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Abstract

When system identification methodologies are used to interpret measurement data

taken from structures, uncertainty dependencies are in many cases unknown due to

model simplifications and omissions. This paper presents how error-domain model fal-

sification reveals properties of a structure when uncertainty dependencies are unknown

and how incorrect assumptions regarding model-class adequacy are detected. An il-

lustrative example is used to compare results with those from a residual minimization

technique and Bayesian inference. Error-domain model falsification correctly identi-

fies parameter values in situations where there are systematic errors, and can detect the

presence of unrecognized systematic errors.

1. Introduction

It is now common to use in-situ measurements to determine properties of physics-

based models in the desire to improve management decisions. During the last decade,

measuring instruments evolved to a point where cheap and reliable sensing technolo-

gies are now commercially available [13, 25, 26, 37]. In spite of the large number of

applications in civil engineering, our capacity to measure structures has outgrown our

capacity to interpret data. Assumptions used by current system-identification method-

ologies are not always satisfied for practical applications [7, 36]. Parameters are usu-

ally inferred from models that are approximation of reality. When comparing several

predictions with measurements, it is common to have dependencies between the pre-

diction errors at various locations and for various types of predictions. Because of
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the model simplifications and omissions, relationships between prediction errors are in

many cases unknown. In this paper, this is referred as uncertainty dependencies. Most

current methodologies either take uncertainties to be independent, or assume that they

have known dependency patterns.

This paper presents how error-domain model falsification can identify properties

of a structure without requiring to know the relationship between prediction errors and

how wrong assumptions regarding model adequacy can be detected. This paper also

underline some limitations of existing methodologies. These methods currently used in

civil engineering are described Section 2. Section 3 presents the error-domain model

falsification methodology and Section 4 provides an illustrative example comparing

system identification methodologies for three scenarios; no systematic bias in model

predictions, with recognized systematic bias and with unrecognized errors.

2. Common system identification methodologies in civil-engineering

System identification (SI) is the task of finding descriptions of systems that are

compatible with observations. Note that the goal is not to update or to calibrate model

parameters to improve the agreement between predicted and measured values. Model-

based system identification (SI) uses physics-based models for inferring parameter val-

ues. Two approaches used in the context of large-scale structures are presented in this

section.

2.1. Residual minimization

Several proposals involve minimizing the residual of the difference between pre-

dicted and measured values by adjusting the parameters θ of a model. θ is a vector

defined in the parameter domain Θ ⊆ Rnp , where np is the number of parameters to

identify. One assumption used by residual minimization approaches, is that the differ-

ence between predicted and measured values is governed by the choice of parameter

values [30]. Furthermore, most approaches are based on the minimization of the sum

(weighed or not) of the squares of the differences between predicted (gi(θ)) and mea-

sured (yi) values at location i ∈ {1, . . . , nm}:

θ̂ = arg min
θ

nm∑
i=1

wi (gi(θ)− yi)2 (1)

where θ̂ contains the most likely parameter values, wi are weighting factors and nm

is the number of measurements used. Mottershead et al. [30] suggested using wi =
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y−2
i . An alternative is to use wi = σ−2 where σ is the standard deviation of the

uncertainty for each comparison point i. With this formulation, the optimality of θ̂

holds if the the residuals of the difference between predicted and measured values are

distributed as a zero-mean independent Gaussian random distribution N (0, σ). For

civil structures, this assumption is seldom met because a model g(θ) is by definition

an approximation of reality. Thus, as noted by Mahadevan et al. [22, 28, 33], the

assumption of independence may not be fulfilled due to the systematic bias present in

models. Several authors have also argued that while calibrated parameter values may be

useful for interpolation, they are usually inappropriate for extrapolation and even less

for use in other models [10, 27]. In the case where models are inexact representation of

structures, their calibration may not reveal reliable information related to the condition

and performance of structures.

