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PREDICTING THE USEFULNESS OF MONITORING FOR
IDENTIFYING THE BEHAVIOR OF STRUCTURES

James-A. Goulet1 and Ian F. C. Smith, F. ASCE2

Abstract
Structures can be better understood through structural identification. This is where mea-

surement data are used to improve modeling of structural behavior. During structural identi-
fication, uncertainties may limit the extent of such understanding. The objective of this paper
is to determine probabilistically to what degree measurements are useful for structural iden-
tification. The procedure is intended to be used prior to monitoring. The new methodology
evaluates the probability of occurrence of two performance indices; the expected number of
candidate models and the expected prediction ranges. Since it does not require intervention on
the structure, the method can be used to support prioritization of decisions related to full-scale
testing. These features are illustrated through the study of the Langensand Bridge (Switzer-
land). In this example, the methodology shows that increases in modeling uncertainties hinders
the usefulness of measurements for identifying model parameter values. The predictive capa-
bility of the method proposed is verified by agreement with observations made during a recent
identification exercise. Quantifying the expected identifiability is able to support infrastructure
decision-making such as determining whether or not certain types of structural monitoring are
useful.

Keywords: Expected identifiability, System identification, Bridge monitoring, Model-
updating, Residual minimization, Errors, Uncertainties, Correlation

INTRODUCTION
With increasing availability of communication systems and the decreasing cost of

sensors, more and more structures are measured. However, our capacity to analyze
large amounts of data is increasing only marginally. System identification (SI) tech-
niques have the potential to process such data. Nevertheless, important challenges
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remain. Ideally, identification should be able to decide, prior to analysis, if all un-
known values for model parameters can be identified. For most full-scale structures in
civil engineering, unique identification of a model is unlikely. Previous work (Goulet
and Smith 2010; Goulet et al. 2010; Goulet and Smith 2011b) showed that when un-
certainties are included during an identification, several hundreds (even thousands) of
candidate model instances can be expected. Therefore, a new methodology is required
in order to quantify to what extent a system (structure) is identifiable.

System identification (SI) is understood in this paper as the task of inferring sets of
model parameters (model instances) from observations of the system studied. Several
SI methodologies are available in the literature. They are mostly based on residual
minimization and on parameter-domain probabilistic representations.

Residual minimization involves minimizing the discrepancy between measured and
predicted value by adjusting the model parameter values (Catbas et al. 2007; Friswell
2007; Sanayei et al. 2001; Strauss et al. 2010). This approach is analogous to curve
fitting and usually leads to a single answer.

Examples of parameter-domain probabilistic representations are Bayesian infer-
ence, Bayesian model-updating and Bayesian parameter identification. These ap-
proaches are now widely applied in almost every field of science. Several civil en-
gineering applications can be found in the literature (Beck and Katafygiotis 1998;
Cheung and Beck 2009; Katafygiotis and Beck 1998; Hadidi and Gucunski 2008;
Tarantola 2004). These methods involve updating probability density functions (PDF)
representing prior knowledge using the comparison between observations and model
predictions. This leads to a joint PDF quantifying, in the parameter domain, the de-
gree of belief that each set of parameters has a set of value. Goulet and Smith (2011b)
showed that parameter-based methodologies may provide unreliable solutions because
of their underlying assumption that dependencies between uncertainties are known.
Such an hypothesis may not always be satisfied since correlations between uncertain-
ties are often not quantifiable. An error-domain methodology was proposed to over-
come these limitations. Section 2 summarizes the principles of this approach.

Ljung and Glad (1994) described identifiability for parameter-domain probabilistic
representations as a criterion which determines if an identification procedure leads
to unique values for parameters and whether or not the resulting model is the right
system. Katafygiotis and Beck (1998) also applied the concepts of identifiability for
structural SI. Their approach is based on the work of Bellman and Åström (1970).
They proposed that a system is locally identifiable if there are minima in the posterior
PDF of the difference between predictions and measurements. A system is defined to
be globally identifiable if there is a single minimum. This concept of identifiability is
limited to parameter-domain probabilistic representations.

