
Goulet, J. and Smith, I. (2013). Performance-driven measurement-system design for
structural identification. Journal of Computing In Civil Engineering, 27(4):427–436.

PERFORMANCE-DRIVEN MEASUREMENT-SYSTEM
DESIGN FOR STRUCTURAL IDENTIFICATION

James-A. Goulet A. M. ASCE1 and Ian F. C. Smith, F. ASCE2

Abstract
Much progress has been achieved in the field of structural identification due to a better

understanding of uncertainties, improvement in sensor technologies and cost reductions. How-
ever, data interpretation remains a bottleneck. Too often, too much data is acquired, thus hin-
dering interpretation. In this paper, a methodology is described that explicitly indicates when
instrumentation can decreases the ability to interpret data. The approach includes uncertainties
along with dependencies that may affect model predictions. Two performance indices are used
to optimize measurement system designs: monitoring costs and expected identification perfor-
mance. A case-study shows that the approach is able to justify a reduction in monitoring costs
of 50% compared with an initial measurement configuration.

Keywords: Computer-aided design, Measurement System, Sensor placement, Un-
certainties, dependencies, Expected Identifiability, System Identification, Monitoring

INTRODUCTION
Identifying and understanding the behaviour of civil structures based on measure-

ment data is increasingly used for avoiding replacement and strengthening interven-
tions (Catbas et al. 2012). Much progress has been achieved in the field of structural
identification due to a better understanding of uncertainties as well as improvements in
sensing technologies and data-acquisition systems (Fraser et al. 2010). However, data
interpretation remains a bottleneck. Indeed, in many practical situations, the cost of
making sense of data often exceeds by many times the initial cost of sensors. Brown-
john (2007) noted that currently, there is a tendency toward over-instrumentation of
monitored structures. This challenge often becomes critical when monitoring over
long periods. There is a need to determine which measurements are useful to deter-
mine the behaviour of a system. Intuitively, engineers measure structures where the
largest response is expected. This ensures that the ratio between the measured value
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and the measurement error is the largest. However, these locations may not be those
that support structural identification in the best way. Furthermore, in the case of struc-
tural identification, measurement uncertainties are often not the dominant source of
uncertainty (Goulet et al. 2010).

Robert-Nicoud et al. (2005) proposed a multi-model approach combined with an
entropy-based sensor-placement methodology. The application of the methodology by
Kripakaran and Smith (2009) to a bridge case-study showed that a saturation of the
amount of useful information can be expected. At some point, adding sensors did not
reduced the number of models that were able to explain measured behaviour. In the
field of structural engineering, the concept of entropy-based sensor placement was also
explored by other researchers (Yuen et al. 2001; Papadimitriou 2004; Papadimitriou
et al. 2005; Papadimitriou 2005). These applications also showed that saturation of the
information increased as sensors were added. Many other researchers (Cherng 2003;
Kammer 2005; Kang et al. 2008; Liu et al. 2008; Liu and Danczyk 2009) have made
proposals that involve maximizing the amount of information contained in dynamic
monitoring signals. Sensor placement is an active field of research in domains such
as water distribution networks (Krause and Guestrin 2009) and traffic monitoring (Liu
and Danczyk 2009). Also, few researchers have used utility-based metrics to design
measurement systems. For instance, Pozzi and Der Kiureghian (2011) have proposed
economic criteria instead of sensor information accuracy to plan monitoring interven-
tions. These authors observed that the “value of a piece of information depends on
its ability to guide our decisions”. This supports the idea that measurement systems
should be designed according to measurement goals. Currently there is a lack of sys-
tematic methodologies to design measurement systems for a range of measurement
goals.

An additional limitation of existing approaches is that most do not explicitly ac-
count for systematic bias introduced by epistemic uncertainties. Civil-structure models
are prone to epistemic errors that arise from unavoidable simplifications and omissions.
Epistemic errors often introduce varying systematic bias over multiple prediction loca-
tions and prediction quantities. These effects should be explicitly incorporated in the
process of designing measurement systems. Recently, Papadimitriou and Lombaert
(2012) have explored the influence of error dependencies on measurement-system de-
sign. Also, Goulet and Smith (2011b) proposed an identification methodology that in-
cludes systematic bias and epistemic uncertainty dependencies. The methodology was
used for predicting the usefulness of monitoring for identifying the parameters char-
acterizing the behavior of a bridge structure (Goulet and Smith 2012). However, the
potential of this methodology for optimizing measurement systems was not explored.