2.2. Bayesian inference

Bayesian inference uses conditional probability to update the prior knowledge of

model parameters using measurements. Equation 2 is the conditional probability rela-

tionship:

P (θ|y) =
P (y|θ)P (θ)

P (y)
(2)

where the prior knowledge of physical parameters P (θ) is updated with a likelihood

function P (y|θ) using measured data y. The posterior probability density function

P (θ|y) is obtained using the normalization constant P (y). This method creates a

mapping (e.g. a function, [40]) between the error domain, Ξ ⊆ Rnm and the parameter

domain Θ. The error domain corresponds to the residuals of the differences between

predicted and measured values, εo = [εo,1, . . . , εo,nm
]T .

In most formulations reported in the literature, the likelihood function P (y|θ) is

based on a Gaussian distribution (see, Equation 3).

P (y|θ) ∝ const. exp

(
−1

2
(g(θ)− y)TΣ−1(g(θ)− y)

)
(3)

In Equation 3, g(θ) is a vector containing model predictions and y a vector containing

measurements. Σ is a covariance matrix containing uncertainties (variances) and cor-

relation coefficients for each comparison point where predicted and measured values

are available. This map quantafies likelihood of parameter sets (np-dimensional space)

based on the error values (nm-dimensional space).
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Early applications of Bayesian inference for identifying the properties of structures

were made in the 1990’s [2, 4, 23]. Since then, many applications and extensions have

been proposed [11, 12, 15, 19, 20, 24, 29, 32, 39, 42–44]. In most applications to civil

structures, authors have assumed that modelling uncertainties can be represented by

independent Gaussian noise centered on zero.

In the traditional Bayesian inference scheme, there is no requirement to define the

uncertainties as independent. When known, correlations can be included in the co-

variance matrix Σ. Outside of the scope of structural identification, authors such as

Cheung et al. [12] included spatially correlated uncertainties during the Bayesian iden-

tification of turbulent flow models. In the field of geophysics, Arroyo and Ordaz [3]

include spatial decencies in multivariate Bayesian regression analyzes. Also, McFar-

land and Mahadevan [28] included uncertainty dependencies in model validation and

calibration. For measurement uncertainties, they estimated the covariance matrix Σ

using experimental data. For model uncertainties, the covariance matrix was evaluated

based on the model output covariance obtained from a Monte Carlo analysis. In these

studies, uncertainty dependencies due to model simplifications and omissions were not

included. Also, Simoen et al. [36] showed that using incorrect uncertainty correlations

can lead to biased diagnosis.

3. Error-domain model-falsification

Current system-identification methodologies often assumes that uncertainties and

dependencies are known for each comparison point where prediction and measurement

are available. These assumptions can be fulfilled when working with models that ex-

actly capture the physical behaviour of the system. In such cases, the discrepancy

between model predictions and measurements is due to the choice of parameter values

and Gaussian white noise associated with measurements. However, when identifying

the parameter values and properties of civil-structures, most models are incomplete.

This section presents the error-domain model falsification methodology proposed

by Goulet and Smith [17] and used in civil engineering applications [16, 18]. In this

approach, model instances are either falsified or kept based on error values (e.g. the

difference between predictions and measurements). The term model instance refers

to a model class evaluated using a particular set of parameter values. The concept of

falsification has been well-known in science for centuries. However, it was only in the
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1930’s that it was formalized by Karl Popper in The logic of scientific discovery [31].

Popper asserted that in science, models cannot be fully validated by data, they can only

be falsified. Several authors, such as Tarantola [41], Beven [6, 7] and Beck [5], un-

derlined the relevance of this philosophical perspective in fields related to model-based

data interpretation. This principle is already used in other methodologies such as the

Generalized likelihood uncertainty estimation approach (GLUE) developed by Beven

and Binley [9] in the early 1990’s in the field of environmental sciences. Like these

methodologies, the approach presented here builds on the concept of model falsifica-

tion mentioned above to provide tools suited for the identification of structures.