This paper presents a performance indicator called expected identifiability. The
objective is to determine probabilistically to what degree the initial-model-instance set
(IMS) can be reduced through monitoring a structure and to what extent prediction
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ranges on unobserved quantities can be narrowed. This procedure is intended to be
used prior to obtaining measurements from in-situ monitoring.

PREVIOUS WORK
Previous work focussed on developing a system identification methodology that is

able to perform inverse tasks in presence of correlated uncertainties.

Error domain identification
The framework of error-domain identification is to generate sets of models, obtain

predictions for each of them and compare predicted and observed values in order to
falsify wrong models. The identification approach was proposed by Goulet and Smith
(2011b) building upon a decade of research (Raphael and Smith 1998; Smith and Saitta
2008; Robert-Nicoud et al. 2005; Goulet et al. 2010). The philosophy behind the
approach is based on a principle known in basic science for centuries: models cannot
be validated by observations, they can only be falsified. This methodology rejects
models based on the combination of uncertainty sources involved in the identification
process. This is achieved by comparing observed and expected residuals. A residual
is the difference between predicted and observed values. Uncertainties are combined
together into a multi-dimensional probability density function (PDF) representing the
possible residual outcome for each measurement location (see Figure 1). Uncertainties
originate from both modeling and measurement processes.

Uncertainty combination
Uncertainties are defined as the probabilistic representation of the possible out-

comes of errors. Uncertainties associated with modeling and measurements can either
be evaluated using statistical methodologies or expert judgement. Even if uncertain-
ties are evaluated separately, they have to be combined together in order to obtain the
distribution of the combined error. The combination of errors leads to the probability
distribution of the expected residual between predicted and observed values. The ob-
served residual values are compared to the expected residual in order to evaluate the
plausibility of each model instance. Uncertainties can be combined through a Monte-
Carlo combination approach (Draper 1995; Cox and Siebert 2006) that draws samples
from each uncertainty distribution and then sums them together. Details regarding
uncertainty combination is provided in Goulet and Smith (2011b).

The procedure of combining uncertainties is performed independently for every
measurement location. If N measurement locations are used, the outcome is a multi-
dimensional PDF where each dimension represents the expected residual value for a
measurement location based on uncertainty evaluation. A graphical representation of
a multidimensional PDF is presented in Figure 1. Due to the central limit theorem,
the combined PDF may be approximated by a normal distribution. However this is
not a requirement for the approach to be valid. Note that due to systematic errors the
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combined PDF is often not centered on zero. This means that in presence of system-
atic errors, the most probable expected residual is often not zero. This is in part why
curve-fitting methodologies are unreliable.

Model rejection
If a single measurement location is used during identification, the observed residual

between the measured value and the prediction of a model must be within the upper
and lower bounds of the coverage interval (defined in the error domain (i.e. the ex-
pected residual PDF)). The coverage interval (or region) is the PDF bounded interval
that contains a target probability φ. Coverage intervals are defined by lower and upper
bounds (for a given φ) at each measurement location within which observed residuals
should lie. If this condition is not met for a model instance, the instance is discarded.
Figure 1 shows the expected residual probability density function along with its cover-
age region.
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Figure 1. Expected residual probability density function along with its
square coverage region having a reliability φ of including the right resid-
ual between observations and predictions

Mathematically, this principle is translated into the relation presented in Equation
1. Ti,Low and Ti,High represent the coverage bounds for each measurement location (i =
1..N ). The probability function p(ξ1, . . . , ξN) is derived from Equation 2 where the
distance between the observed residual (ξi) (i.e. the difference between predicted (ri)
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and observed value yi, see Equation 3) and the most probable value (ui, see Equation
4) of the expected residual PDF are compared. Σ is the covariance matrix associated
with the expected residual PDF.

The shape of the coverage region is taken to be an n-dimensional hypercube. This
shape provideds robustness with respect to misevaluation of uncertainty correlations
between measurement locations. Defining coverage intervals independently for each
measurement location provides conservative coverage regions for any level of correla-
tion between uncertainties.

∀i = 1, . . . , N : φ =

∫ Ti,High

Ti,Low

p(ξ1, . . . , ξN)dξi (1)

p(ξ1, . . . , ξN) =
1

(2π)N/2
√

det Σ
· . . .

