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Abstract

The tractable approximate Gaussian inference (TAGI) method allows for analytical parameter
inference in Bayesian neural networks. In its current form, TAGI can only model homoscedastic
aleatory uncertainty that is quantified by a constant error variance across the input covariate-
domain. In this paper, we present the approximate Gaussian variance inference (AGVI) method
that enables analytical inference of the error variance term as a Gaussian random variable. The
combined framework regrouping TAGI and AGVI, referred to as TAGI-V, enables modeling
heteroscedastic aleatory uncertainty in Bayesian neural networks. TAGI-V outperforms the
homoscedastic version of TAGI in terms of predictive performance for the benchmark regression
datasets. In comparison with other approximate inference methods, TAGI-V is an order of
magnitude faster and exhibits a comparable or superior predictive performance.

Keywords: tractable approximate Gaussian inference, approximate Gaussian variance infer-
ence, aleatory uncertainty, closed-form inference, Gaussian multiplicative approximation

1 Introduction

Making informed decisions require quantifying the predictive uncertainty of machine learning models.
This task involves modeling the epistemic uncertainty, which represents the lack of knowledge about
a model’s structure and parameters, and the aleatory uncertainty, which represents the inherent
variability present in the data. By collecting more data, it is possible to reduce epistemic uncertainty,
but not the aleatory one which can be further classified into homoscedastic, i.e., that remains constant
over input values and heteroscedastic, i.e., that varies with input values.
Bayesian neural networks (BNN) [22, 25] provide a probabilistic framework for estimating the model’s
confidence in its parameters and predictions. However, exact Bayesian inference is computationally
intractable for neural networks (NN) and as a result, many approximate inference methods have been
proposed in the literature [1, 5, 16]. The Hamiltonian Monte Carlo (HMC) is a sampling method
that is considered as the reference method for BNN [22, 12]. For most practical applications, the
method lacks scalability and requires problem-specific parameter tuning [12].
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The probabilistic backpropagation (PBP) [12] uses expectation propagation to estimate the parameters
in BNN. Unlike backpropagation, PBP computes the posterior distribution over the parameters
by propagating backward the gradients of the marginal likelihood with respect to the parameters.
The Monte Carlo dropout (MC-dropout) method uses dropout [30] as a Bayesian approximation for
deriving an approximate predictive distribution. MC-dropout computes the predictive uncertainty by
averaging over an ensemble of neural networks where each network is trained using dropout [16, 5].
MC-dropout is orders of magnitudes faster than PBP but requires hyperparameter tuning unlike
PBP [5]. MC-dropout motivated researchers to look into ensemble methods in neural networks [16].
Deep ensembles [16] provided a simple and scalable method that combines ensembling techniques and
adversarial training for obtaining improved predictive performance and out-of-distribution robustness
[16].
Variational inference remains an active research area for BNN. Other notable works using variational
inference include Variational matrix Gaussian (VMG) [17] and probabilistic backpropagation with the
matrix-variate Gaussian (MVG) distribution (PBP-MV) [31]. VMG uses matrix-variate Gaussian
(MVG) [10] priors over the weights compared to PBP which uses independent standard Gaussian priors.
[34] identified that variational Bayes is limited in practical applications because of computational
constraints and sensitivity to prior variances for weights. Deterministic variational inference
(DVI) [34] was proposed to counter these limitations. DVI provides analytically tractable moment
computation and an empirical Bayes [29] approach to automatically assign prior variances for the
weights.
Another modern approach is the stochastic weight averaging Gaussian (SWAG) [18] that uses the
information present within the SGD trajectory to approximate a Gaussian posterior distribution
over the parameters. SWAG uses the solution provided by stochastic weight averaging (SWA) which
are the mean and a low rank plus diagonal covariance matrix obtained from the SGD iterations to
form the Gaussian distribution. Afterwards, sampling is carried out from this Gaussian distribution
to perform Bayesian model averaging [6]. A recent approach that builds on this concept is the
subspace inference (SI) [14] that also provides an alternative solution for performing inference in
high-dimensional parameter space, especially for deep neural networks. The SI method is carried out
by first constructing low-dimensional spaces for the parameters called the subspace, then performing
posterior inference within these subspaces, and finally carrying out Bayesian model averaging leading
to increase in accuracy and well-calibrated prediction uncertainty. Many different choices are
available to select the type of subspace such as the principal component analysis (PCA) subspace,
random subspace, or the mode-connected subspace [14]. While the posterior inference within the
subspaces can be carried out either through variational inference or using MCMC methods such as
the HMC or the elliptical slice sampling (ESS) [21]. Recently, [9] proposed the analytically tractable
approximate Gaussian inference (TAGI) method which allows for analytical parameter inference
in BNN, and which was shown to provide a competitive performance in comparison to networks
trained with backpropagation [9, 23]. In its current form, TAGI can only model homoscedastic
aleatory uncertainty quantified by a single error variance parameter that is constant across the input
covariate-domain.
In this paper, we propose the analytically tractable approximate Gaussian variance inference (AGVI)
method for modeling heteroscedastic aleatory uncertainty in the context of the TAGI framework. The
method can be summarized in two key steps. First, we use the Gaussian multiplicative approximation
(GMA) [9, 3] for establishing the relationship between the Gaussian random variables describing the
error V , the square of the error V 2, and the expected value of V 2 to obtain the prior knowledge for
the error variance σ2

V . Second, we leverage these relationships and use the posterior knowledge of
the error V to update our prior knowledge for σ2

V . Using these two steps, the error variance can be
inferred analytically as a Gaussian random variable. The proposed method, referred to as TAGI-V,
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combines the TAGI framework with AGVI to model heteroscedastic aleatory uncertainty, thereby
addressing one key limitation of the original TAGI method.
The paper is organized as follows: Section 1 provides an introduction and a survey of related
works. Section 2 reviews the TAGI method for performing analytically tractable posterior inference
of parameters in Bayesian neural networks. Section 3 presents the AGVI method for handling
heteroscedastic uncertainty within the TAGI framework and Section 4 evaluates the performance of
TAGI-V for regression tasks and provides a comparison with existing approximate inference methods.