This paper proposes a computer-aided measurement-system design methodology
that includes systematic bias and epistemic uncertainties. The objective functions used
by the methodology includes, the capacity to falsify models and measurement-system
cost. The first section summarizes the error-domain model-falsification methodology
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and the expected identifiability performance metric. The following section describes
the measurement-system design methodology and a case-study is presented in the last
section.

PREDICTING THE PERFORMANCE OF MEASUREMENT SYSTEMS AT
FALSIFYING MODELS

Starting with the principle that observations can best support the falsification of
hypotheses, the error-domain model-falsification approach (Goulet et al. 2010; Goulet
and Smith 2011b) uses measurements to falsify model instances. A model instance is
defined as a set of np parameters θ = [θ1, θ2, . . . , θnp ] characterizing the behaviour of
a structural model. These parameters are usually associated with boundary conditions,
material properties and the geometry of a structure. Model instances are falsified if
at any location i, the difference between predicted (gi(θ)) and measured (yi) values
lies outside the interval defined by threshold bounds (Ti,Low, Ti,High) that are based on
modeling and measuring uncertainties. Models are falsified if the condition presented
in Equation 1 is not satisfied. In this Equation, nm is the number of measurements.

∀i = 1, . . . , nm : Ti,Low ≤ gi(θ)− yi ≤ Ti,High (1)

The combined uncertainty distribution and its threshold bounds are presented in Figure
1. This distribution is obtained by evaluating modelling and measuring uncertainty
sources separately and then combining them together. Details regarding numerical
uncertainty combination techniques are presented in ISO guidelines (2008). Threshold
bounds define the smallest intervals that include a probability content φ ∈]0, . . . , 1],
defined by users. Details regarding computation of threshold bounds are presented in
Goulet and Smith (2012).

0
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Combination of modeling and

measurement uncertainties

Threshold bounds

Figure 1. Threshold bounds based on modeling and measuring uncer-
tainties

When nm measurements are used, it is conservative to define threshold bounds to
include a probability content φ′ = φ1/nm for the combined uncertainty associated with
each comparison point. A comparison point is a location where predicted and mea-
sured values are compared. Each time a measurement is added, threshold bounds are
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adjusted (widened) to include the additional possibility of wrongly falsifying a cor-
rect model instance. This is illustrated in Figure 2, where the combined uncertainty
for two comparison points are presented in a multivariate probability density func-
tion (pdf ). The projection of threshold bounds including a probability φ′, determined
for each combined uncertainty pdf, defines a square region that includes a probability
content φ. Thus, if for any comparison point, the difference between predicted and
measured value falls outside this region, the model instance is discarded with a prob-
ability ≤ 1 − φ of performing a wrong diagnosis (discarding a correct model). S̆idák
(1967) noted that this procedure lead to conservative threshold bounds regardless of
the dependency between the random variables that are used to represent uncertainties.
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Figure 2. Threshold bounds based on model and measurement uncer-
tainties

Prior to measuring a structure, simulated measurements are generated by subtract-
ing error samples taken in the combined uncertainty distribution from the predictions
given by a model instance. Dependencies between prediction uncertainties are in-
cluded in the process of simulating measurements. These dependencies are described
by correlation coefficients. Since little information is available for quantifying these
coefficients, a qualitative reasoning formulation is used to describe them. In this formu-
lation, uncertainty correlations are described qualitatively by the labels “low”, “mod-
erate” and “high”, and by labels “positive” or “negative”. These labels correspond to a
probability distribution for the correlation value as presented in Figure 3. Each proba-
bility density function defines the frequency of the uncertainty correlation values used
during the generation of simulated measurements.

Before measuring, an infinite number of parameter sets θ might be acceptable ex-
planations of the structure behavior. The space of possible solutions is represented by
a finite number of model instances. These instances are organized in a np-parameter
grid that is used to explore the space of possible solutions. Such a grid is named the
initial model instance set. An example is presented in Figure 4 for two parameters.

