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Abstract
Bayesian Dynamic Linear Models (BDLM) are traditionally employed in the fields of applied statis-

tics and Machine Learning. This paper performs an empirical validation of BDLM in the context
of Structural Health Monitoring (SHM) for separating the observed response of a structure into sub-
components. These sub-components describe the baseline response of the structure, the effect of traffic,
and the effect of temperature. This utilization of BDLM for SHM is validated with data recorded on the
Tamar Bridge (UK). This study is performed in the context of large-scale civil structures where missing
data, outliers and non-uniform time steps are present. The study shows that the BDLM is able to sepa-
rate observations into generic sub-components allowing to isolate the baseline behavior of the structure.
Keywords: Structural Health Monitoring (SHM), Bayesian, Dynamic Lineal Models, Kalman Filter,
Bridge, infrastructure, Tamar Bridge

INTRODUCTION
When developing a methodology for interpreting structural health monitoring data, work-

ing with simulated data is not equivalent to working with real data, also, controlled condition
laboratory data is not equivalent to data acquired on full-scale structures. In real operation con-
dition, it is common to have external effects that hinders the interpretation of data. Few studies
are available where data interpretation methodologies have been validated for long-term ap-
plications in large-scale civil structures, where missing data and large outliers are common.
Also, most studies found in the literature aims at detecting anomalies rather than modeling the
structure behavior itself (Laory et al. 2011; Reynders et al. 2012; Farrar and Worden 2012;
Balsamo et al. 2014). Authors such as Follen et al. (Follen et al. 2014) have sought to estimate
the signature of a structure in order to detect anomalies through deviation from the normal
response.

An alternative to existing approach is the Bayesian Dynamic Linear Models (BDLM),
which takes its origin in the fields of Applied Statistics (Prado and West 2010; West 2013;

1Assistant Professor, Department of Civil, Geologic and Mining Engineering, Polytechnique Mon-
treal, 2900 Edouard-Montpetit Montreal, Quebec, H3T 1J4 , CANADA (corresponding author). E-mail:
James.A.Goulet@gmail.com

2Lecturer, Department of Engineering, University of Exeter, Prince of Wales Road Exeter, Devon UK, EX4
4SB, UK

1



Goulet, J.-A. and Koo, K. (2017). Empirical Validation of Bayesian Dynamic Linear Models
in the Context of Structural Health Monitoring

Journal of Structural Engineering, ASCE.

West and Harrison 1999) and machine learning (Murphy 2012). More recently, Goulet (2017)
has adapted the BDLM theory for the specificities of the SHM context. This perform an empir-
ical validation of BDLM in the context of Structural Health Monitoring (SHM), for separating
the observed response of a structure into sub-components. These sub-components describe
the baseline response of the structure, the effect of traffic, and the effect of temperature. This
sub-component identification is performed in the context of large-scale civil structures where
missing data, outliers and non-uniform time steps are present.

This utilization of BDLM for SHM is validated in this paper with the data recorded on
the Tamar Bridge (UK). Several researchers have studied the behavior of the Tamar Bridge
since the start of monitoring campaign. Cross et al. (2011) initially created empirical models
of the structure response using the linear regression technique. The dependent variables used
in this paper were temperature and wind speed. The linear dependency between the tempera-
ture recorded at several locations was removed using Principal Component Analysis (Murphy
2012). Those authors found that temperature has a dominant effect over wind speed. In a
subsequent study, Koo et al. (2013) confirmed that the wind speed has a negligible effect on
the Bridge frequencies. Cross et al. (Cross et al. 2013) later created linear-regression-based
empirical models using temperature, traffic loading and vertical accelerations. The conclusion
of this study is that traffic loading is the dominant factor influencing the Tamar Bridge natural
frequencies. Westgate and Brownjohn (2011) have developed a detailed finite element model
for the structure. This model was used to further study the effect of temperature (Westgate
et al. 2014a) and the effect of extreme loads (Westgate et al. 2014b) on the bridge behavior.
The dependence between the structure frequencies and the traffic loading was confirmed by a
study by Westgate et al. (2015) where empirical data were compared with predictions obtained
from the structure finite element model.