. . . exp

(
−1

2
[ξ1 − u1, . . . , ξN − uN ]Σ−1[ξ1 − u1, . . . , ξN − uN ]T

)
(2)

ξi = ri − yi (3)

ui = E[ui] (4)

Generation of the initial set of model instances
In order to initialize the sets of model parameters requiring identification, ranges of

possible parameter values are defined for the n parameters. The discretization interval
is the parameter interval size that is considered as non-differentiable. A n-dimension
grid is generated using the discretization intervals provided for each parameter to iden-
tify (i = 1..n). This leads to a representation of the space of possible solutions that
a-priori are able to explain observed behavior. The set is named the Initial Model Set
(IMS). Model instances are obtained by passing parameter sets [θ1, . . . , θn] as argu-
ments to a template model f(θ1, . . . , θn). For this purpose, template models used are
most of the time issued from the finite element methodology. The goal of the identifi-
cation is to discard some model instances from the set in order to reduce the prediction
range.

Once models are filtered from the IMS, a Candidate Model Set (CMS) is obtained.
These models are able to explain the observed behavior while including uncertainties.
The filtering process is expressed in Equation 5. The CMS is made from the model
instances of the initial model set for which ΩΞ(θ) = 1.

ΩΞ(θ) = 1 ∀i = 1, . . . , N : Ti,Low ≤ ξi ≤ Ti,High

ΩΞ(θ) = 0 Otherwise (5)
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PREDICTING IDENTIFIABILITY OF SYSTEMS
Predicting the efficiency of observations for discarding model instances can be

achieved prior to measuring the structure by generating several sets of simulated mea-
surements (SM). SM are taken to be measurements that help predict probabilistically
the expected number of candidate models and prediction ranges.

Generation of simulated measurements
Simulated measurements (SMi) can be obtained from the combination of model

predictions (ri) and uncertainties (Ui). This process is illustrated in Figure 2. Since
prior performing observations on a structure any model instance can be the adequate
explanation of its behavior, any model can be randomly chosen as a the right model.
Each model instance in the initial model set is made from a combination of parameter
([θ1, θ2, . . . , θn]) used in a template model f(θ1, θ2, . . . , θn). Even if a right param-
eter set would turn out to be the true value, the predicted values from the template
model ([r1, r2, . . . , rN ]) would never exactly correspond to those measured on the true
system ([y1, y2, . . . , yn]) since errors are present in both model predictions and mea-
surements. Errors are thus added to predicted values obtained from the right parameter
sets. In most situations, uncertainties are not adequately represented by gaussian ran-
dom white noise. Several systematic and aleatory uncertainties sources need to be
represented. For each simulated measurement instance, errors (ui) are generated for
each measurement location (i = 1 . . . N ) from the expected residual distribution (Ui).
The uncertainty correlation (ρ) from different measurement locations is evaluated and
included in the process of error generation in order to obtain ”realistic” simulated
measurements.

Simulated measurements instances (SMi) are obtained through the summation of
model predictions (ri) and correlated error instances (ui) taken from the expected
residual distributions (Ui).

Correlations between uncertainties
In the case of the expected identifiability evaluation, the goal is to provide a quanti-

tative metric to support the decision of whether or not a structure should be measured.
Assuming that there are no dependencies between measurement location and measure-
ment type would lead to simulated measurements that does not represent observations.
As shown by Goulet and Smith (2011b), in full scale structures, uncertainties are likely
to be correlated. If uncertainties are wrongfully assumed to be independent, results
may be unconservative. An alternative approach is to provide realistic evaluations of
uncertainty correlations.

Evaluating uncertainty correlations between sensor types and locations remains a
cumbersome task since little quantitative information is available. For the purpose of
generating simulated measurements, a method based on qualitative reasoning is pro-
posed to estimate uncertainty correlations in a stochastic process. Qualitative Reason-
ing (QR) (Williams and Kleer 1991) uses common sense reasoning to support complex
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Figure 2. Illustration of the process of simulating measurements based
on the prediction of an assumed ”right” model instance and on uncer-
tainties

decisions. QR is often used in the field of modeling, control and to support decision
when limited information is available. Figure 3 shows the qualitative reasoning scheme
proposed by Goulet and Smith (2011c) to qualify uncertainty correlation between sen-
sor type and locations. In this figure, the correlation value is presented on the hori-
zontal axis. The vertical axis corresponds to the probability of given correlation value
depending on its qualitative description. It is hard for users to provide accurate correla-
tion values. Indicating whether the correlation between uncertainties is low, moderate
or high and whether the correlation is positive or negative is easier than providing nu-
merical values. Note that this proposal should not be confused with fuzzy logic, since
in this situation there is no causal link. Qualitative reasoning methods are used only to
represent incomplete knowledge.