For a measurement and load-case configuration, the goal is to predict probabilis-
tically the expected number of candidate models that should remain in the set if real
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Figure 3. Qualitative reasoning formulation used to include the uncer-
tainty associated with uncertainty dependencies Reprinted from Goulet
and Smith (2012) with permission from ASCE
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Figure 4. Initial model set organized in a n-parameter grid used to explore
the space of possible solutions

measurements are taken. The number of candidate models (nCM ) obtained from each
instance of simulated measurements is stored in a vector ΥCM . Results contained
in this vector are summarized in an empirical cumulative distribution function (cdf,
FΥCM

(nCM)). This cdf describes the certainty of obtaining any number of candidate
models if measurements are taken on the structure. The quantity extracted from the
cdf is the maximal number of expected candidate models that should be obtained for
a 95% certainty (F−1

ΥCM
(0.95)). F−1 represents the inverse cdf. An example of FΥCM

is presented in Figure 5 where the horizontal axis corresponds to the expected size of
the candidate model set and the vertical axis to the certainty of obtaining a maximum
candidate model set size. In this example, there is a certainty of 95% of falsifying
at least 60% of the models (F−1

ΥCM
(0.95) ≈ 40%). This quantity is defined as the ex-

pected identifiability and can be used for predicting the ability of measurement systems
to falsify model instances.

The predictive capacity of this approach was validated by Goulet and Smith (2012)
in a full-scale study using real data. It was show that the expected identifiability metric
can adequately predict the number of candidate model that should be obtained when
using real measurement data.
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Figure 5. Example of how the performance of a measurement system is
computed using the number of candidate models obtained from simu-
lated measurements

MEASUREMENT-SYSTEM DESIGN
The expected identifiability described in the previous section is used as a per-

formance metric to optimize the efficiency of measurement systems. Moreover, in
common monitoring interventions, a balance is sought between performance and cost.
Therefore, the methodology also uses measurement-system cost as a second objective
for optimizing measurement systems. The cost of a measurement system is computed
to be the sum of sensor costs and the expenses related to testing equipment, such as
trucks in the case of static-load tests. It is assumed that the manpower required during
measurements is constant.

In order to maximize the monitoring efficiency, the performance of several mea-
surement and load configurations are studied. There are complexity issues involved
with optimizing the performance of measurement systems. Equation 2 presents the
number of possible sensor configurations. When selecting configurations involving 20
measurements there are more than a million possibilities. For 300 measurements, the
number of possibilities is ≈ 1090.

nm∑
k=1

nm!

k!(nm − k)!
= 2nm − 1 (2)

This illustrates the exponential growth of the solution space with the number of
measurements. In order to obtain optimized solutions efficiently, advanced search al-
gorithms are necessary. Several stochastic global search algorithms are available in the
literature (Deb et al. 2002; Raphael and Smith 2003; Kirkpatrick et al. 1983; Kennedy
and Eberhart 1995; Cormen 2001) with several applications in the field of civil engi-
neering (Harp et al. 2009; Dimou and Koumousis 2009; Domer et al. 2003). In this
paper, a greedy optimization methodology is chosen because it is particularly suited
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to the characteristics of this task. Further discussion is provided later in this paper.
Note that the approach presented is not limited to the optimization algorithm chosen to
explore measurement-system configurations.

Methodology
The methodology used to design efficient measurement systems is based on a

Greedy algorithm. At each iteration, it identifies the measurement that can be re-
moved from an initial configuration containing N measurements while minimizing the
expected number of candidate models. This process is repeated until a single measure-
ment and load case is left.

Figure 6 presents a flowchart summarizing steps described above for optimizing
the performance of measurement systems. In this flowchart, the vector s contains nm

dummy variables indicating whether or not a potential measurement location is used.
The Greedy algorithm first evaluates the expected identifiability when using simulta-
neously all possible measurement types and locations. Once, the expected identifia-
bility (F−1

ΥCM
(0.95)) is computed, each sensor is removed from the set of N = nm

selected sensors, s(i) = 0 ∀i ∈ {1, . . . , N}. The sensor removal leading to the best
performance is removed permanently from the set of selected sensors. This process is
repeated iteratively with N = N − 1 sensors until a single sensor is left. In the case of
static measurements, it is useful to optimize simultaneously the number of sensors and
load-cases used. Therefore, the algorithm stops when a single sensor and load-case
are obtained. The cost associated with each solution is computed and non-optimal
solutions (with respect to cost) are removed. The results from measurement-system
optimization are returned in a two-objective graph as presented in Figure 6 and in a
table containing the details of each measurement-system configuration.