BAYESIAN DYNAMIC LINEAR MODELS
A Bayesian Dynamic Linear Model (BDLM) describes observations yt at a time t ∈ (1 :

T ) by a superposition of hidden states xt. This superposition is formalized by the observation
model

yt = Ctxt + vt,


yt ∼ N (E[yt], cov[yt])

xt ∼ N (µt,Σt)

vt ∼ N (0,Rt)

(1)

where Ct is the observation matrix indicating which hidden state contributes to observations
and where vt is the observation error. In BDLM, all quantities are described by Gaussian
Random Variables. The transition model describes the temporal evolution of hidden states xt
between time steps t− 1 and t so that

xt = Atxt−1 + wt,
{

wt ∼ N (0,Qt). (2)

At is the transition matrix defining changes between time steps and Qt is transition model
error. The key aspect is that the formulation associated with each hidden state xt follows a
generic form that depends on the type of component chosen. The main generic components
useful for the context of SHM are;

Local level: baseline response of a structure
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Local trend/acceleration: rate of change/acceleration in the baseline response
Autoregressive: time-dependent model prediction errors
Periodic: Sine-like phenomena such as daily or seasonal temperature cycles
Regression: dependence between hidden components associated with different obser-
vations.

The specific mathematical formulation associated with each component is detailed either by
West and Harisson (1999) and by Goulet (2017). Components should be seen as building
blocks which when assembled together, are able to model a wide variety of behaviour. The
BDLM approach is modelling the response of structures using simple generic sub-components.
Therefore, modelling errors remain and these errors are dependent over time steps. When the
model is missing some physical phenomena and ∆t → 0, then model errors will be perfectly
correlated because what is missing is the same between the two consecutive time steps; as
∆t increases, correlation is reduced. The autoregressive component is there to capture the
time dependent model errors. One could see this component as a garbage bin where falls
everything that cannot be explained by the local level/trend/acceleration, periodic or regression
components. At the end the better the BDLM model is, the smaller is the amplitude of the
AR state variables. Moreover, if by inspecting the AR state variable time-series estimates, one
notice trends or patterns, it is an indication that wither (1) some explanatory sub-components
are missing in the model or (2) the model calibration is inadequate.

No matter which generic component is employed, the hidden states are estimated using
either the Kalman (KF) (Welch and Bishop 2001) or the UD Filter (Simon 2006). The KF and
UD filter are both estimating p(xt|y1:t) ∼ N(xt;µt|t,Σt|t), where

(µt|t,Σt|t) = Filter(µt−1|t−1,Σt−1|t−1,At,Ct,Qt,Rt). (3)

Filtering is intended to be performed in an online procedure, i.e. as data is collected. On
the other hand, the Kalman and UD smoother are intended to be employed offline in order to
estimate p(xt|y1:T ), where T > t. The Kalman filter and smoother are computationally more
efficient than the UD algorithms. The UD algorithm performs a factorization of the covariance
matrix so that it trades computational efficiency for an improved robustness toward numerical
errors (Gibbs 2011).

In traditional application of the Kalman filter in SHM such as those performed by Chen and
Feng (2009), Vicario et al. (2015), Mu and Yuen (2015) or Chang and Pakzad (2013), users
must provide a dynamic model describing the structure behaviour. In contrast, with the BDLM
approach, such model is not required because the structural response ant its dependency on
external effects is model by generic sub-components.

STRUCTURE AND DATASETS
The potential of the BDLM methodology is validated using data recorded on the Tamar

Bridge, the UK. The structure is a suspension bridge with a main span of 335 m. The structure
has gone through major renovation works that were completed in 2002 (Buckland 2003). Since
2007, natural frequencies of the bridge as well as external effects including temperature and
traffic load are monitored. Details of the monitoring system and processing of the data are
reported by Koo et al. (2013), Cross et al. (2013) and Brownjohn et al.(2007). The dataset
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consists of the temperature and natural frequencies averaged over a period of 30 min and traffic
load averaged over 60 min. The first year of data is employed as a training period to learn the
parameters of the model and the rest of the data set is employed to test the model.

Temperature
Temperature data yTt consists of averaged values over half-hour periods. Figure 1 shows

the seasonal and daily temperature variation recorded on the bridge deck. In addition to daily
and seasonal temperature cycle, Figure 1 shows that the daily cycle amplitude is larger during
the summer than during the winter. This phenomenon is known as a beat (Roberts 2016) and
can be represented by the interference between a 1 day and 365 days period components. Note
that the blank space around the firsts months of 2009 indicates a long period with missing data.
The left figure presents the entire dataset where the seasonal variability can be observed. The
right figure presents only a 3 days period of data in order to display the daily variability.
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Figure 1. Temperature data recorded on the bridge deck. (a) presents the entire
dataset where the seasonal variability can be observed. (b) presents only a 3
days period of data in order to display the daily variability.