Computation of expected identifiability
In the process of computing the expected identifiability, several simulated mea-

surement instances are generated. These simulated measurements can be used as real
observations in order to discard model instances from the initial model set using the
methodology presented earlier. The study of simulated identification outcomes pro-
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Figure 3. Graphical representation of the qualitative reasoning used to
define the correlation between uncertainties.

vide information that indicate whether or not observations are likely to be useful for
reducing the number of candidate models and prediction ranges of parameters.

Expected reduction in the number of candidate models
The first quantity of interest is the number of expected candidate models. The

number of candidate models obtained from each instance of simulated measurements
is presented as a cumulative distribution function (CDF). This CDF shows the proba-
bility of obtaining any number of expected candidate model (eCM) if measurements
are taken on the structure. Examples of cumulative distribution functions are pre-
sented in Figures 8-11. The two quantities extracted from the CDF are the number of
expected candidate models that should be obtained with a 95% (eCM(95%)) and 50%
(eCM(50%)) certainty. The first represents, for example, a minimal expectation and
the second, a maximal one.

Expected reduction in the predictions ranges
The goal of structural identification, aside from damage detection, is to be able

to perform predictions related to behavior. Therefore, the second quantity of interest
is the prediction ranges of unobserved quantities. The number of candidate models
varies for each instance of simulated measurements. The range of predictions obtained
from candidate model sets also varies. The prediction ranges are stored and then pre-
sented as a CDF showing the probability of obtaining any prediction range (ePR) if
measurements are taken on the structure. ePR’s are extracted from the CDF for a 95%
(ePR(95%)) and 50% (ePR(50%)) certainty.

These two quantities of interest are indicators of the usefulness of measurements.
For instance, if the uncertainties on a model are too large in comparison with model
prediction variability, monitoring the structure is unlikely to provide useful decision
support. The new metrics proposed enable, prior to performing tests on a structure,
determination of whether or not instrumenting it would be useful.
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Combined identifiability indicator
For practical applications, working with several performance metrics may be cum-

bersome. Therefore, the two indicators presented above are merged into a single Com-
bined Expected Identifiability (CEI). CEI is computed using the relationship presented
in Equation 6, where IMS is the number of models in the initial model set, N is the
number of predictions and PRi is the initial range for prediction i.

CEI =

[(
1− eCM(95%)

IMS

)
+

(
1− 1

N

N∑
i=1

ePRi(95%)

PRi

)] 1
2

(6)

A CEI value near 0 indicates that the measurements are unlikely to provide useful
results and a value near 1 means that there is a high probability that measurements will
significantly reduce the number of candidate models and prediction ranges.

APPLIED EXAMPLE
In this section, the approach proposed is used to predict the expected identifiability

of a full-scale structure. The goal is to determine whether performing static-load tests
would be useful to reduce the number of model instances that are able to explain the
measurements and to reduce the prediction ranges of natural vibration frequencies.

Structure description
Static-load tests were performed on the Langensand Bridge built in Lucerne (Switzer-

land). This structure was under construction (half of width launched) when tested.
Therefore, only one half of it is in the scope of the study. This bridge is approximately
80m long and has a slender profile (≥1:30) see Figure 4.
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Figure 4. Langensand Bridge elevation representation. Reprinted from
Goulet et al. (2010) with permission from ASCE

The shaded area in Figure 5 represents the part of the bridge in place during load
testing. It consists of a concrete deck poured on a steel girder. The central part of the
bridge is used as roadway and the external parts are sidewalks.