3.1. Model falsification

When describing the behaviour of a system, there may be several potentially ade-

quate model classes (g(. . .), h(. . .), . . . , etc.). Model classes take np physical param-

eters, θ = [θ1, θ2, . . . , θnp
]T , as arguments, which correspond to the system properties

such as geometry, material characteristics, boundary conditions, loading, etc. Each

combination of model class and parameter set (i.e. a model instance) leads to nm pre-

dictions gi(θ) obtained at each location i ∈ {1, . . . , nm}. When taking a model class

g(. . .) and the right values for parameters θ∗, the value corresponding to the difference

between a prediction gi(θ
∗) and its modeling error (ε∗model,i) is equal to the “true”

value Qi for the real system. The “true” value of Qi is also equal to the difference

between the measured value yi and the measurement error (ε∗measure,i). This relation

is presented in Equation 4.

gi(θ
∗)− ε∗model,i = Qi = yi − ε∗measure,i (4)

In practice, neither the true value of Qi nor error values ε∗i are known precisely. Only

a probability density function (pdf ) describing possible errors εi can be estimated.

fUi(εi) represents the pdf of a continuous random variable Ui. fUc,i is the pdf de-

scribing the probability of the observed residuals εo,i of differences between predicted

and measured values. Using Equation 4, Uc,i is obtained by subtracting the modeling

Umodel,i and measurement Umeasure,i uncertainties. The pdf of Uc,i is presented in

Figure 1. Note that random variables are used here to describe the outcome of either

stochastic or deterministic processes.

A set of parameter values is falsified if the difference between its predicted and

measured values is outside the interval defined by threshold bounds [Tlow,i, Thigh,i]
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0

Threshold lower and upper bounds

Residual of the difference

between predicted and 

measured values

Figure 1: Model falsification - The combined probability density function describes the outcome of the
random variable Uc,i. Threshold bounds are calculated to be the narrowest intervals [Tlow,i, Thigh,i] that
contains a target identification probability φ for all comparison points.

for any comparison point i. These bounds represent the shortest interval that satisfies

the relation expressed in Equation 5 such that

∀i ∈ {1, . . . , nm},
{
Tlow,i, Thigh,i : φ1/nm =

∫ Thigh,i

Tlow,i

fUc,i(εc,i)dεc,i

}
(5)

where φ ∈ ]0, 1] is the target identification probability defined by the user. When Uc,i

is described by an unimodal symmetric pdf, threshold bounds can be computed using:

Tlow,i = F−1
Uc,i

(
1

2
(1− φ1/nm)

)
Thigh,i = F−1

Uc,i

(
1− 1

2
(1− φ1/nm)

) (6)

where F−1(x) : x ∈ [0, 1] → R represents the inverse cumulative distribution func-

tion. In these equations, the target probability φ is adjusted using the S̆idák correction

[34, 35] to account for the usage of multiple measurements to falsify model instances.

Threshold bounds define the limit of a nm-dimensions hyper-rectangular domain that

has a probability larger or equal to φ of containing the correct residuals ε∗c,i between

predicted and measured values:

P (∩nm
i=1 Tlow,i ≤ Uc,i ≤ Thigh,i) ≥ φ (7)

If this criteria is used to falsify model instances, there is a probability larger or equal to

φ of not wrongly falsifying valid model instances, irrespective of the relationships be-

tween residuals εc,i. Model instances are falsified if they do not satisfy the inequalities

∀i ∈ [1, . . . , nm] : Tlow,i ≤ gi(θ)− yi ≤ Thigh,i (8)

Model instances that are not falsified are considered to be candidate models and are all

considered as equal in the sense that they are all possible explanations of the observed

behavior. A model class g(. . .) is falsified if all possible sets of parameter values θ
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are falsified by observations. This allows the falsification of a model class without

requiring a comparison with others. When a model class is falsified, it is generally an

indication that there are flaws in initial assumptions [8].