Traffic Load & Pattern
The traffic load yLt is estimated using the total traffic-load computed hourly from a toll

booth, where vehicles are counted and separated by weight classes (Koo et al. 2013). Because
traffic load is averaged hourly, it is assumed that the value for each full and half hours are the
same. Figure 2 shows the total traffic load. The left figure presents the entire dataset where
the Christmas holidays are identifiable by drops in the average traffic. The right figure presents
only 3 days where the daily variation can be observed.

Note that no data is available beyond July 2011. In order to enable handling this situa-
tion where traffic data is missing, the Bayesian Dynamic Linear Model relies on the build-in
probabilistic predictive estimate of the traffic load which itself depends on the average daily
traffic pattern. The daily traffic patten is identified for two classes of days: workdays and non-
workdays. Non-workdays are taken as weekends and the period between December 23rd and
January 2nd, i.e., Christmas holidays. Workdays are any other days. Figure 3 presents the daily
traffic pattern obtained by averaging the traffic load for each day category during the training
period. The traffic pattern in Figure 4 is normalized with to have a standard deviation equal to
one and a mean of zero in order to be used as a regression variable.
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Figure 2. Total traffic load in kilotons. (a) present the entire dataset where the
Christmas holidays are identifiable by drops in the average traffic. (b) presents
only 3 days where the daily variation can be observed.
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Figure 3. Daily traffic patterns identified from the training period data for work-
days and non-workdays.

Figure 4 presents the traffic pattern yPt for the entire time period corresponding to the
dataset. The left figure presents the traffic pattern for the entire time period corresponding
to the dataset. The right figure presents the traffic pattern for a period of 3 days. Note that
on figures 2 and 4 the reduction in traffic intensity during the Christmas holidays is visible,
however, it is not visible for weekends because of the density of the data presented.
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Figure 4. (a) presents the traffic pattern for the entire time period corresponding
to the dataset. (b) presents the traffic pattern for a period of 3 days.
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Frequency
For this study, only the first natural frequency yBt is employed as characteristic responses

of the structure. Frequencies were computed from acceleration responses using data-driven
stochastic subspace identification (Peeters and De Roeck 1999). Hardware characteristics, sen-
sor locations and data processing were reported by Koo et al. (2013). Figure 5 shows the
evolution over time of the first natural frequency and blank segments represent missing data.
The left figure presents the entire dataset and the right one presents only a period of three days.
Note that the data is affected by a several outliers that display variability several times larger
than normal values. The largest outliers occur around July 2009.
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Figure 5. Natural frequencies obtained from acceleration recordings. (a)
presents the dataset and (b) one presents only a period of three days.

Missing Data & Non-uniform Time Steps
When presenting the datasets for temperatures, traffic loads and frequencies, it was men-

tioned that missing data were present. However, due to the density of the data presented, it is
only possible to see long-term missing data on Figures 1, 2 and 5. Figure 6 represents miss-
ing data at each time step by a cross. This representation shows that frequency is missing at
several time steps because acceleration observations were missing. Yet, most of the missing
data events have a short duration. Frequencies, temperature and traffic load, data is missing in
respectively 65%, 4% and 31% of the time steps. Overall at least one data is missing in 71% of
the time steps. This high number of missing data underlines the importance of having a method
capable of handling them.
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Figure 6. Each cross represents missing data at a time step for an observation.
Frequencies, temperature and traffic load, data is missing in respectively 65%,
4% and 31% of the time steps.
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In addition to missing data, another challenge is the non-uniformity of time steps as pre-
sented in Figure 7. 99.98% of the time steps have a duration of 30 min (∆t = 1

48 ), however, in
some exception, the time steps between recordings is around 24h and in one case 5 days.

07/8 08/6 09/4 10/1 10/11 11/8 12/6 13/4
YY/MM

10-1

100

101

102

103

Ti
m

e 
st

ep
 s

iz
e 

[h
]

Figure 7. Time step size is presented on a log-scale for the entire dataset dura-
tion.