Users may then choose the measurement system that is the best tradeoff between
the expected performance and available resources. If the expected performance cannot
justify monitoring interventions, new measurement locations and types may be evalu-
ated. If such possibilities do not exist, this operation could lead to a justification for
performing no monitoring on the structure, thereby redirecting monitoring resources
to other structures where data would be more useful to understand system behavior.

Figure 7 schematically presents an example of the trends of two competing factors
in measurement-system design. The number of measurements used is the horizontal
axis and the expected number of candidate models is the vertical axis. This last quantity
is expressed as a percentage of the initial model set size expected for a certainty of
0.95. Note that the number of measurements used is in many cases proportional to the
monitoring cost. These curves describe the relationships between the expected number
of models and the number of sensors used.

In Figure 7 the total number of candidate models (solid line) decreases as the num-
ber of measurements increases, until the point where additional observations are not
useful. Beyond this point, additional measurements may decrease the efficiency of the
identification by increasing the number of candidate models (i.e. reducing the number
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Figure 6. Flowchart schematically representing steps involved in opti-
mizing the performance of measurement systems.

of falsified models). Over-instrumentation is due to the combined effects of an in-
crease in performance due to additional information brought by new observations and
a decrease in performance due to threshold adjustments (dashed lines).

In order to avoid over-falsification, threshold bounds are conservatively adjusted
using the S̆idák correction. Threshold corrections ensure that the reliability of the
identification meets the target φ when multiple measurements are used simultaneously
to falsify model instances. In other words, the criterion used to falsify models (thresh-
old bounds) depends upon the number of measurements used. Over-instrumentation
occurs when including a new measurement falsifies less model instances than the num-
ber of additional instances accepted due to threshold bound adjustments. Such a sit-
uation is likely to happen when the information contained in several measurements is
not independent. Furthermore, poor identification performance can be expected when
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Figure 7. Schematic representation of the phenomena involved in the
design of measurement systems. The total number of candidate mod-
els decreases as the number of measurements increases until the
point where additional observations are not useful (solid curve). Over-
instrumentation is due to the combined effects of the increased amount
of information and threshold adjustments (dashed curves).

modeling and measuring uncertainties are large in comparison with the prediction vari-
ability within the initial model set.

Complexity
For static monitoring, if one load case is possible, the Greedy algorithm performs

the measurement-system optimization in less than n2
m/2 iterations, where nm is the

maximal number of measurements. Figure 8 compares the number of iterations re-
quired with the number of sensor combinations possible for one load-case. It shows
that Greedy algorithm complexity (O(n2)) leads to a number of sensor combinations
to test that is significantly smaller than the number of possible combinations (O(2n)).
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CASE-STUDY
The measurement-system design methodology presented in the previous section is

used to optimize the monitoring system for investigating the behavior a full-scale struc-
ture using static load-tests. The Langensand Bridge is located in Lucerne, Switzerland.
Its longitudinal profile is presented in Figure 9.

Case-study description
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Girder profile
X
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Z

Figure 9. Langensand Bridge elevation representation. Reprinted with
permission from the ASCE

The finite-element template model used to generate model instances is presented
in Figure 10. The primary parameters to identify are the concrete Young’s modulus for
the slab poured during construction phase one and two, the asphalt Young’s modulus
for phase one and two and the stiffness of the horizontal restriction that could take
place at the longitudinally free bearing devices. Details of the construction phases are
presented in Figure 11. The possible range for concrete Young’s modulus varies from
15 GPa to 40 GPa, from 2 GPa to 15 GPa for asphalt, and the bearing device restriction
varies from 0 kN/mm to 1000 kN/mm. Each parameter range is subdivided into five
intervals to generate 3,125 initial model instances.
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Figure 10. Bridge cross-section detail

The initial measurement system to be optimized is composed of ten displacement,
four rotation and five strain sensors. The displacement and rotation measurements are
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referenced by the prefix UY for vertical displacement, RZ for the rotation around the
transverse axis and EX for strain along the longitudinal axis. The location of each
sensor is referenced according to the axes presented in Figure 11. The structure can be
loaded using four load-cases presented in Figure 12. Each test-truck weighs 35 tons
and each test load-case takes two hours.
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Figure 11. Langensand Bridge cross-section and sensor layout

Each displacement sensor costs US$ 200. Rotation sensors cost US$ 600 each and
strain sensors costs US$ 1500 per unit (optical-fiber devices), including installation
costs. Test-truck rental is US$ 400 per truck plus an additional US$ 200 per hour of
use.
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Figure 12. Load-case layout

Modeling and measurement uncertainties
Several random and epistemic uncertainty sources affect the interpretation of data.