Figure 2 illustrates the concepts of threshold definition when using two measure-

ments. In this figure, threshold bounds Tlow,i and Thigh,i are found separately for each

comparison point to include a probability φ1/2 where φ = 0.95. When these threshold

bounds are projected on the bi-variate pdf, they define a rectangular boundary used to

separate candidate and falsified models. This region include a probability φ. Thus,

when used as criterion to falsify model instance, this rectangular region has a proba-

bility larger or equal to φ of correctly identifying the right model irrespectively of the

relationship between the error at comparison point #1 and #2.

0

Uncertainty

comparison point #1 
Uncertainty 

comparison point #2 

Figure 2: Threshold definition using two measurements to falsify model. The probability content included
in threshold bounds is of φ1/2 for each comparison point taken individually and of φ for the bi-variate pdf
of Uc,1 and Uc,2.

3.2. Comparison of rectangular and ellipsoidal threshold bounds

This example shows how error-domain model falsification can lead to probabilisti-

cally valid diagnostics irrespectively of the relationships between the outcome of ran-

dom variables. Figure 3 compares the probability contained in rectangular and ellip-

soidal threshold bounds commonly used in multivariate hypothesis testing [28, 33, 38].

In this example, realizations of a bi-variate random variable X ∼ N (µ,Σ) are gener-

ated for a mean µ = [0, 0]T and a variance σ = [1, 1]T . In plots presented in Figure

3 a), b) and c), the correlation coefficient defining this random variable is set respec-

tively to 0.9, 0.4 and -0.9. For a normal random variable, the smallest region possible
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including a probability φ is bounded by the Mahalanobis distance DM (x):

DM (x)2 = (x− µ)TΣ−1(x− µ) (9)

where x is a vector containing a realization of X . Even if the size of the region defined

by the Mahalanobis distance is minimal, its computation requires the definition of the

correlation coefficients in Σ. In order to calculate the Mahalanobis distance, the corre-

lation is set to 0.9 for all three scenarios a), b) and c), where only for scenario a) this

choice is correct.

The probability that realizations of X are include in the ellipsoidal and rectangular

region, PM and PT respectively, is expressed in Equations 10 and 11:

PM = P (DM (x)2 ≤ χ2
α(nm)) (10)

PT = P (∩nm
i=1 Tlow,i ≤ xi − µi ≤ Thigh,i) (11)

In Equation 10, χ2
α(nm) is the value of a chi-squared distribution having nm degrees

of freedom, found for a target cumulative probability α = 1 − φ = 0.05. Threshold

bounds Tlow and Thigh are found using Equation 6 and a target reliability φ = 0.95.

For each scenario a), b) and c), 1000 realizations x = [x1, x2]T ofX are generated.

The ellipsoidal bound, represented by the solid line (e.g. the Mahalanobis distance),

includes a proportion PM = 0.95 of the realizations of X , only when the correlation is

correctly evaluated (e.g. scenario a)). In Figure 3 b) and c), the ellipsoidal bound (sup-

posed to include 95% of the realizations ofX) only include 64% and 42% respectively.

For all three scenarios, the rectangular threshold bounds represented by dashed lines,

contains a proportion PT of the realizations ofX at least equal to the target φ. Defining

rectangular threshold bounds using the approach presented above is conservative with

respect to the target probability φ for any dependent variable [21, 34]. This property

enables error-domain model falsification to reveal the condition and properties of civil

structure, where uncertainty dependencies are unknown.

3.3. Summary

Figure 4 summarizes the steps leading to the falsification of model instances or of

a model class. The first step is to define the goal of the identification and to convert

it into parameters to identify (θ) using a model class (g(θ)) and measurements (y).

Uncertainties associated with both the model and measurements are combined and used

to define threshold bounds (Tlow, Thigh) including a target probability φ1/nm . Model
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Figure 3: Comparison of the probability contained in rectangular and ellipsoidal threshold bounds when
varying the correlation between random variables. In all three cases, the correlation assumed to compute the
the ellipsoidal bound is set to 0.9. However, the correlation used to generate realizations of X is a) 0.9, b)
0.4 and c) -0.9. For all three scenarios, the rectangular region includes a proportion of the realisation of X
PT ≥ φ.

instances are generated and each predicted value is compared with measured values.