BAYESIAN DYNAMIC LINEAR MODEL CONSTRUCTION
This section describes how to construct the Bayesian Dynamic Linear model for the Tamar

Bridge. The superscript nomenclature in this paper follows: for observations, (T) temperature,
(P) traffic pattern, (L) traffic load and (B) frequencies and for hidden state variables, (LL) local
level, (S) cyclic component, (AR) autoregressive component, and (R) regression component.
Note that Local trend and Local acceleration components are not employed in this case-study.
The global matrices defining the Bayesian Dynamic Linear model are

yt = [yBt , y
T
t , y

L
t , y

P
t ]

ᵀ

xt = [xB
t ,x

T
t ,x

L
t , x

P
t ]
ᵀ

At = block diag
(
AB
t ,A

T
t ,A

L
t , A

P
t

)
Ct = block diag

(
CB
t ,C

T
t ,C

L
t , C

P
t

)
Rt = block diag

(
RB
t , R

T
t , R

L
t , R

P
t

)
Qt = block diag

(
QB
t ,Q

T
t ,Q

L
t , Q

P
t

)
(4)

where each component of these model matrices are defined below. Note that the ordering of
variable does not influence results. Model parameters to be estimated are regrouped in the set

P = {
regression coefficients︷ ︸︸ ︷

φB|L,R, φB|T,R, φB|P,R, φL|P,R,

autocorr. coefficients︷ ︸︸ ︷
φB,AR, φT,AR, φL,AR, · · ·

σB,LL, σL,LL, σT,LL, σP,LL︸ ︷︷ ︸√
local level variance

, σB,AR, σL,AR, σT,AR︸ ︷︷ ︸√
autocorr. variance

, σB, σL, σT, σP︸ ︷︷ ︸√
meas. variance

}
(5)

where φ·|·,R describe regression coefficient, φ·,AR describe autoregression coefficients and φ·,·

describe standard deviations.
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Temperature – yTt
There are five components involved in the temperature model: (1) a local level, (2-3) two

periodic signals with a period of one day (ωT1 = 2π∆t) and 365 days (ωT2 = 2π
365∆t), (4) one

beat periodic signal with a period of 1.0027 days (ωT3 = (2π− 2π
365∆t) for modeling the change

in temperature amplitude between summers and winters, and (5) an autoregressive process of
order 1. The vector of hidden state variables for the temperature is

xT
t = [ xT,LLt︸︷︷︸

local level

, xT1,S1t , xT1,S2t︸ ︷︷ ︸
cycle, p=1 day

, xT2,S1t , xT2,S2t︸ ︷︷ ︸
cycle, p=365 day

, xT3,S1t , xT3,S2t︸ ︷︷ ︸
cycle, p=48.2 day

, xT,ARt︸︷︷︸
AR process

] (6)

where the ordering of each component remains the same for other matrices CT
t , AT

t and QT
t .

The observation matrix is
CT
t = [1, 1, 0, 1, 0, 1, 0, 1] (7)

where zeros indicate that hidden state variables xT1,S2t , xT2,S2t and xT3,S2t do not contribute to
the temperature observations. The measurement noise variance is RT

t = (σT)2. The transition
matrix is

AT
t = block diag

(
1,

[
cosωT1 sinωT1

− sinωT1 cosωT1

]
,

[
cosωT2 sinωT2

− sinωT2 cosωT2

]
,

[
cosωT3 sinωT3

− sinωT3 cosωT3

]
, φT,AR

)
.

(8)
Block matrices with sine and cosine components are defined using the generic formulation for
periodic components presented by Goulet (2017) and West and Harisson (1999). The model
error covariance is

QT
t = block diag

(
(σT,LL)2, 0, 0, 0, (σT,AR)2

)
. (9)

Traffic Pattern – yPt
Because the traffic pattern is a regressor variable, it is described by a single local level

component. Matrices defining this component are

xP
t = xPt , A

P
t = 1, CP

t = 1, RP
t = (σP)2, QP

t = (σP,LL)2. (10)

Traffic Load – yLt
There are two independent components involved in the traffic load: (1) a local level and

(2) an autoregressive process of order 1. There is also one dependent component, a regression
component linking the traffic pattern to the traffic load. The vector of state variables for the
traffic load is

xL
t = [ xL,LLt︸︷︷︸

local level

, xL,ARt︸︷︷︸
AR process

] (11)

where the ordering of each component remains the same for other matrices CL
t , AL

t and QL
t .