Two load cases are presented in Figure 6. The measurement system used during the
identification is composed of three displacements (at the intersection of axis S7-112,
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Figure 5. Langensand Bridge cross section. Reprinted from Goulet et al.
(2010) with permission from ASCE

S12-112 and S17-112), two rotations (at the axis A1 and S7) and two strain measure-
ments (in the top and bottom chord of the concrete slab at the section S13) recorded
for five load cases. Complete information regarding loading, sensor layout and details
are presented by (Goulet et al. 2010).

S7 S17

116

S12 S13

112

X

Z

Y
 A1

114

T1

T2

T1

T2

LP-1 LP-2

Figure 6. Test truck layout (Phase 1). Reprinted from Goulet et al. (2010)
with permission from ASCE

The finite-element (FE) model cross-section is presented in Figure 7. In order to
restrict the number of modeling uncertainties, secondary structural elements such as
deck stiffeners, concrete reinforcement, road surface and barriers are also modeled.

Initial model set
The template model has four parameters to be identified: steel girder Young’s mod-

ulus [200, 212]GPa, concrete Young’s modulus [20, 32]GPa , pavement Young’s mod-
ulus [2, 20]GPa and the stiffness of the horizontal support created by the bearing de-
vices [0, 1000]kN/m. The Young’s modulus range includes possible values over the
whole structure. The initial model set contain 10010 model instances (combinations of
the four parameters to identify).

Uncertainties and correlations
Uncertainties are separated in two categories: model-dependent and other uncer-

tainties. Both classes are reported in the following section as described by (Goulet and
Smith 2010; Goulet and Smith 2011b).

10



Goulet, J. and Smith, I. (2013). Predicting the usefulness of monitoring for identifying
the behaviour of structures. Journal of Structural Engineering, 139:1716–1727.

Concrete 
barrier

Orthotropic 
deck stiffners

Transverse 
stiffeners for girder

Concrete 
reinforcement

Road surface

116

114

112

Figure 7. Langensand Bridge template finite element model (Phase 1).
Reprinted from Goulet et al. (2010) with permission from ASCE

Model-dependent uncertainties
Uncertainties related to the geometry of the structure (variation in the thickness

of the elements), Poisson’s coefficient for concrete, truck weight and the variation of
strain-sensor positioning are represented as normal distributions. The details regarding
each distribution are summarized in Table 1. The variation of the temperature during
the test affected the properties of concrete and pavement materials. The uncertainty on
the change in ambient temperature during the tests is taken as a uniform distribution
varying between 0 and 5 degrees Celsius. The uncertainty associated with temperature
represents the maximal variation of temperature measured during the tests. Based on
the relationship proposed by Bangash and England (2001) the variation in percentage
of the concrete elastic modulus is equal to the variation of temperature divided by -137.
For the road surface, this relationship is taken as the temperature variation divided by
-30. This last relationship is based on the experimental work conducted by Perret
(2003) on similar materials.

Table 1. Model-dependent uncertainties.

Uncertainty source Unit Mean STD

∆v concrete - 0 0.025
∆t steel plates % 0 1
∆t pavement % 0 5
∆t concrete % 0 2.5

Truck weight Ton 35 0.125
Strain sensor positioning mm 0 5
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Other uncertainty sources
For other uncertainty sources (except for sensor resolution), no quantitative infor-

mation other than engineering judgement is available. Therefore, these values repre-
sent the authors’ perception of the minimal and maximal bounds within which the true
residual (i.e. error) should lie. Uncertainty values are presented in Table 2. For any
cross section of the bridge, the effect of these simplifications combined with finite-
element-method approximations are assumed to be at most seven percent for rotation
and displacement predictions. Since strains are interpolated from the DOFs and are
more sensitive to local imperfections (such as the presence of welds) the maximal er-
ror could be up to 20%. The Extended Uniform Distribution (EUD) (Goulet and Smith
2011a) is used for describing inexactly known uncertainty sources. It minimizes the
impact of uncertain positions for uncertainty bounds. In this case, EUD reflects the
fact that each uncertainty bound could be either over or underestimated by 30% (50%
for strains).