2 Tractable Approximate Gaussian Inference

In this section, we review the TAGI method by [9] for obtaining the parameters’ posterior probability
density function (PDF) in Bayesian neural networks. Here, we summarize the key principles behind
TAGI through a feedforward neural network (FNN) architecture for which the nomenclature and
notations are as follows. We use lower case slanted letters for deterministic variables, upper case
slanted letters for random variables, slanted lower case with bold font to denote vectors, and upright
upper case with bold font for matrices. The typewriter style is used either for specific names or to
represent the number of variables in a set, vector, or matrix. We consider a FNN with L hidden
layers for learning the relationship between the input covariates x = [x1 x2 · · · xX]⊺ ∈ RX and the
observed system response y ∈ RY. Each jth layer, ∀j ∈ {1, 2, · · · , L} of this FNN consists of A hidden
units z

(j)
i , ∀i ∈ {1, 2, · · · , A} for which the corresponding activation units a

(j)
i = ϕ(z

(j)
i ) are obtained

using an activation function ϕ(·). The observation model describing the relationship between the
observed system response y and the model outputs is given by

y = z(O) + v, v : V ∼ N (v; 0, σ2
V ), (1)

where z(O) ∈ RY represents the vector of hidden units on the output layer (O), and v represents the
error with mean zero and variance σ2

V . Figure 1 shows a graphical model representing the FNN
for obtaining a single model output z(O) as a function of the input covariates x. The green nodes
represent the vector of hidden units and the directed arrows show the causal relationships between
nodes. The parameters between any two layers j and j +1 are represented by θ(j), j ∈ {1, 2, · · · , L}.
The observation y, denoted by the blue node, is connected to the output unit z(O), and the error v
to represent the model in Equation 1.

x z(1) z(2) · · · z(L) z(O)

v

yθ(0) θ(1) θ(2) θ(L-1) θ(L)

Figure 1: Representation of a FNN for obtaining a single model output z(O) as a function of the
input covariates x. The network comprises of L hidden layers having A hidden units in any layer
j ∈ {1, 2, · · · , L}. The parameters between any two layers j and j + 1 are represented by θ(j). The
observation y, denoted by the blue node, is connected to the output unit z(O), and the error v to
represent the model in Equation 1.

In a generic form, TAGI requires propagating uncertainties from the activation hidden units A(j) ∼

3

https://doi.org/10.1016/j.neucom.2023.127183


Deka, B., and Nguyen, L. H., and Goulet, J-A. (2023).Analytically tractable heteroscedastic uncertainty
quantification in Bayesian neural networks for regression tasks. Neurocomputing. 127183, doi

N (a(j);µ
(j)
A ,Σ

(j)
A ) in hidden layer j to the ith hidden unit in layer j + 1 following

Z
(j+1)
i =

A∑
k=1

W
(j)
i,k A

(j)
k +B

(j)
i , (2)

where the parameters W
(j)
i,k and B

(j)
i are assumed to be Gaussian random variables. Equation 2

involves the product of pairs of weights W and activation units A for which the exact moments
can be computed using the Gaussian multiplicative approximation (GMA) [9, 3], see Appendix A
for further details. TAGI uses a 1st order Taylor series approximation at the expected value of the
hidden unit µ

(j+1)
Zi

to maintain the analytical tractability when propagating uncertainty through the
activation function. Moreover, in order to maintain a linear computational complexity with respect
to the number of parameters, first, the method employs a diagonal covariance matrix for both the
parameters θ and the hidden units Z(j). Second, it uses a recursive layer-wise Gaussian inference
approach that relies on the conditional independence between the hidden units Z(j−1) and Z(j+1)

given that the hidden units z(j) are known and the parameters θ are independent for each layer.
A two-fold inference step is used for obtaining the posterior moments for the parameters θ and
hidden units Z(j). First, the posterior expected value and diagonal covariance matrix for the output
units are obtained such that

f(z(O)|y) = N (z(O);µZ(O)|y,ΣZ(O)|y), (3)

µZ(O)|y = µZ(O) +Σ⊺
YZ(O)Σ

−1
Y (y − µY ) , (4)

ΣZ(O)|y = ΣZ(O) −Σ⊺
YZ(O)Σ

−1
Y ΣYZ(O) , (5)

where µZ(O) and µY are the mean vectors for Z(O) and Y ; ΣZ(O) is the prior covariance matrix for
Z(O), ΣY is the prior covariance matrix for Y , and ΣYZ(O) is the prior cross-covariance between
Z(O) and Y . Second, the Rauch-Tung-Striebel (RTS)[27] update equations are used to perform the
layer-wise backward inference pass using the posterior knowledge for the output units obtained by
Equations 3 – 5. The posterior moments for the parameters θ and the hidden units Z are provided
in Appendix A. The posterior inference for the parameters θ is done recursively using either a single
observation or a batch of them. Moreover, the recursive inference process is done over multiple
epochs E to overcome the limitation of having weakly informative priors for the initial parameters
θ(0).
TAGI provides an analytically tractable method for inferring the posterior expected values and
diagonal covariance matrix of a neural network’s parameters. However, a key limitation is that the
original version of TAGI is only applicable to homoscedastic cases for which the error variance σ2

V is
considered as a hyperparameter that needs to be identified separately from the analytical parameter
inference. This limitation incurs a substantial computational burden and undermines the capacity
to accurately characterize aleatory uncertainties.

3 Approximate Gaussian Variance Inference

In this section, we introduce the analytically tractable approximate Gaussian variance inference
(AGVI) method for inferring the error variance σ2

V as a Gaussian random variable. Overall, this new
method can be summarized in two steps; first, we establish the relationship between the Gaussian
random variables describing the error V , the square of the error V 2, and the expected value of V 2, to
obtain the prior knowledge for the error variance σ2

V ; second, we leverage these relationships, and use
the posterior PDF of the error V to obtain the posterior knowledge for σ2

V . Here, we describe AGVI
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through the univariate case having a single σ2
V associated with the observation unit Y , whereas

without modification, it can be extended for the multivariate case with diagonal covariance matrix
ΣV = diag(σ2

V ).
For the first step, we employ GMA, introduced in Section 2 to model V 2 using a Gaussian random
variable such that

f(v2) = N (v2;µV 2 , σ2
V 2). (6)

Using Equation 6, and given that V is zero-mean, the variance for V is by definition equal to the
expected value for V 2, so that the PDF of V is described by

f(v) = N (v; 0, µV 2). (7)

Following Proof B.1 presented in Appendix B, we show that the PDF of V 2 can be described using
only the expected value µV 2 such that

f(v2|µV 2) = N (v2;µV 2 , 2µ2
V 2), (8)

where using GMA, the variance for V 2 is σ2
V 2 = 2µ2

V 2 . In order to maintain the analytical tractability,
we assume the hyperparameter µV 2 in Equation 8 to be a Gaussian random variable described by
V 2 ∼ N (v2;µ

V 2 , σ
2
V 2

), using which, the Equation 8 can be re-written as

f(v2|v2) = N (v2; v2, 2(v2)2), (9)

where the PDF for V 2 is defined using the knowledge of v2. Figure 2 shows the graphical model
representing the relationships between the random variables V , V 2, and V 2, denoted by the green
nodes. The causal relationship between the nodes V 2 and V 2 is shown by the directed arrow
as defined in Equation 9. The undirected solid line between the nodes V 2 and V represents the
one-to-one relationship between their moments as defined by Equations 6 & 7. Hence, we obtain
the prior predictive PDF for V , through the prior predictive PDF for V 2. In Proof B.2 presented
in Appendix B, we detail the procedure to obtain the prior predictive PDF for V 2, for which the
moments are given by

µV 2 = µ
V 2 , (10)

σ2
V 2 = 3σ2

V 2 + 2µ2
V 2 . (11)

Using Equations 7 & 10, the prior predictive PDF of V is described by

f(v) = N (v; 0, µ
V 2),

where the variance of V is σ2
V = µ

V 2 . Therefore, we obtain the prior knowledge for σ2
V by using the

prior PDF for V 2 described by its moments µ
V 2 and σ2

V 2
.