Table 1 summarizes uncertainties associated with secondary model-parameters that
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are not intended to be identified because their effect on predicted response is too small.
These are described by Gaussian distributions. The symbol ∆ indicates a variation
with respect to the nominal value specified for the structure. These uncertainties are
propagated in the finite-element template model to obtain the uncertainties related to
model predictions.

Table 1. Secondary parameter uncertainties

Uncertainty source Unit Mean σ

Steel Young’s modulus GPa 202 6
Poisson’s ration concrete - 0 0.025
∆ thickness - steel plates % 0 1
∆ thickness- pavement % 0 5
∆ thickness- concrete % 0 2.5

Test-truck weight Ton 35 0.125
Strain sensor vertical positioning mm 0 5

Other modeling and measurement uncertainty sources are described in Table 2.
These numbers are based on uncertainties defined by Goulet and Smith (2012) for a
first study performed on the structure during its construction phase. The probability
distribution used to describe three uncertainty sources (model simplifications, mesh
refinement and additional uncertainties) is the extended uniform distribution (Goulet
and Smith 2011a). This distribution is made of several orders of uniform distribution,
each representing the uncertainty associated with the bound position. The intervals
defined in Table 2 are the minimal and maximal uncertainty bounds expressed as a
percentage of the mean model prediction. These numbers were defined during a first
study of the structure during its construction phase (Goulet and Smith 2012). For
displacement and rotation predictions, the uncertainty associated with bounds is 30%
(β = 0.30). In the case of strain, this uncertainty is 50% (β = 0.50) because of local
inaccuracies in the bridge model have a more important effect on predicted values.

Sensor resolutions are described by traditional uniform distributions based on man-
ufacturer specifications. Measurement repeatability uncertainty is taken to be Gaussian
where the coefficients of variations are estimated to be 1% for displacement measure-
ments, 0.5% for rotations and 3% for strains. These numbers are conservative upper
bounds of results obtained from previous measurements (Goulet et al. 2010).

For each uncertainty source presented in Table 2, a qualitative description of un-
certainty dependency is provided. In addition, the level of uncertainty correlation be-
tween load cases is assumed to be high and positive. The correlation between predic-
tions originating from secondary-parameter uncertainties is implicitly provided when
uncertainties are propagated through the finite-element template model. For each mea-
surement location, a combined uncertainty pdf is computed. Threshold bounds are
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Table 2. Other uncertainty sources

Uncertainty source Displacement Rotation Strains Qualitative
min max min max min max correlation

Sensor resolution -0.2mm 0.2mm -4µrad 4µrad -4µε 4µε low+
Model simplifications & FEM 0 % 7% 0% 7% 0% 20% high+

Mesh refinement -1% 0% -1% 0% -2% 0% high+
Additional uncertainties -1% 1% -1% 1% -1% 1% moderate+

mean σ mean σ mean σ

Measurement repeatability 0 % 1% 0% 0.5% 0% 3% high+

determined for a target probability fixed at φ = 0.95. The definition of the threshold
bounds width depends on the number of measurements used in the falsification pro-
cess. Therefore, specific threshold bounds are computed for each sensor configuration.

Measurement-system design results
Measurement-system optimization is performed according to two criteria: load-

test costs and the expected number of candidate models. Both objectives need to
be minimized. Results are presented in Figure 13. Load-test costs are presented on
the horizontal axis and the expected number of candidate models on the vertical axis.
The expected number of models is expressed as a percentage of the initial model set.
Each dot represents the optimal measurement-system found for each cost. When using
cheap measurement systems with few sensors, poor results are expected. By choos-
ing optimized sensors and test configurations, the performance can be improved for a
marginal cost increase. Beyond a certain point, adding sensors and load cases not only
stops improving the monitoring efficiency, it decreases it. This quantitatively shows a
principle, intuitively known by engineers, that too much measurement data may hinder
interpretation.