If for any comparison point, the difference gi(θ) − yi is outside threshold bounds,

the model instance is falsified. This process is repeated for all model instances and

those that are not falsified are part of the candidate model set. The candidate model set

contains plausible explanations of the observed behavior given uncertainties in models

and measurements. If all model instances are falsified, it indicates that the model class

g(. . .) is also falsified by measured data. In these circumstances, it is possible to review

the model class and assumptions initially chosen. When candidate models are obtained,

it is possible to take additional measurements to falsify more instances or to review

initial objectives.

4. Illustrative example

An illustrative example is presented to compare identification methodologies pre-

sented previously. This example is tailored to demonstrate the effect on diagnosis reli-

ability, of using models that are idealized representations of reality for identifying the

properties of structures. The system studied here is a cantilever beam. The “true” rep-

resentation of the structure is presented in Figure 5(a), where the semi-rigid cantilever

connection is modeled using a rotational spring having a stiffness parameter K. This

beam has a Young’s modulus E∗ = 70× 103 MPa and the vertical force applied on its

end is F = 5× 103 N.
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Fix objectives

Inputs

-Boundary conditions?
-Material properties?
-Behavioural assumptions?

For all       measurement locations

-Template model(s) 
-Uncertainties (Model & measurements)
-Measurements
-Range of parameter values 

Model instance generation Combination of uncertainty sources  
& threshold definition

Model falsification

Candidate models 
Falsified models 

Primary parameters
to be identified

0

New objectives

- More
  measurements
- New model
  class

Figure 4: Flowchart describing error-domain model falsification

In order to be representative of full-scale situations where it is not possible to cap-

ture reality in a model, an idealized beam is used as model of the “true” system (see

Figure 5(b)). This idealized structure does not include the partial rigidity of the can-

tilever connection. For this structure, the parameter to be identified is the Young’s

modulus E which has a possible range of values of [20,100]×103 MPa. To be consis-

tent with the notation used previously, the parameter to be identified is denoted θ = E.

The beam is 3000 mm long and has a square cross-section of 300 mm × 300 mm. Its

inertia I is 6.75×108 mm4.

(a) True cantilever beam (b) Idealized cantilever beam

Figure 5: True and idealized cantilever beams. The parameter to be identified using the idealized beam is the
Young’s modulus (E).

The vertical displacement v(x) of the beam at any location x ∈ [0, l] (l=3000 mm)
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is described by

v(x) =
Fx2(3l − x)

6EI
(12)

For any location x the error introduced by the idealized model is ε(x) = −Flx/K.

Simulated measured values, y(x), are obtained according to

y(x) = v∗(x)− ε(x) + umeas (13)

where v∗(x) is the displacement computed with correct parameter value E∗ and where

umeas is a realization of Umeas ∼ N (µmeas, σmeas), a Gaussian random variable

describing sensor resolution uncertainty. The mean of this random variable is 0 and

its standard deviation is 0.02 mm. Sensor resolution errors are independent of the

measured locations. The combined uncertainty variance σ2
c is obtained by summing

the variance of the model simplification and sensor resolution uncertainties (σ2
c =

σ2
model + σ2

meas). The combined uncertainty is represented by a random variable de-

noted Uc ∼ N (µc, σc).

4.1. Comparison of system-identification approaches

The effect of using an idealized model is studied for three identification methodolo-

gies; residual minimization using weighed least-square regression, Bayesian inference

and error-domain model falsification. These three approaches are compared for several

cases using different number of measurements: nm = {1, 2, 10, 50}. For each value of

nm, the displacement is evaluated for x = xstart+i·(l−xstart)/nm ∀i ∈ {1, . . . , nm},

using Equation 13. xstart is the minimal distance from the cantilever support where

measurements are taken. In this example, xstart = 500 mm. Also, these approaches

are compared for three scenarios, firstly for a case where there is no systematic error,

secondly for a case where there are systematic errors and these are recognized and

thirdly for a case where there are unrecognized errors. For the two first scenarios, a

diagnostic is deemed correct if it accurately identifies the value E∗. For the third sce-

nario, the identification is correct if either it accurately identifies the value for E∗ or if

it returns an empty set indicating that the entire model class is falsified.