In order to obtain the moments for V 2 as a function of the input covariates x, we use a neural
network having a two-headed output layer where the first output unit Z(O) models the expected value
of the system response and the second output unit is V 2. This network setup allows for handling
heteroscedastic aleatory uncertainty in regression tasks. Figure 3 shows the graphical model for a
feedforward network where the two output units are the random variables Z(O) and V 2. The output
unit for V 2 has its own set of parameters θ

(L)

V 2
connected to the last hidden layer L as shown in red.

This graphical model also shows the causal relationship between the random variables Y , Z(O), and
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VV 2V 2

µ
V 2

σ2

V 2

Figure 2: Graphical model representing the relationship between the random variables V , V 2, and
V 2, denoted by the green nodes. The causal relationship between the nodes V 2 and V 2 is shown by
the directed arrow as demonstrated by Equation 9. The undirected solid line between the nodes V 2

and V represents the one-to-one relationship between their moments as defined by Equations 6 & 7.

V , as per the observation model, along with the graphical model shown in Figure 2. This structure
presents the flow of information from V 2 to V , and then to the observation unit Y . Note that in
order to restrict the possible values for v2 to the positive domain, we need to transform its value
through an exponential activation function exp(·). This lead to a log-normal PDF for which the

moments are available in [7, §4.2.1]. The moments for the transformed random variable
∼
V 2 are

µ ∼
V 2

= exp(µ
V 2 + 0.5σ2

V 2),

σ2
∼
V 2

= exp(2µ
V 2 + σ2

V 2) · (exp(σ2
V 2)− 1),

cov(V 2,
∼
V 2) = σ2

V 2 · µ ∼
V 2

, (12)

where cov(V 2,
∼
V 2) is the covariance between the transformed random variable

∼
V 2 and the original

V 2.
In order to infer σ2

V following the structure provided in Figure 3, we need to divide the process in
two steps. Considering that the vector of output units is h = [z(O) v]⊺, we first define the posterior
PDF f(h|y) as

f(h|y) = f(h, y)

f(y)
= N (h;µH|y,ΣH|y). (13)

x Z(1) · · · Z(L)

Z(O)

VV 2V 2

Yθ(0) θ(1) θ(L-1)
θ(L)

θ
(L)

V 2

Figure 3: Network architecture for TAGI having a two-headed output layer for obtaining the random
variables Z(O) and V 2 as a function of the input covariates x. The output unit for V 2 has an
additional set of parameters θ(L)

V 2
connected to the last hidden layer L as shown in red. Also, it shows

the extended graphical model representing the causal relationship between the random variables Y ,
Z(O), and V , as per the observation model, along with the graphical model shown in Figure 2.

6

https://doi.org/10.1016/j.neucom.2023.127183


Deka, B., and Nguyen, L. H., and Goulet, J-A. (2023).Analytically tractable heteroscedastic uncertainty
quantification in Bayesian neural networks for regression tasks. Neurocomputing. 127183, doi

Using the same Gaussian conditional equations as presented in Section 2, the posterior mean vector
µH|y and covariance matrix ΣH|y are obtained by

µH|y = µH +
ΣHY

σ2
Y

(y − µY ),

ΣH|y = ΣH −
ΣHY ·Σ⊺

HY

σ2
Y

. (14)

Second, the current knowledge of V 2 is updated using the posterior PDF f(v|y) derived from
Equation 14. Following Proof B.3 presented in Appendix B, the posterior moments for V 2 and V 2

are given by

µV 2|y = µ2
V |y + σ2

V |y,

σ2
V 2|y = 2(σV |y)

4 + 4σ2
V |yµ

2
V |y,

µ
V 2|y = µ

V 2 + k(µV 2|y − µV 2),

σ2
V 2|y = σ2

V 2 + k2(σ2
V 2|y − σ2

V 2),

k =
σ2
V 2

σ2
V 2

.

The updated knowledge for Z(O) and V 2 are used to obtain the posterior for the parameters and
the hidden units using the layer-wise recursive inference detailed in Section 2. By combining the
frameworks of TAGI and AGVI, we can perform the analytically tractable inference of a neural
network’s parameters as well as the error variance, and enable heteroscedastic aleatory uncertainty
quantification for regression tasks. We refer to this method as TAGI-V.
Note that the overall complexity of TAGI is O(A2), where A signifies the number of activation units
present within each layer [9]. This complexity scales linearly with the number of hidden layers L. In
TAGI-V, we simply modify the output layer that includes A additional weight terms associated with
the output unit for the singular error variance term. This additional step has a complexity of O(A)
and hence, do not change the overall complexity of the network, i.e., O(A2).

4 Experiments

In this section, we perform experiments using the TAGI-V method for a 1D toy problem and for the
UCI regression benchmark datasets [12, 32]. We provide a comparative analysis with the approximate
inference methods used for regression tasks in existing literature.

4.1 Toy Problem

We apply TAGI-V to the 1D heteroscedastic regression problem for y = −(x+0.5) ·sin(3πx)+v, such
that V ∼ N (0, σ2

V ), where the heteroscedastic error variance is modeled by σ2
V = 0.45 · (x+ 0.5)2.

We generate 500 observations sampled uniformly in the range [−0.5, 0.5] and use a two-layer network
of 128 hidden units with ReLU activation function. The prior weights and bias are initialized using
He’s approach [11] and the inference is carried out using one observation at a time. We compare
our method with the homoscedastic original version of TAGI using the implementation from [9], a
deterministic heteroscedastic neural network trained with backpropagation [26], and deterministic
variational inference (DVI) as implemented by [34]. Figure 4 compares the true function used to
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generate the data with the predictions described by the expected values and ±σ confidence regions
for each of these methods. The results in Figure 4(a) show that TAGI-V is capable of handling
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y y ± σ observation µ µ± σ

(e) DVI

Figure 4: Application of TAGI-V to a toy problem having a heteroscedastic error variance modeled
using σ2

V = 0.45 · (x + 0.5)2. The training data points are plotted in magenta, the true function
y = −(x+ 0.5) · sin(3πx) + v, and the ±1σ confidence region are shown by the red solid line and red
shaded region, and the model predictions and their ±1σ confidence regions are shown by the black
solid line and green shaded area, respectively. In (a) we show the predictions using TAGI-V and
in (b) we show the learning curve showing the evolution of the test log-likelihood as a function of
the number of epochs. Figures (c)-(e) show the predictions using the original version of TAGI [9], a
deterministic neural network [26], and DVI [34], respectively.

heteroscedastic error variance in the region where training data is available and is able to extrapolate
the confidence region outside the training region in order to represent a lack of knowledge. Figure
4(b) shows the learning curve representing the evolution of the test log-likelihood as a function of
the number of epochs. We identify the optimal epoch for the toy problem to be E = 28 using an
early-stopping procedure and patience of 5 epochs. In Figure 4(c), we can see that the original TAGI
method is not capable of handling heteroscedastic error variance and can only model a constant
one, both within as well as beyond the training region. Figure 4(d) shows the predictions using a
deterministic NN trained with backpropagation that can, to a certain extent, model heteroscedastic
uncertainty where training data is available but fails to extrapolate the uncertainty beyond the
training region. As shown by Figure 4(e), DVI is capable of handling heteroscedastic error variance
and is better than TAGI-V at extrapolating the confidence interval to represent the lack of knowledge
outside the training region. However, DVI requires orders of magnitudes more epochs (20000) for
achieving convergence compared to TAGI-V (28) as shown in Figure 4(b).
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4.2 Regression Benchmarks

In this section, we evaluate the performance of TAGI-V for both the small and large UCI regression
datasets. For both datasets, we compare our method with some of the approximate inference methods
used for regression tasks in the literature.