The sensor and load-case configurations associated with each dot in Figure 13 are
reported in Table 3. In this table, the columns containing diamond signs indicate which
sensors and load-cases are selected for each configuration reported in Figure 13. The
expected number of candidate models is obtained for a certainty of 95%. This is the
upper bound for the number of candidate models that should be obtained when using
real measurements. This means that individual results are likely to be better.

In this case, the best measurement system found uses 4 sensors with 3 load-cases
and would result in almost 80% of model instances to be falsified. This measurement-
system configuration is halfway between the cheapest and most expensive measure-
ment systems. It leads to a reduction of monitoring costs by up to 50% compared with
the maximal cost.
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Figure 13. Multi-objective optimization results for the Langensand
Bridge.

Table 3. Optimized measurement configurations are shown by a vertical
set of symbols � for a given sensor type and location. The cost of the
load-test along with the expected number of candidate models computed
for certainty of 95% are reported for each configuration.

Sensors &
load-cases

Load-test configurations

UY-S03-114 � �
UY-S07-114 � � � � � � � � �
UY-S12-114 � � � � � � � � �
UY-S17-114 � � � � �
UY-S21-114 � � � � � � � � � � � �
UY-S03-124 � � � � � �
UY-S07-124 � � � � � � � �
UY-S12-124 � � � � � �
UY-S17-124 � � � � � � �
UY-S21-124 � � � � � � � � �
RZ-A1-113 � � � � � � � � � � � � � � � � �
RZ-S4-113 � � � � � � � �
RZ-S7-113 � � � � � � �

RZ-S10-113 � � � � �
EX-L1 � � � � � � �
EX-L2 � � � � � � � � � � � � � �
EX-L3 � �
EX-L4 � � � � � � � � � � � �
EX-L5 � � � � � � � � � � � � � � � �

LC1 � � � � � � � � � � � � � � � � � � �
LC2 � � � � � � � � � � � �
LC3 � � � � � � � � � � � � � � �
LC4 � � � �

Cost (X1000 US $) 3.4 3.4 3.8 5.3 6.9 8.4 9.9 10.2 11.5 11.7 12.5 12.9 15.6 16 16.6 18 18.2 19.5 19.9
Expected CM 3000 1252 1092 909 861 783 722 712 676 694 711 720 720 725 725 729 755 773 781
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DISCUSSION
Results presented here indicate that over-instrumenting a structure is possible. This

approach is not intended to replace engineering judgment; it is presented as a tool for
exploring the benefits of a wide selection of possible sensor types and their locations.
In the case where the optimal configuration uses few sensors, additional provisions
might be justified to account, through redundancy, for possible sensor breakage and
malfunction.

The methodology presented in this paper can be used with optimizations method-
ologies other than the Greedy algorithm. As it was already noted by (Goulet and
Smith 2011c) the global trend of over instrumentation is independent of the optimiza-
tion technique. This is verifiable because the right end of the curve presented in Figure
13 corresponds to the configuration using all sensors and load cases. In future studies,
the optimality of the solution found using a Greedy algorithm could be compared with
other stochastic global optimization approaches. If better solutions are found, these
will further increase the over instrumentation trends illustrated in this paper. Further-
more, for this case, a sensitivity analysis has shown that the effect of single sensor re-
moval is dominant over the effect of the interaction caused by multiple sensor removal.
Therefore, stochastic search algorithms are not expected to provide better optimization
results. Aside from the optimization algorithm choice, the shape of the curve obtained
from the multi-objective optimization exercise depends on characteristics such as sen-
sor costs, uncertainties as well as possible sensor types and locations.

CONCLUSIONS
Computer-aided measurement-system design supports cost minimization while max-

imizing expected efficiency identifying the behaviour of structures. Specific conclu-
sions are:

1. The criteria used to falsify models (threshold bounds) are dependent upon the
number of measurements. If too many measurements are used, data-interpretation
can be hindered by over-instrumentation.

2. The measurement-system design methodology can be used to determine good
tradeoffs with respect to interpretation goals and available resources.

3. The approach may prevent over-instrumentation. Furthermore, it indicates sit-
uations where measuring a structure is not likely to be useful.

Further work is under way to establish the usefulness of greedy sensor removal
with respect to stochastic search methods for a range of cases.
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