended uniform distribution (Goulet et al. 2012). This distribu-
tion includes uncertainty regarding the bounds defining the uniform distributions. The
parameter β represents the uncertainty of bound positions as a fraction of the initial in-
terval width. The element discretization error is estimated based on a mesh refinement
analysis conducted to determine the maximal plausible prediction error for each natu-
ral frequency. As for other quantities that were compared in the previous section, the
mesh refinement error was found to be below the upper bound fixed at 1% of the pre-
dicted value. The evaluation of uncertainties related to model simplifications is based
on the study presented in the previous section. Measurement variability is described
by a Gaussian distribution with a mean of 0% and a standard deviation of 2%.

Model simplification errors are epistemic in nature because they are due to a lack of
knowledge. A Bayesian interpretation of probability is used to define pdf s expressing
the degree of belief of observing specific error values. An uncertainty of±4% is added
to the errors estimated in the previous study to represent that the solid-based model
used as reference is also an approximation of the real structure.
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Based on values reported in previous studies (Goulet et al. 2012), the ambient
vibration monitoring epistemic variability is represented by an extended uniform dis-
tribution with bounds at ±2% of the measured frequency values. Observed variability
across the datasets is represented by a Gaussian distribution having a standard devi-
ation of 2% of the measured frequencies. This number is an upper bound based on
previous experiments (Goulet et al. 2012).

All uncertainty sources are combined together using a Monte-Carlo process to ob-
tain threshold bounds for each mode. Thresholds are computed for a target reliability
φ = 0.95. The relative importance of uncertainties is shown in Figure 16. The heights
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Figure 16. Uncertainty sources relative importance for Grand-Mere
Bridge

of bars are the values of slope coefficient that are calculated from linear regression
where observations are the combined uncertainty values obtained from a Monte-Carlo
analysis using the normalized individual error values as input parameters. Error val-
ues are normalized such as the values corresponding to the lower endpoints having a
probability content of 2.5% and the upper endpoints having a probability content of
97.5% correspond respectively to -1 and 1. The most important sources of uncertainty
are measured frequencies, model simplifications and concrete density.

Model falsification
Figure 17 presents for modes 1, 3, 4 ,and 6 measured natural frequencies and pre-

dictions from all the model instances classified as either candidate or falsified models.
Model instances are represented on the horizontal axis, and the predicted and mea-
sured values are shown on the vertical axis. The position of each dot corresponds to
a prediction given by a model instance. The horizontal continuous line is the mea-
sured natural frequency, the two dashed lines are the threshold bounds that separate
candidate and falsified model instances, and the vertical continuous line represents the
magnitude of the probability density function of the combined uncertainty. Cross signs
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represent candidate models, i.e. model instances whose predictions are simultaneously
included between the threshold bounds for all modes {1, 3, 4, 6}. Some models that
lie within threshold bounds for a given mode are falsified because they are outside the
thresholds for other modes. Using multiple natural frequencies to compare predicted
and measured values thus helps reduce the number of candidate models.
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Figure 17. Comparison between the measured and predicted frequen-
cies for modes 1, 3, 4 and 6 for the Grand-Mere Bridge.

The predicted frequencies for modes 3, 4 and 6 are influenced by the value of the
concrete Young’s modulus. The plots for modes 3, 4 and 6 in Figure 17 show distinct
groups of predictions related to the three possible values for this physical parameter.
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Model instances are falsified in a similar way for these three modes : models having
the high value of 40 GPa for the concrete Young’s modulus are selected as candidates
for these modes. The first mode falsifies model instances in a different way. The
scatter in model predictions for the first mode is influenced by a combination of the
Young’s modulus and the bearing device movement parameters. Models with a low and
moderate value for concrete Young’s modulus (15-27.5 GPa) are discarded regardless
of the level of cracking and bearing device restriction.

A pairwise representation of the parameter values for the candidate model set is
presented in Figure 18. Each graph represents the possible range for each parameter
and dots correspond to candidate models. All 258 candidate models have a high value
for concrete Young’s modulus (E0). Some of these candidates models showed that the
midrange value for the bearing device stiffness is possible when combined with a high
level of cracking. All parameter values are possible for other parameters (E1, E2, E3,
L1, L2). These plots show that even if the number of candidate models was reduced
by more than 80% compared with the initial model set, the parameter range could only
be reduced for the Young’s modulus and for the beading device restriction.

The ranges of values identified for the concrete Young’s modulus and the param-
eters related to the crack pattern can be used to obtain long-term creep and shrinkage
behavior predictions with the template model. In accordance with results found in an-
other study by Goulet et al. (2012), the identification shows that the bearing device
behavior could have been hindered during ambient vibration monitoring. For ambient
vibrations, restricting the longitudinal movement of bearing devices mainly affects the
first vertical bending mode. Although the bearing device parameter can influence the
structure under ambient vibrations, it is likely not to have an effect on its displace-
ment under high loads and over a long time-span. Therefore, this parameter could be
removed when performing long-term behavior simulations. The system identification
study can support future long-term behavior simulations such as those performed by
Bazant et al. (Bazant and Baweja 2000; Bazant et al. 2010; Bazant et al. 2008) on
similar structures. Parameter values identified in this study are specific to the structure
tested and results cannot be directly extrapolated to other structures. Nevertheless, the
same methodology can be used.

DISCUSSION
Results obtained from the comparison of different levels of model complexity show

that model simplifications systematically affect predictions at several locations and for
several prediction types. When relationships between prediction errors lead to biased
models, traditional system identification approaches that adjust parameter values in
order to minimize the discrepancy between predicted and measured values may have
difficulties to identify physically meaningful parameter values. Neglecting systematic
errors, such as those described in this study, is likely to lead to wrong estimations
for parameter values. Indeed, neglected model simplification errors and the effect of
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Figure 18. Pairwise representation of the candidate model set parameter
values for Grand-Mere Bridge.

wrong parameter values may compensate for each other giving the illusion that the
model predictions fit the measured data in an acceptable way.

Recognizing, quantifying and including uncertainties are important challenges of
structural identification. Attempts to provide lower bounds for model simplification
uncertainties are possible through the comparison of several orders of model complex-
ity. Even if it is not specifically studied in this paper, it is acknowledged that there are
tradeoffs between model complexity and identification accuracy. More complex mod-
els may reduce uncertainties leading to more precise diagnosis. However, this could
involve higher computing and modeling costs. Further research is needed to quantify
optimal tradeoffs.

CONCLUSIONS
The effect of modeling simplifications on prediction uncertainties is evaluated in

order to improve structural identification. This study provides a starting point for a
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model-based assessment of the Grand-Mere Bridge. Specific conclusions of this re-
search are:

1. Model simplifications such as the degree of refinement of a model and the ex-
clusion of secondary features have a significant influence on prediction errors.
These errors are systematic and inter-dependent. Representing these by zero-
mean independent Gaussian noise does not describe the relationships between
errors observed in this case study.

2. Simplified models of the Grand-Mere Bridge inadequately represent local be-
havior. Errors in longitudinal strain predictions are in many cases significant
(>100%). Therefore, global behavior such as natural frequencies, displace-
ments and rotations around the transversal axis are more appropriate quantities
to be compared with measurements. Results from this study give lower bounds
of model simplification error estimates that can then be used as input for system
identification.

3. Two possibilities are identified for the behavior of structures based on ambi-
ent vibration monitoring data. Either the structure has a partial longitudinal
hindrance in the bearing device combined with a high level of cracking or no
longitudinal hindrance with several possible levels of cracking. All candidate
models identified have a high value of Young’s modulus.
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