4.2.1 Small UCI Datasets

In this section, we compare our method for the small UCI regression datasets with some of the
existing baselines such as PBP [12], MC-dropout [5, 20], deterministic NN [26], ensemble of neural
networks [16], DVI [34], PBP-MV [31], VMG [17], the stochastic weight averaging Gaussian (SWAG)
[18], two types of subspace inference (SI) methods [14] namely, principal component analysis with
elliptical slice sampling (PCA+ESS) and the other with variational inference (PCA + VI), along
with the original version of TAGI [9]. This study is conducted using the experimental set-up provided
by [12] which has been extensively used in the literature to evaluate the predictive capacity of
the approximate inference methods. The implementation details for each method is provided in
Appendix C.
Each dataset is randomly split into a training and a test set having 90% and 10% of the data,
respectively, and we maintain the same indices in both sets for each method. We consider 20 data
splits to compute the average test performance. For comparative purposes, we consider a network
having a single hidden layer of 50 units for each dataset, except for Protein, which has 100 units. For
TAGI-V, the data is normalized, a ReLU activation function is used, and the batch size considered is
B = 32. The prior covariances for weights and bias are initialized using He’s approach [11]. Note that
the scaling factor associated with the prior variance of the weights for the mean as well as the error
variance are tuned for each dataset for proper initialization. The details regarding the grid-search
procedure employed are provided in Appendix D. Moreover, an early-stopping procedure is used to
identify the optimal number of epochs for each dataset by dividing the training set into an 80− 20%
train-validation sets, see details in Appendix D.
For comparison among methods, the epoch setting is common in the literature that provides the
predictive accuracy of a particular method as it learns with each new epoch. However, for practical
applications, it is equally important to understand the amount of training time required by each
method to achieve a particular accuracy. Therefore, we introduce the time setting, where unlike
the epoch setting, we obtain the learning curves as a function of the average training time for each
method. The results for the epoch setting are provided in Appendix E that are obtained by training
each method for a fixed 100 epochs.
Figure 5 provides the maximum test log-likelihood and the minimum RMSE values for the datasets
Boston, Energy, and Yacht obtained under the time setting. In order to accommodate for the large
disparities with respect to training time between the methods, we present the horizontal axis in
log-scale (base 10). In addition, we have also included the maximum log-likelihood values, the
minimum RMSE values as well as the learning curves for PBP-MV and VMG as obtained directly
from [31]. The figures showing the maximum log-likelihood and the minimum RMSE values for the
other datasets under the time setting are presented in Appendix E. The learning curves for all the
datasets under both settings are provided in Appendix F.
While comparing the average training time per epoch between the methods, we find that TAGI-V is
≈ 100 times faster than PCA+ESS, PCA+VI, PBP-MV and VMG, ≈ 10 times faster than PBP,
and ≈ 3 times faster than Ensemble. Even though methods such as MC-dropout and SWAG have
an average training time per epoch equivalent to TAGI-V, they require more time than TAGI-V
to converge to their best accuracy as presented in Figure 5. For MC-dropout, this observation
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Figure 5: Comparison for the maximum test log-likelihood and the minimum test RMSE values
obtained with TAGI-V and the existing baselines for the datasets a) Boston, b) Energy, and c) Yacht
under the time setting. The horizontal axis represents the training time (s) in log scale (base 10)
and the vertical axis represents either the test log-likelihood (top figure) or the test RMSE (bottom
figure) in linear scale. The marked points are : TAGI-V ( ), PBP ( ) [12], MC-dropout ( ) [5],
DVI ( ) [34], deterministic NN ( ) [26], Ensemble ( ) [16], TAGI ( ) [9], TAGI-V 2L ( ) that
represents a TAGI-V network of two layers and 100 hidden nodes, PBP-MV ( ) [31], VMG ( ) [17],
SWAG ( ) [18], the two subspace inference methods, i.e., PCA+ESS ( ) , and PCA+VI ( ) [14].

is validated by the fact that it takes orders of magnitude more epochs (≈ 4000) to achieve the
predictive performance as mentioned in the article by [20]. Moreover, MC-dropout requires tuning
several hyperparameters for e.g., learning rate, dropout rate, and precision parameter that also
has a high computational requirement. Similarly, SWAG also has several hyperparameters such as
learning rates for both SGD and SWAG, the maximum number of SWAG models, the number of
Monte Carlo (MC) samples in forward pass, and the number of epochs for running SGD initially,
that either requires manual tuning or finding the optimal values through cross-validation [18, 14].
The deterministic NN is the fastest method by a factor of ≈ 1.5 compared with TAGI-V, but it
provides a poor predictive accuracy as shown in Figure 5. The average training time per epoch for
all the methods is provided in Appendix G.
In terms of absolute predictive performance, PBP-MV reports the best test log-likelihood and test
RMSE among all methods in 5 out of the 9 datasets (Boston, Concrete, Wine, Kin8nm, and Protein),
VMG outperforms PBP-MV and all other methods in Power, DVI provides the best results in Naval,
while TAGI-V performs the best in Yacht. Even though PBP-MV and VMG produce state-of-the-art
results in terms of predictive accuracy, these methods take orders of magnitudes more computational
time than all other methods, except DVI that also has a similar order of computational demand.
The subspace inference methods are also capable of providing good accuracy especially for the
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datasets Concrete, Kin8nm, Naval, Protein but takes more computational time than even PBP-MV
to achieve those results. Even though there is not a clear distinction between the two subspace
methods, we found that PCA+VI is faster and performs marginally better than PCA+ESS in most
of the small UCI datasets. On the other hand, SWAG is a relatively low-cost method in terms of its
training time that can also provide accuracy similar to the subspace methods. However, the large
number of hyperparameters limits its practical applicability compared to TAGI-V that has at most
two hyperparameters, i.e., the gain parameters for the prior variances of weights and biases, and
converges to its best accuracy much faster than SWAG.
In order to further demonstrate the superiority of TAGI-V in comparison with approaches such as
PBP-MV that can reach a high accuracy at the expense of computational efficiency, we have tested
the performance of our method by using 2 layers and 100 hidden nodes (TAGI-V 2L) as represented
by the red diamond in Figures 5. The two-layer network not only outperform PBP-MV and VMG
for test log-likelihood in all datasets except in Concrete and Wine, but while doing so remains at two
orders of magnitude faster than these methods. For the test RMSE, the two-layer network exceeds
the performance of PBP-MV and VMG in 5 out of 9 datasets (Concrete, Energy, Kin8nm, Yacht
and Power). These results demonstrate that TAGI-V can achieve the state-of-the-art predictive
accuracy by using a larger neural network architecture while still being computationally faster than
most approaches. Hence, in regard to practical applicability, TAGI-V has the potential to achieve
superior predictive accuracy on regression tasks considering that it is one of the fastest methods
not only in terms of its training time per epoch but also the minimum training time it requires to
converge to those results.
It is to be mentioned that the results here for TAGI-V were obtained using the TAGI MATLAB
library [4] on a 12 cores 3GHz CPU. Recently, [24] have released the cuTAGI (C++ & CUDA )
along with the pyTAGI (Python) libraries with the TAGI-V formulation. The benchmark tests
performed show that these new libraries are more than two times faster than the MATLAB library
for the small UCI regression datasets.