Other uncertainties related to the identification are described in Table 2. Model
simplifications, mesh refinement and additional uncertainties are represented using the
EUD. Sensor resolution uncertainties are represented by a uniform distribution and
are taken as twice the manufacturer specifications to account for site conditions. The
instruments used are not sensible to cable losses. The strain sensors use optical fibers
to transmit signal and inclinometer signals are numerically converted directly at sensor
locations. Therefore the uncertainties associated with cable losses are taken to be zero.
A mesh refinement analysis has been conducted in order to determine the maximal
plausible discretization error for each type of prediction. Measurement repeatability
uncertainty is obtained for each measurement location from the standard deviation of
three measurement repetitions during the load tests.

Table 2. Other uncertainty sources

Uncertainty source Displacement Rotation Strains
min max min max min max

Sensor resolution -0.2mm 0.2mm -4µrad 4µrad -4µε 4µε
Model simplifications & FEM 0 % 7% 0% 7% 0% 20%

Mesh refinement -1% 0% -1% 0% -2% 0%
Additional uncertainties -1% 1% -1% 1% -1% 1%

Correlation between uncertainties for simulating measurements
For the purpose of generating simulated measurements correlations are evaluated

using the qualitative reasoning approach presented previously. The qualitative evalu-
ation of the dependency between each quantity type (displacement, rotation, strains)
are presented in Table 3 for each uncertainty source. Since matrices are symmetric,
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only half the values are necessary. The uncertainty correlation between load cases is
assumed to be highly and positively correlated.

Table 3. Qualitative evaluation of uncertainty correlation between com-
parison points for a each uncertainty source.

Comparison point type Displacement Rotation Strain Uncertainty source

Displacement High + - - Model
Rotation High + High + - simplification

Strain High + High + High + & FEM

Displacement High + - - Mesh
Rotation High + High + - refinement

Strain High + High + High +

Displacement Moderate + - - Additional
Rotation Moderate + Moderate + - uncertainties

Strain Moderate + Moderate + Moderate +

Displacement Low + - - Sensor
Rotation Low + Low + - resolution

Strain Low + Low + Low +

Computation of expected identifiability
Over 1000 simulated measurements are generated in order to capture the expected

performance of observations at filtering model instances.

Expected reduction in the number of candidate models
The cumulative distribution function showing the expected reduction in the number

of candidate models is presented in Figure 8. In this figure, the horizontal axis presents
the candidate model set expected size in percentage of the initial model set. The hori-
zontal axis shows the cumulative probability that any given percentage of reduction in
the candidate model set is obtained. In this case, there is a 95% chance to reduce the
initial model set by 65% (eCM(95%)≈35%) and a 50% chance to reduce the initial
model set by 80% (eCM(50%)≈20%). These results represent either the 50% or 95%
probability of obtaining at least the corresponding reduction in the size of the initial
model set.

The probability density function (PDF) is the derivative of the cumulative density
function (CDF). Therefore the high probability content of the domain is contained
where the CDF slope is steep. The polygonal sign represents the actual candidate
model set size that is obtained using real observations on the structure. The predicted
expected number of candidate models is in good agreement with the observations. In
this situation a significant reduction in the number of candidate models (≥ 65%) is
expected with a high certainty (95%). Therefore, if the objective is to reduce the num-
ber of possible models that explain the measurements, proceeding with the monitoring
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Figure 8. Cumulative distribution function of the candidate model set ex-
pected size

phase can be justified by the expected identifiability of a 95% certainty that greater
than 65% of the models will be filtered.

Expected reduction in the prediction range
In a second case the expected reduction in the prediction range is studied. The

results are summarized for the first five natural frequencies of the structure in the CDF
presented in Figure 9. In this figure the horizontal axes represent the frequency range
for each mode. The full horizontal scale of each plot corresponds to the frequency
range of the initial model set.