The observation matrix is CL
t = [1, 1], the measurement noise variance is RL

t = (σL)
2,

and the transition matrix is AL
t = block diag

(
1, φL,AR

)
and the model error covariance is

QL
t = block diag

(
(σL,LL)2, (σL,AR)2

)
. Note that here RL

t accounts for uncertainty in the av-
erage traffic. The dependent component is taken into account by introducing the regression
coefficient in the global observation matrix

[Ct]3,13 = φL|P,R. (12)

8



Goulet, J.-A. and Koo, K. (2017). Empirical Validation of Bayesian Dynamic Linear Models
in the Context of Structural Health Monitoring

Journal of Structural Engineering, ASCE.

The regression component ensures that the effect of the traffic pattern is included in the traffic
load observation. Note that the position (3, 13) in the global observation matrix depends on the
ordering chosen for state variables.

Frequency – yBt
There are two independent components involved in the frequency: (1) a local level and

(2) an autoregressive process of order 1. There are also six dependent components: (3-9) the
six regression components describe the dependency between the frequency and temperature or
traffic components. The vector of state variables for the frequency is

xB
t = [ xB,LLt︸︷︷︸

local level

, xB,ARt︸︷︷︸
AR process

] (13)

where the ordering of each component remains the same for other matrices CB
t , AB

t and QB
t .

The observation matrix is CB
t = [1, 1], the measurement noise variance is RB

t = (σB)
2,

and the transition matrix is AB
t = block diag

(
1, φB,AR

)
and the model error covariance is

QB
t = block diag

(
(σT,LL)2, (σB,AR)2

)
. The dependent components are taken into account by

introducing the regression coefficient in the global observation matrix

[Ct]1,13 = φB|P,R, [Ct]1,12 = φB|L,R, [Ct]1,4 = [Ct]1,6 = [Ct]1,8 = [Ct]1,9 = φB|T,R (14)

so that the effect of temperature and traffic pattern is included in the frequency observation.
Figure 8 presents one time slice from the Dynamic Bayesian Network (i.e. graphical model)
describing the BDLM.

Model Parameter Estimation
Unknown model parameters P can typically be estimated with a training period of six

months. In this case, because of the large amount of missing data, the training period was set
to one year. For all hidden variables except those related to autoregressive components, the
initial state x0 is described by a broad (i.e. non-informative) prior where each component has
a mean of [µ0]i = 0, ∀i and a covariance [Σ0]ii = 106, ∀i, [Σ0]ij = 0, ∀i 6= j. For the
autoregressive components, the initial state is defined as the stationary distribution of the AR
process, i.e.[µ0]i = 0, [Σ0]ii = σAR

(1−φAR)2 .
Optimal values P∗ for unknown parameters are estimated using the parameter-wise EM

algorithm because the matrix-wise approach was repeatedly caught in local maxima (Goulet
2017). The parameters values maximizing the log-likelihood are:

P∗ = {
regression coefficients︷ ︸︸ ︷

−2.8× 10−4,−2.4× 10−5,−2.0× 10−3, 2.8,

autocorr. coefficients︷ ︸︸ ︷
0.91, 0.99, 0.91s, . . .

2.4× 10−6, 4× 10−7, 9× 10−7, 0.14︸ ︷︷ ︸√
local level variance

, 5× 10−4, 0.28, 0.56︸ ︷︷ ︸√
autocorr. variance

, . . .

9× 10−4, 5× 10−5, 2× 10−5, 2× 20−7︸ ︷︷ ︸√
meas. variance

}

(15)

where the ordering of parameters is identical as in Equation 5 and each unit is consistant with
observations. The stopping criterion for the model parameter optimization algorithm is when
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yBtxB,ARtxB,LLt

yLt

yPtxPt

xL,ARtxL,LLt

yTtxT,ARtxT,LLtxT1,S1t

xT1,S2t

xT2,S1t

xT2,S2t

xT3,S1t

xT3,S2t

φB,AR σB,AR σB,LL

φB|L,R φB|P,R φB|T,R

φL,AR σL,AR σL,LL σL

σP,LL σPφL|P,R

σB

φT,AR σT,AR σT,LL σT

Unknown parameters

Figure 8. Graphical model (i.e. Dynamic Bayesian network) representing the
causal dependencies between each component of the model. Circles repre-
sent random variables; links correspond to causal relations; double-line links
are a shorthand notation for links between time steps. Nodes without a border
represent deterministic parameters; color-filled nodes correspond to observed
variables; white-filled nodes correspond to unobserved/hidden variables.