4.2.2 Large UCI Datasets

In this section, TAGI-V is tested for the large UCI regression datasets: elevators, keggdirected,
keggundirected, pol, and skillcraft. The experimental framework used here is provided by [32]. Each
dataset is randomly split into a training and test set having 90% and 10% of the data. The
experiment is carried out for 10 splits in order to compute the average test RMSE and normalized
test log-likelihood values [14].
On all datasets, except skillcraft, a network of five hidden layers is used where the number of hidden
units in each layer are: [1000, 1000, 500, 50, 2]. For skillcraft, a smaller network is used such that
the structure is: [1000, 500, 50, 2]. A ReLU activation unit is used and the batch size considered is
B = 10. The prior variances for weights and bias are initialized using He’s approach [11]. Similarly
to the procedure for the small UCI datasets, the gain parameters associated with the prior variances
of θ for all the hidden layers and the output layer connected to the mean and error variance are
tuned using a grid-search procedure. Also, an early-stopping procedure is used to stop the training
process with a fixed patience of 3 epochs. The hyperparameters and the computational time for
each dataset are provided in Appendix H.
Table 1 provides the normalized test log-likelihood and RMSE values for the large UCI regression
datasets. A direct comparison is made with Bayesian inference methods such as the best performing
subspace inference method [14] i.e., principal component analysis combined with variational inference
(PCA+VI), along with the stochastic weight averaging-Gaussian (SWAG) [18], the Bayesian final
layers (NL) [28], and the stochastic gradient descent (SGD) obtained from [14]. The results for
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TAGI-V are averaged over 3 random seeds. The test log-likelihood values show that TAGI-V performs
better than all other methods in 4 out of the 5 datasets. The TAGI-V method is also competitive
for RMSE values where it provides the best results in 2 out of the 5 datasets, i.e., Elevators and
KeggD, while it is second best for KeggU and Pol. Both PCA+ VI and NL outperform the others in
two datasets.

Table 1: Normalized log-likelihood and RMSE comparison between TAGI-V and the existing
Bayesian inference methods [14, 18, 28] on large UCI regression datasets (Rank legend: first). The
±σ represents one standard deviation computed over 10 splits.

Metrics Datasets TAGI-V PCA + VI (SI) SWAG NL SGD

Elevators −0.319± 0.027 −0.325± 0.019 −0.374± 0.021 −0.698± 0.039 −0.538± 0.108
KeggD 1.287± 0.112 1.085± 0.031 1.080± 0.035 0.935± 0.265 1.012± 0.154

log-likelihood KeggU 0.793± 1.034 0.757± 0.028 0.749± 0.029 0.670± 0.038 0.602± 0.224
Pol 0.718± 0.108 1.764± 0.271 1.533± 1.084 −2.84± 0.226 1.073± 0.858
Skillcraft −0.981± 0.031 −1.179± 0.033 −1.180± 0.033 −1.002± 0.050 −1.162± 0.032

Elevators 0.087± 0.002 0.088± 0.001 0.088± 0.001 0.101± 0.002 0.103± 0.035
KeggD 0.128± 0.004 0.128± 0.029 0.129± 0.029 0.134± 0.036 0.132± 0.017

RMSE KeggU 0.126± 0.004 0.160± 0.043 0.160± 0.043 0.120± 0.003 0.186± 0.034
Pol 2.737± 0.135 2.50± 0.068 3.11± 0.070 4.380± 0.853 3.900± 6.003
Skillcraft 0.445± 0.135 0.293± 0.015 0.293± 0.015 0.253± 0.011 0.288± 0.014

5 Conclusion

The TAGI-V method proposed in this article provides an analytical method for handling heteroscedas-
tic aleatory uncertainty and overcomes the limitation of the original version of TAGI which can only
handle homoscedastic error variance. The method proposed combines the TAGI framework that
allows for the analytical inference of the parameters’ posterior PDF in Bayesian neural networks,
and AGVI that enables analytical inference of the error variance term as a Gaussian random variable.
TAGI-V outperforms the original version of TAGI in terms of test log-likelihood while providing
similar test RMSE values for all small UCI regression datasets. In comparison with other approximate
inference methods, TAGI-V is an order of magnitude faster and exhibits comparable or superior
predictive performance. The TAGI-V framework was also tested for large UCI regression datasets
for which it provided better log-likelihood values in four out of the five datasets compared to the
benchmark methods while providing competitive performance in terms of RMSE.
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A Appendix A

A.1 GMA Equations

In this section, we present the Gaussian multiplicative approximation (GMA), an approximate
method for computing the first two moments for the product of two Gaussian random variables [9, 3].
Consider X = [X1 X2 X3 X4]

⊺, a vector of Gaussian random variables such that X ∼ N (x;µ,Σ),
with mean vector µ and covariance matrix Σ. Using the Gaussian moment generating function or
2nd order Taylor series expansion, the following equations can be derived for the product of any two
Gaussian random variables such that

E[X1X2] = µ1µ2 + cov(X1, X2),

var(X1X2) = σ2
1σ

2
2 + cov(X1, X2)

2

+ 2cov(X1, X2)µ1µ2

+ σ2
1µ

2
2 + σ2

2µ
2
1,

cov(X3, X1X2) = cov(X1, X3)µ2 + cov(X2, X3)µ1,

cov(X1X2, X3X4) = cov(X1, X3)cov(X2, X4)

+ cov(X1, X4)cov(X2, X3)

+ cov(X1, X3)µ2µ4

+ cov(X1, X4)µ2µ3

+ cov(X2, X3)µ1µ4

+ cov(X2, X4)µ1µ3.

The detailed procedure to develop these equations are provided in the articles by [9, 3]. Using the
GMA equations, an approximate Gaussian feedforward network (AG-FNN) can be constructed,
where we can propagate moments analytically from the input layer to the output layer shown by

{µ(O)
Z ,Σ

(O)
Z ,Σ

(O)
Z,θ} = AG-FNN(x,µθ,Σθ),

where x represents the input covariates, while µθ and Σθ represents the mean vector and covariance
matrix for the total set of parameters in the neural network.