For every mode, a significant reduction (50%-70%) is expected with a high confi-
dence (95%). The combined expected identifiability indicator has a value of 0.88. This
would justify performing the load tests on the structure in order to reduce the variability
of predictions and the number of candidate models. The polygonal symbols on Figure
9 represent the prediction range computed from the real candidate model set (obtained
from on-site observations). For every mode, the results obtained from observations do
not lie in the distribution tail. This confirms that the expected identifiability algorithm
supports infrastructure management decisions. For example, if several structures have
to be monitored under a constrained budget, prioritization of actions can be made using
this methodology.
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Figure 9. Cumulative distribution function of the candidate model set ex-
pected prediction range for the first five natural frequencies of the struc-
ture
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THE INFLUENCE OF MODEL SIMPLIFICATIONS
Goulet et al. (2010) showed that the dominant uncertainty source is often associ-

ated with model simplifications. Furthermore, results obtained in the previous section
are intrinsically dependent upon the choice of template model and on its level of re-
finement. Greater accuracy of the template model, reduces the uncertainties associated
with model simplifications. This explains the high level of refinement used in the Lan-
gensand Bridge model. If an overly-simplified model is used, users would have to
define larger uncertainty bounds. For simple-beam representations, errors on displace-
ments of 50% and more than 100% for strains may occur (see (Goulet et al. 2009)).

Computation of expected identifiability
In this section, the uncertainties related to the model simplifications have been

voluntarily increased to represent the case where overly simplified models are used.
The model is assumed to be able to predict the displacements and rotations of the
structure within 0 and 20% of the true behavior and within 0 and 40% for strains.
The change in expected identifiability in comparison with the results obtained in the
previous section is presented here.

Expected identifiability
The cumulative distribution function showing the expected reduction in the number

of candidate models is presented in Figure 10. For these uncertainties, there is now a
95% chance to reduce the initial model set by 30% (eCM(95%) ≈ 70%) and a 50%
chance to reduce the initial model set by 60% (eCM(50%) ≈ 40%).

Figure 11 presents the expected frequency range for the first five modes. The ex-
pected prediction ranges have significantly increased in comparison with the results
obtained with a lower level of uncertainty. It is now only possible to expect (with a
high certainty (95%)) a 30% to 40% reduction in the prediction ranges. The spread
of the tail region has also increased, indicating an increase in the variability of the
expected solution.

With the increases in the expected identifiability indicators have decreased by al-
most 50% according to the number of expected candidate models and prediction ranges.
The combined expected identifiability indicator has a value of 0.47. Under these con-
ditions, the potential gain of monitoring is marginal. It shows that using an over-
simplified model hinders identification capability. Therefore, the best template model
possible should be selected in order to obtain meaningful identification results.

DISCUSSION
Even if good identifiability is predicted and confirmed by observations, future in-

creases in computing power could further reduce the degree of simplification made
for predictions (for example by using solid elements instead of shells). Improvements
in sensor technologies and their increased availability could reduce other sources of
uncertainty. The new methodology proposed is also able to quantify the level of un-
certainty required in order to reach a given target expected identifiability. It enables,
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expected size under increased modeling uncertainties

prior to taking measurements, a prioritization of interventions by addressing first the
structures where measurements are most likely to improve understanding of structural
behavior. Characteristics of the measurement system, for example sensor locations,
types and the load configurations chosen for measurement are also closely related to
the expected identifiability of a structure. This topic is the subject of current research.

CONCLUSIONS
It is possible to study the usefulness of monitoring a structure. The methodology

proposed evaluates the probability of occurrence of three performance indices; the
expected number of candidate models and more importantly, the expected prediction
range and the combination of these two indicators (combined expected identifiability
(CEI)). It allows users to determine, prior to taking measurements, whether or not
performing tests is likely to be useful for understanding the structure behavior and
making accurate predictions.

1. The expected identifiability methodology proposed can predict the usefulness
of measuring structures. The approach is based upon the generation of realistic
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Figure 11. Cumulative distribution function of the candidate model set
expected prediction range for the first five natural frequencies of the
structure under increased modeling uncertainties

simulated measurements that include correlated uncertainties.
2. For Langensand Bridge, reductions in the model and measurement uncertain-

ties can lead to significant reductions in the number of expected candidate
models and prediction ranges. The predictions performed for the Langen-
sand Bridge are confirmed by observations made during the identification of
the structure.

3. Since the methodology does not require intervention on the structure, the ex-
pected identifiability can be determined prior to measuring a structure for a
fraction of the cost required for full-scale testing.

4. Over-simplified structural models may hinder the identification capability. The
methodology is able to quantify what level of uncertainty is acceptable in order
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to reach a given target expected identifiability.
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