the change in the log-likelihood for 18 (i.e. the number of unknown parameters) subsequent
loops is less than 10−3% of the likelihood. For the parameter set P∗, the log-likelihood of the
data in the training set is 12767. For indication, the root-mean-square error between predicted
and observed frequencies is equal to 9.97× 10−4 Hz.

The optimal regression coefficient values identified indicate that the effect on frequencies
of traffic loading dominates the effect of temperature. By multiplying the respective regression
coefficient (φB|P,R and φB|T,R) by the standard deviation of their associated component time-
series, we find that traffic loading has a relative importance more than 20 times higher than the
temperature. Although the optimal regression coefficient for temperature is larger than zero,
the contribution of temperature on the first natural frequency is negligible compared to traffic
loading.

MODEL STATE ESTIMATION
The Bayesian Dynamic Linear Model uses the set of parameters P∗ to decompose each

observation in its hidden components as identified in Section 4. For figures presented in this
section, all left graphs present the entire dataset and the right graphs present two weeks of
data. Note that the vertical scale of each left and right graph is identical. The solid cyan line
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represents the estimated expected value and the shaded region the ±1σ region. The dashed red
line represents the observed data. Note that in terms of computational requirements, estimating
the BDLM for 61

2 years of data (≈ 98000 time steps), takes approximately one minute for the
filtering algorithm and twice as much for the smoothing algorithm (note: calculations were
performed on a laptop computer).

Figure 9 presents the smoothed estimates for components related to the structure frequency.
Figure 9a presents the local level which corresponds to the baseline behavior of the structure
without the effect of loading and temperature. The local level in Figure 9a displays a subtle non-
stationary behavior where the amplitude of the change over the entire dataset is approximately
0.15% of the average frequency. Note that the BDLM does not provide indication allowing
to identify the cause of these changes. However, from a structural engineering standpoint,
because this non-stationarity is also non-monotonic, it is unlikely to be caused by a change in
the condition of the structure.

The autoregression component in Figure 9b displays, as expected, a stationary behavior.
The structure frequency in Figure 9c shows that the model predictions are in agreement with
observations. Also, the pattern of the predictions when data is missing is compatible with
neighbouring data. Note that the large outliers in frequency observations visible in Figure 5
have not affected the identification of the baseline behavior presented in Figure 9a. Finally,
large spikes around 5×10−3 in the±1σ region for Figures 9b & c are caused by the combined
effect of missing data and time steps that are significantly longer than normal.

Figure 10 presents the smoothed estimates related to the temperature. Figures 10a shows
that the average temperature is stationary across the entire dataset. Figures 10b & c are of
particular interest because it shows the BDLM can identify daily and seasonal temperature
cycles. Figures 10f shows that the model is in good agreement with the data and that it can
provide temperature estimates when data is missing. Figure 11 presents the smoothed estimates
related to the traffic load. Figure 11a shows that the average traffic load is stationary over the
course of the monitoring period. On Figure 11c, the BDLM predictions enable to continue
estimating other components in the model even after the first half of 2011 where traffic data is
missing. Note that temperature and traffic load observations are divided in sub-components in
order to model the dependency between the frequency observations and these sub-components.

CONCLUSION
The results presented in this paper confirm that the Bayesian Dynamic Linear Model is

applicable for SHM in the context of full-scale structures. The example shows that the BDLM
is able to separate observations into generic sub-components allowing to isolate the baseline
behavior of the structure. Moreover, the example demonstrates that the BDLM can operate
in the context where outliers, missing data and non-uniform time steps are common. Also,
because it takes approximately a minute to process 61

2 years of data (≈ 98000 time steps), the
model could eventually be employed for the treatment in real-time of data coming from dozens
of sensors located on thousands of structures. The BDLM model presented in this paper is
able to model the response of a structure with respect to change in its environment. This is
the first necessary step toward new methodologies capable of detecting changes in the baseline
behavior of structures.
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