A.2 Posterior Moments for parameters and hidden units

The posterior moments for the parameters θ and the hidden units Z are obtained following

f(Z|y) = N (z;µZ|y,ΣZ|y),

µZ|y = µZ + JZ

(
µZ+|y − µZ+

)
,

ΣZ|y = ΣZ + JZ

(
ΣZ+|y −ΣZ+

)
J⊺
Z ,

JZ = ΣZZ+Σ−1
Z+ ,

f(θ|y) = N (θ;µθ|y,Σθ|y),

µθ|y = µθ + Jθ

(
µZ+|y − µZ+

)
Σθ|y = Σθ + Jθ

(
ΣZ+|y −ΣZ+

)
J⊺
θ

Jθ = ΣθZ+Σ−1
Z+ ,
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where the short-hand notations for the parameters and hidden units in the jth and the subsequent
layer are {θ+,Z+} ≡ {θ(j+1),Z(j+1)} and {θ,Z} ≡ {θ(j),Z(j)}. The details regarding these
statements can be found in [9].

B Appendix B

B.1 PDF of V 2 only depends on the mean parameter µV 2

Proof. Given that V is zero-mean Gaussian, the moments of V can be derived using a Gaussian
moment generating function so that

µV = E[V ] = 0,

σ2
V = E[(V − µV )

2] = E[V 2]− E[V ]2, (15)

= E[V 2],

E[V 4] = 3E[V 2]2, (16)

where using the 4th central moment from Equation (16) we can define,

var(V 2) = E[(V 4)]− E[V 2]2 = 2E[V 2]2. (17)

With the approximation that V 2 ∼ N (v2;µV 2 , σ2
V 2) is a Gaussian random variable, the PDF for V 2

can be fully defined by its mean and variance,

µV 2 =E[V 2],

σ2
V 2 =var(V 2) = 2E[V 2]2,

where by using Equation (17), the variance var(V 2) can also be expressed in terms of the expected
value E[V 2]. Hence, the PDF of V 2 only depends on the unknown parameter µV 2 so that

f(v2|µV 2 , σ2
V 2) ≡ f(v2|µV 2),

= N (v2;µV 2 , 2µ2
V 2). (18)

B.2 Prior predictive PDF for V 2 and V

Proof. Let us consider that the expected value µV 2 is described by the random variable V 2 : v2 ∈
(0,∞) for which

f(v2) ∼ N (v2;µV 2
, (σV 2

)2). (19)

Using Equations (18) and (19), we can rewrite the PDF of V 2 as

f(v2|v2) = N (v2; v2, 2(v2)2). (20)

The Gaussian random variables V 2 and V 2 can be represented by

V 2 = V 2 +
√
2 V 2ϵ, ϵ ∼ N (0, 1) (21)

V 2 = µV 2
+ σV 2

ζ, ζ ∼ N (0, 1). (22)
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Using Equations (21)) and (22), the mean and variance of the prior predictive PDF of V 2 are given
by

E[V 2] = E[V 2 +
√
2�����:0
E[V 2 ϵ],

= µ
V 2 , (23)

var(V 2) = var(V 2) + 2 var(V 2 ϵ),

= σ2
V 2 + 2(var(V 2) ·����:1var(ϵ) +����:1var(ϵ) · E[V 2]2),

= 3σ2
V 2 + 2µ2

V 2 , (24)

where using the GMA Equations in Section A.1,

var(V 2 ϵ) = var(V 2) · var(ϵ) + var(ϵ) · E[V 2]2.

Using Equations (15) and (23), the error variance term is given by

σ2
V = µ

V 2 . (25)

B.3 Posterior moments for V 2

Proof. The joint PDF f(v2, v2|y) is

f(v2, v2|y) = N
((

v2

v2

)
;µ

V 2,V 2 ,ΣV 2,V 2

)
, (26)

having a mean vector µ
V 2,V 2 and a covariance matrix Σ

V 2,V 2 defined as

µ
V 2,V 2 =

[
µV 2

µV 2
]⊺

,

Σ
V 2,V 2 =

[
σ2
V 2

cov(V 2, V 2)

cov(V 2, V 2) σ2
V 2

]
,

The covariance term between V 2 and V 2 in Equation (26) is obtained using the GMA equations so
that

cov(V 2, V 2) = cov(V 2, V 2),

= cov(V 2 +
√
2 V 2ϵ, V 2),

= var(V 2) +
√
2cov(V 2ϵ, V 2),

= var(V 2) +
√
2(cov(V 2, V 2)�

��>
0

E[ϵ]

+������:0
cov(ϵ, V 2)E[V 2]),

= σ2
V 2 .

Using the Gaussian conditional properties and Equation (26), the PDF f(v2|v2, y) is

f(v2|v2, y) = N (v2, µ2
V 2|V 2 , σ

2
V 2|V 2), (27)
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where the conditional mean and variance are

µ2
V 2|V 2 = µ

V 2 + k(v2 − µV 2), (28)

σ2
V 2|V 2 = σ2

V 2 − k2σ2
V 2 ,

k =
cov(V 2, V 2)

σ2
V 2

,

=
σ2
V 2

σ2
V 2

. (29)

Using Equation (27), (29) is rewritten as

f(v2|y) =
∫

N (µ2
V 2|V 2 , σ

2
V 2|V 2) · N (µV 2|y, σ

2
V 2|y)dv

2,

= N (v2;µ
V 2|y, σ

2
V 2),

where using the Gaussian distribution properties for random mean and constant variance, the
posterior mean and variance of V 2 are

µ
V 2 = E

[
µ
V 2 + k(V 2|y − µV 2)

]
,

= µ
V 2 + k(µV 2|y − µV 2),

σ2
V 2 = σ2

V 2 − k2σ2
V 2 + k2var(V 2|y),

= σ2
V 2 + k2(σ2

V 2 − σ2
V 2). (30)

C Appendix C

C.1 Hyperparameters for the approximate inference methods

In this section we present the hyperparameters for the approximate inference methods used for
comparison in this study that are: PBP [12], MC-dropout [5, 20], deterministic NN [26], ensemble of
neural networks [16], DVI [34], PBP-MV [31], VMG [17], SWAG [18], the two subspace inference
methods PCA+ESS and PCA+VI [14], and TAGI [9].
The code for PBP is provided in [13]. PBP tunes its hyperparameter, namely the precision (λ),
automatically for which a gamma hyper-prior is considered with the scale and inverse scale parameters,
αλ
0 = βλ

0 = 6. The batch size used is B = 1.
The code for MC-dropout is provided in [19]. The optimal values for the hyperparameters namely,
the dropout rate d and the precision parameter τ are identified for each data split by performing
grid-search over a range of (d, τ) pairs. The batch size used is B = 128 and the Adam optimizer used
is with the default learning rate built-in Keras [2]. The number of forward iterations (T) used for
obtaining predictive uncertainty are 104.
For the Ensembles method, we implement an ensemble of 5 neural networks trained with random
initialization of weights and bias having a two-headed output layer that provides the mean and
error variance. We use a softplus activation function as suggested in [16]. The batch size used is
B = 128, the learning rate is 0.01, and the epsilon parameter for adversarial training is set to 1%.
We also implemented a deterministic neural network with only one model having the same set of
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hyperparameters as implemented for the Ensembles.
For DVI, the set of hyperparameters for the toy problem are provided in the code by [33], while for
the regression benchmark they are provided by [34]. We have not implemented PBP-MV and VMG
but directly used the results presented in the article by [31].
The code for the subspace inference (SI) methods and stochastic weight averaging Gaussian (SWAG)
are provided in [15]. The hyperparameters involved in the code are the learning rates for stochastic
gradient descent (SGD) and SWAG, the starting epoch for SWAG, the number of Monte Carlo (MC)
samples drawn in forward pass, the maximum number of SWAG models, the weight decay rate, and
the temperature. The values for the set of hyperparameters are different for each dataset including
the batch size and the maximum number of epochs used for training which are taken directly from
the original code without modification. However, the number of MC samples and the maximum
number of SWAG models are fixed to 30 and 20, respectively for the small UCI regression datasets.
The implementation code for TAGI is provided in the Github repository by [8]. The original work
identifies the optimal error variance σ2

V using a 5 fold cross-validation. The batch size used is B = 10,
and the prior covariance for bias is initialized using 0.01 · I, and for the weights using the Xavier’s
approach.