For each approach, the domain of possible solutions Θ is explored by solving the

model class g(. . .) for each parameter set θ corresponding to the possible range for

this parameter subdivided in 100. For each of these model instances, a vector εo(θ)

contains the observed residual of the difference between predicted and measured values

for all measurement locations.
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εo(θ) = g(θ)− y (14)

Residual minimization

The first identification approach finds parameters θ̂, that are optimal in a least-

squares sense:

θ̂ = arg min
θ

εo(θ)TWεo(θ) (15)

The weighing matrixW is set to [diag(y)]−2. In this approach, the goal is to calibrate

model parameters to obtain the smallest weighted sum of the square of the residuals.

Uncertainties are assumed to be centred on zero, Gaussian and independent. The result

is a single optimal parameter value θ̂.

Bayesian inference

The second identification approach is used to obtain the posterior pdf describing

what the correct parameter values should be. Here, it is assumed that the only prior

knowledge available is the minimal and maximal bound for parameters to be identified.

Thus, prior knowledge is represented by a uniform distribution as described in Equation

16.

P (θ) =

constant, if θ ∈ Θ

0, if θ /∈ Θ

(16)

The function mapping the residual values to likelihood of parameter values is

P (y|θ) = (2π)−nm/2|Σ|−1/2 exp

(
−1

2
(εo(θ)−U c)

TΣ−1(εo(θ)−U c)

)
(17)

where U c is a vector containing the mean of the combined uncertainty pdf for each

location i. Equation 17 is the multivariate Gaussian distribution. The normalization

constant P (y) (see Equation 2) is computed by integrating
∫

Θ
P (y|θ)P (θ)dΘ. For

this method, uncertainties are assumed to be independent. Thus, the covariance matrix

Σ is a diagonal matrix containing the variance σ2
c,i for each comparison point i where

measured and predicted values are available. The result is a posterior pdf describing

the probability of each parameter value E.

Error-domain model falsification

The third approach compared is error-domain model falsification. Here, the target

reliability is set to φ = 0.95 and threshold bounds are obtained using Equation 6.

Model instances are either accepted as candidate or falsified based on Equation 8. The
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result is an interval describing what the true parameter value E∗ can be, given the

modelling and measurement uncertainties.

4.1.1. First scenario: No systematic errors

In the first scenario, the true value for the rotational stiffnessK →∞, so there is no

systematic error between the simulated measurements and model predictions obtained

usingE∗ as parameter value. The only uncertainty is due to sensor resolution. Figure 6

compares the optimal parameter values θ̂, the Bayesian posterior pdf and the candidate

model set, with true parameter value E∗. Each graph represents the results obtain for a

number of measurements nm. The horizontal axis corresponds to the values for E and

the vertical axis is the relative frequency of the posterior pdf histogram.
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Figure 6: Comparison of parameter values identified using least-squares parameter identification, Bayesian
inference and error-domain model falsification with the correct parameter value for Young’s modulus (E∗).
The number of measurements varies from 1 (a) to 50 (d). In this scenario, there are no systematic errors and
uncertainties are rightfully assumed to be independent.

For any value of nm ∈ {1, 2, 10, 50}, the least-squares optimal solution provides

estimates of Ê are close to the true value E∗. However, in all cases Ê 6= E∗. For

Bayesian inference, the true parameter values is correctly identified by the posterior pdf

for all values of nm. Note that the posterior pdf becomes narrower as nm increases.

This indicates that the more measurements are used, the more precise the identification

is, because each new measurement brings additional information.