D Appendix D

D.1 Initialization of the neural network’s parameters

Using He’s approach [11], the prior covariance matrix for the weights W (j) and bias B(j), in any
hidden layer j are given by Σ

(j)
W = Σ

(j)
B = 1

nj−1
· I, where nj−1 represents the number of hidden units

in the previous layer j − 1. We modify He’s approach by introducing a scaling factor α [26] for the
weights such that the new prior covariance matrix is Σ̃

(j)
W = α

nj−1
· I that are initialized according to

the data. Also, a different scaling factor β is considered for the weights connected to the 2nd output
node providing the error-variance. The best pair of values for these two hyperparameters (α and β)
are identified using a validation set and a grid-search procedure. The list of hyperparameter values
over which the grid-search is carried out are

patience : {3, 5, 10},
α : {0.1, 0.5, 1},
β : {0.1, 0.01, 0.001},

where patience is the hyperparameter for the early-stopping procedure. Table 2 shows the optimal
values for the hyperparameters used for each dataset. Figures 6 and 7 shows the learning curves for
TAGI-V using both the original and the modified He’s approach for parameter initialization. The
results shows that the modified He’s approach provides better predictive accuracy in most datasets.
Figure 8 shows the optimal epoch for each dataset obtained using early stopping procedure.
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Table 2: Optimized set of hyperparameters identified using grid-search procedure. The parameters
α and β, and patience are associated with the modified He’s approach and early-stopping procedure,
respectively. The grid-search is carried out using a validation set obtained from the original training
set by a 80 − 20 split ratio. The total computational time (in sec) required for the grid-search
procedure is also provided.

Datasets α β patience Total Time (in sec)

Boston 0.5 0.01 5 591.63
Concrete 0.5 0.01 5 1225.83
Energy 0.5 0.01 5 420.30
Kin8nm 1 0.01 5 3562.74
Naval 0.5 0.01 3 19570.24
Power 0.5 0.001 10 4805.74
Protein 0.5 0.1 10 23299.31
Wine 0.1 0.01 10 353.71
Yacht 0.1 0.1 5 648.60
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Figure 6: The learning curves for test log-likelihood showing the comparative performance between
the original and modified He’s approach for parameter initialization. The black and red solid line
represents the performance using the original and modified He’s approach, respectively. In the
original He’s approach [11], we set the scaling factors, α = β = 1, but for the modified He’s approach
we tune the scaling factor [26] for each dataset using a grid-search procedure over possible set of
hyperparameter values.
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Figure 7: The learning curves for test RMSE showing the performance using the original and modified
He’s approach for parameter initialization. The black and red solid line represents the performance
using the original and modified He’s approach, respectively. In the original He’s approach [11], we
set the scaling factors, α = β = 1, but for the modified He’s approach, we tune the scaling factor
[26] for each dataset using a grid-search procedure over possible set of hyperparameter values.
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Figure 8: The learning curves for TAGI-V under epoch setting showing the test log-likelihood for
the small UCI regression datasets. The optimal epoch is highlighted by the black dotted line found
using early-stopping procedure.
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E Appendix E

E.1 Plots showing the maximum test log-likelihood and minimum test RMSE
under the epoch and time setting

0 50 100
−4

−3.5

−3

−2.5

Epoch

Lo
g-

lik
el

ih
oo

d

a) Boston

0 50 100

−3

−3.2

−3.4

Epoch
Lo

g-
lik

el
ih

oo
d

b) Concrete

0 50 100

−0.9

−0.93

−0.96

Epoch

Lo
g-

lik
el

ih
oo

d

c) Wine

0 50 100
0.8

1

1.2

Epoch

Lo
g-

lik
el

ih
oo

d

d) Kin8nm

0 50 100
3

4.5

6

Epoch

Lo
g-

lik
el

ih
oo

d

e) Naval

0 50 100

0

−2

−4

−6

Epoch

Lo
g-

lik
el

ih
oo

d

f) Energy

0 50 100

−2.8

−2.82

−2.84

Epoch

Lo
g-

lik
el

ih
oo

d

g) Power

0 50 100

−2.8

−2.9

−3

Epoch

Lo
g-

lik
el

ih
oo

d

h) Protein

0 50 100

−6

−4

−2

0

Epoch

Lo
g-

lik
el

ih
oo

d

i) Yacht

TAGI-V TAGI PBP MC-dropout Ensemble DVI NN

Figure 9: Comparison for the maximum test log-likelihood obtained with the existing baselines
under the epoch setting for the datasets a) Boston, b) Concrete, c) Wine, d) Kin8nm, e) Naval, f)
Energy, g) Power, h) Protein, and i) Yacht. The horizontal axis shows the total number of epochs,
i.e., 100 and the vertical axis shows the test log-likelihood values. The marked points are : TAGI-V
( ), PBP ( ) [12], MC-dropout ( ) [5], DVI ( ) [34], deterministic NN ( ) [26], Ensemble ( ) [16],
and TAGI ( ) [9].
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Figure 10: Comparison for the minimum test root mean square error (RMSE) values obtained with
the existing baselines under the epoch setting for the datasets a) Boston, b) Concrete, c) Wine, d)
Kin8nm, e) Naval, f) Energy, g) Power, h) Protein, and i) Yacht. The horizontal axis shows the
total number of epochs, i.e., 100 and the vertical axis shows the test RMSE values. The marked
points are : TAGI-V ( ), PBP ( ) [12], MC-dropout ( ) [5], DVI ( ) [34], deterministic NN ( )
[26], Ensemble ( ) [16], and TAGI ( ) [9].
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Figure 11: Comparison for the maximum test log-likelihood values obtained with the existing
baselines under the time setting for the datasets a) Concrete, b) Wine, c) Kin8nm, d) Naval, e)
Power, and f) Protein. The horizontal axis represents the training time (s) in log scale (base 10) and
the vertical axis represents either the test log-likelihood values in linear scale. The marked points
are : TAGI-V ( ), PBP ( ) [12], MC-dropout ( ) [5], DVI ( ) [34], deterministic NN ( ) [26],
Ensemble ( ) [16], TAGI ( ) [9], TAGI-V 2L ( ) that represents a TAGI-V network of two layers
and 100 hidden nodes, PBP-MV ( ) [31], VMG ( ) [17], SWAG ( ) [18], the two subspace inference
methods, i.e., PCA+ESS ( ) , and PCA+VI ( ) [14].
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Figure 12: Comparison for the minimum test root mean square error (RMSE) values obtained with
the existing baselines under the time setting for the datasets a) Concrete, b) Wine, c) Kin8nm, d)
Naval, e) Power, and f) Protein. The horizontal axis represents the training time (s) in log scale
(base 10) and the vertical axis represents the test RMSE values in linear scale. The marked points
are : TAGI-V ( ), PBP ( ) [12], MC-dropout ( ) [5], DVI ( ) [34], deterministic NN ( ) [26],
Ensemble ( ) [16], TAGI ( ) [9], TAGI-V 2L ( ) that represents a TAGI-V network of two layers
and 100 hidden nodes, PBP-MV ( ) [31], VMG ( ) [17], SWAG ( ) [18], the two subspace inference
methods, i.e., PCA+ESS ( ) , and PCA+VI ( ) [14].
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F Appendix F

F.1 Learning curves showing test log-likelihood and test RMSE under the epoch
and time setting.
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Figure 13: Learning curves showing the test log-likelihood under the epoch setting. The horizontal
axis shows the number of epochs and the vertical axis shows the test loglikelihood. The colored line
plots are : TAGI-V (red solid line), PBP (blue solid line) [12], MC-dropout (green solid line) [5],
DVI (purple solid line) [34], deterministic NN (yellow solid line) [26], Ensemble (black solid line) [16],
TAGI (brown dotted line) [9], and TAGI-V 2L (red dotted line) that represents a TAGI-V network
of two layers and 100 hidden nodes.
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Figure 14: Learning curves showing the test RMSE under the epoch setting. The horizontal axis
shows the number of epochs and the vertical axis shows the test RMSE. The colored line plots are :
TAGI-V (red solid line), PBP (blue solid line) [12], MC-dropout (green solid line) [5], DVI (purple
solid line) [34], deterministic NN (yellow solid line) [26], Ensemble (black solid line) [16], TAGI
(brown dotted line) [9], and TAGI-V 2L (red dotted line) that represents a TAGI-V network of two
layers and 100 hidden nodes.
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Figure 15: Learning curves showing the test log-likelihood under the time setting. The horizontal
axis represents training time (s) in log scale (base 10) and the vertical axis represents the test
log-likelihood in linear scale. The colored line plots are : TAGI-V (red solid line), PBP (blue solid
line) [12], MC-dropout (green solid line) [5], DVI (purple solid line) [34], deterministic NN (yellow
solid line) [26], Ensembles (black solid line) [16], TAGI (brown dotted line) [9], TAGI-V 2L (red
dotted line) that represents a TAGI-V network of two layers and 100 hidden nodes, PBP-MV (cyan
solid line) [31], VMG (magenta solid line) [17], SWAG (dark green dash-dotted line) [18], and the
two subspace inference methods, PCA + ESS (violet dotted line) and PCA + VI (orange dashed
line) [14]. The learning curves for PBP-MV and VMG are obtained directly from the original article
[31].
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Figure 16: Learning curves showing the test RMSE under the time setting. The horizontal axis
represents training time (s) in log scale (base 10) and the vertical axis represents the test RMSE
in linear scale. The colored line plots are : TAGI-V (red solid line), PBP (blue solid line) [12],
MC-dropout (green solid line) [5], DVI (purple solid line) [34], deterministic NN (yellow solid line)
[26], Ensembles (black solid line) [16], TAGI (brown dotted line) [9], TAGI-V 2L (red dotted line)
that represents a TAGI-V network of two layers and 100 hidden nodes, PBP-MV (cyan solid line)
[31], VMG (magenta solid line) [17], SWAG (dark green dash-dotted line) [18], and the two subspace
inference methods, PCA + ESS (violet dotted line) and PCA + VI (orange dashed line) [14]. The
learning curves for PBP-MV and VMG are obtained directly from the original article [31].
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G Appendix G

G.1 Comparison for computational time between the approximate inference
methods.

Table 3: Comparison between the approximate inference methods for average training time (s) per
epoch (Rank legend: first). All the experiments are carried out using 12 cores 3GHz CPU.

Datasets TAGI-V TAGI MC-Dropout Deep Ensembles PBP PBP-MV VMG DVI SWAG PCA+ESS PCA+VI NN

Boston 0.025 0.099 0.041 0.061 0.25 37 18.6 12.86 0.05 3.5 1.22 0.012
Concrete 0.038 0.134 0.066 0.129 0.55 28.57 35.71 24.91 0.04 1.03 0.95 0.037
Energy 0.031 0.177 0.051 0.102 0.375 14.7 18.38 24.26 0.032 1.3 0.7 0.025
Kin8nm 0.309 0.814 0.434 0.642 3.65 158.73 222.22 277.31 0.22 8 7 0.194
Naval 0.493 1.934 0.631 0.881 5.375 271.26 271.26 579.689 0.32 11 10 0.320
Power 0.32 0.783 0.496 0.701 4.20 181.82 981.82 363.816 0.25 8.7 8.1 0.28
Protein 2.327 6.23 1.193 3.506 11.075 556 21296.00 1498.41 1.2 44 42 1.10
Wine 0.062 0.157 0.093 0.185 0.80 39.68 166.67 59.53 0.076 1.7 1.4 0.047
Yacht 0.012 0.102 0.0295 0.041 0.250 5.56 327.78 53.01 0.025 2 0.75 0.010

H Appendix H

H.1 Hyperparameter tuning and computational time for large UCI regression
datasets

The hyperparameters that needs to be learned are the parameters α and β associated with the
modified He’s approach and patience for the early-stopping procedure. The list of hyperparameter
values over which the grid-search is carried out are as follows:

patience : {3, 5, 10},
α : {0.1, 0.5},
β : {0.1, 0.01, 0.001, 0.0001},

where patience is the hyperparameter for the early-stopping procedure. Note that any combination
of hyperparameters causing numerical overflow errors are omitted from the grid-search procedure.
Table 4 shows the optimal values for the hyperparameters used for each dataset as well as the
total average training time (s), and the average optimal epoch identified using the early stopping
procedure. A batch size of 10 is used, except for Pol for which we used a batch size of 1 to avoid
numerical errors. Moreover, the computations are done using the NVIDIA Tesla P40 GPU.
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Table 4: Optimized set of hyperparameters obtained using the grid-search procedure as well as the
total training time (in s) and the average optimal epoch identified using the early stopping procedure
for each of the large UCI datasets. The parameters α and β, and patience are associated with the
modified He’s approach and early-stopping procedure, respectively. The grid-search is carried out
using a validation set obtained from the original training set by a 80− 20 split ratio.

Datasets α β Patience Total Training Time (s) Optimal Epoch

Elevators 0.1 0.1 10 5070 30
KeggD 0.1 10−4 3 7940 21
KeggU 0.1 0.1 10 10521 26
Pol 0.5 10−3 3 2328 22
Skillcraft 0.1 0.1 3 177 10
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