The shaded region represents the candidate models identified by error-domain model

falsification and the white region represents falsified model instances. Analogously to

Bayesian inference, the identification is correct for any value of nm. For the first

scenario where no systematic errors are present, the three approaches lead to correct

identifications that are sufficiently accurate for engineering purposes, considering that

the initial parameter range was from 20 to 100 GPA.
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4.1.2. Second scenario: With recognized systematic errors

In the second scenario, systematic errors are introduced by setting the true value

K for the rotational stiffness to 12×1010 N·mm/rad. The magnitude of this systematic

bias is chosen to represent situations governed by modelling errors rather than by mea-

surement errors. For the purpose of this illustrative example, the effect of model simpli-

fications is described by a Gaussian distribution having a mean Umodel corresponding

to -10% of the measured values and a coefficient of variation of 15%. This estimation

of modelling uncertainties is intended to be a conservative assumption where the cor-

rect residual values lie within the interval U c ± 2σc. Here, the model simplification

uncertainty is not centered on zero because it is known that the simplification related

to the beam connection is likely to cause an underestimation of predicted displacement

(in absolute terms). In order to represent the situations that civil engineers face dur-

ing the identification of full-scale structures, it is assumed that there is no information

available to quantify the effect of spatial dependencies of prediction errors.

Figure 7 compares the identification results with true parameter value E∗ for a

number of measurement nm = {1, 2, 10, 50}. Least-squares residual minimization
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Figure 7: Comparison of parameter values identified using least-squares parameter identification, Bayesian
inference and error-domain model falsification with the correct parameter value for Young’s modulus (E∗).
The number of measurements varies from 1 (a) to 50 (d).

fails to provide correct identifications for any value of nm. Even if the posterior pdf is

strongly biased, an acceptable identification is obtained for nm = {1, 2}. For larger

number of measurements, the correct parameter value E∗ is probabilistically excluded.

Furthermore, the more measurements are used, the narrower the posterior pdf becomes,

such that the importance of the identification error increases with the number of mea-

surements used. This could have lead to the belief that the identification is correct

because of its high precision. Thus, even if the magnitude of uncertainties are ade-
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quately estimated, if wrong assumptions are made regarding uncertainty dependencies,

the posterior pdf obtained using Bayesian inference can be biased.

For error-domain model falsification, correct identifications are achieved for all val-

ues of nm. Note that the size of the candidate model set increases with the number of

measurement used because errors are strongly dependent. Therefore, each new mea-

surement brings almost no new information to further discard model instances. When

more measurements are included, threshold bounds are widened according to Equation

5, to include the effect of unknown uncertainty dependencies.

This example illustrates that using wrong values of uncertainty correlation with

Bayesian inference may lead to biased identifications. It also shows that error-domain

model falsification can achieve correct identifications without having to define uncer-

tainty dependencies.

4.1.3. Third scenario: With unrecognized errors

The last scenario compares the identification performance when model simplifi-

cation errors are present and unrecognized. Here, the true value K for the rotational

stiffness is set to 12×1010 N·mm/rad as in the previous scenario. However, in this case,

modelling uncertainties are set to 0 to represent unrecognized systematic errors. Only

measurement errors have a standard deviation of 0.02 mm.

Figure 8 compares identification results for Bayesian inference, weighed least-

squares residual minimization and error-domain model falsification with true param-

eter value E∗, for a number of measurements nm = {1, 2, 10, 50}. It shows that for
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Figure 8: Comparison of parameter values identified using least-squares parameter identification, Bayesian
inference and error-domain model falsification with the correct parameter value for Young’s modulus (E∗).
The number of measurements varies from 1 (a) to 50 (d). The systematic bias in model predictions are not
recognized.

any number of measurements nm, Bayesian inference and weighed least-squares resid-

ual minimization lead to biased identifications. As in the previous case, the posterior
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pdf gets narrower when the number of measurements increases. Again, it can lead to

the belief that the identification is correct because the identification results are highly

precise. These approaches are unable to signal that initial assumptions regarding the

model adequacy were wrong.

For error-domain model falsification, when one or two measurement locations are

used, the approach leads to biased identifications because it finds candidate model sets

that do not include the correct solution. For any values nm > 2, the approach leads

to a correct identification by returning no candidate model. It identifies that the initial

assumptions made regarding the model adequacy were wrong. Therefore, given a suf-

ficient number of measurements, error-domain model falsification can identify when

initial assumptions are flawed.

4.2. Summary of results

Table 1 summarizes the comparison of identification methodologies. Only error-

domain model falsification leads to a correct identification for all scenarios tested, pro-

vided that a sufficient number of measurements are used. Bayesian inference using a

Table 1: Summary of the identification methodology comparison on the basis of their capacity to provide
correct identification for the cantilever beam example.

Residual Bayesian Error-domain
minimization inference model falsification

No systematic errors X X X
recognized systematic errors 6 61 X

Unrecognized errors 6 6 X2

1 When uncertainty dependencies assumed to be independent
2 Provided that a sufficient number of measurements are used.

likelihood function based on Gaussian distribution, lead to correct identifications when

systematic effects can be either fully described or removed. When Bayesian inference

is used with incorrect uncertainty dependency values, the approach may return biased

posterior pdf s. For all scenarios involving model simplifications, considering more

than one solution as a candidate model is mandatory to obtain an unbiased identifica-

tion.

In traditional Bayesian inference, the diagnosis becomes more precise as measure-

ments are added. However, as illustrated in this paper, if wrong choices of uncertainty

correlation are made, the diagnosis will be precise but biased. The falsification ap-

proach presented in the paper is not affected by this drawback because it does not

require to know the relationship between prediction errors.
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5. Discussion & limitations

For the previous example, it is trivial to quantify the dependencies introduced by

model simplifications and to parametrize the boundary conditions as it has already been

proposed [1, 14]. However, for full-scale civil-structures, model simplifications are

inevitable and the relationship between errors are in most cases unquantifiable. Thus,

most full-scale identification tasks correspond to either the second or third scenario

where systematic bias is introduced by model simplifications and it may or may not be

recognized.

For real structures, model simplifications are usually related to the omission of

load-carrying elements such as pedestrian barriers on bridges, connection details and

secondary load-carrying elements such as stiffeners and gusset plates. Additional sim-

plifications commonly come from the representation of boundary conditions and loads

at discrete locations rather than over distributed surfaces, from simplifications related

to the soil-structure interaction and from finite-element approximations. All of these

simplifications may systematically affect the static and dynamic predictions at several

locations and to varying degrees. Figure 9 presents an example of bridge model where

even state-of-the-art practices lead to omissions and simplifications in the representa-

tion of reality. Quantifying dependencies between prediction errors is a difficult task

and there is no conservative value for these dependencies.

Beam to beam

connection without gusset plate 

(e.g semi-rigid connection)

Details of the 

deck profile are 

neglected

Road barrier is 

omitted due to 

its geometry 

complexity

discrete 

representation 

of boundary 

conditions

Figure 9: Example of model simplifications on a full-scale civil-structure. This bridge is a composite steel
truss structure. The level of detail involved in the system is too important to be fully captured by a model.

In its current form, the falsification methodology presented may be computationally
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demanding when there are a large number of model parameters to identify. The use of

feature selection methods and more efficient sampling techniques is currently under

study.

6. Conclusions

The following conclusions are drawn:

• Error-domain model falsification provides correct identifications in situations

where there are aleatory and systematic errors, without requiring to know the

relationships between prediction errors. Furthermore, incorrect assumptions re-

lated to model relevance may be detected through model-class falsification.

• With Bayesian inference, when there are aleatory and systematic errors, assum-

ing that uncertainties are independent may bias the posterior pdf.

• When taken out of the scope of model calibration, residual minimization might

lead to biased identifications, especially when multiple possible solutions are not

included.
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