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Abstract

Applications such as structural health monitoring (SHM) often rely on the analysis of time-series
using methods such as state-space models (SSM). In this paper, we propose an analytical method
called the Gaussian multiplicative approximation (GMA) that is applicable to multiplicative
state-space models that are often encountered in practical SHM applications. The method
enables the analytical inference of the mean vector and the covariance matrix for the product of
two hidden states in the transition and/or observation models using linear estimation theory
and the online estimation of model parameters as hidden states. The potential of combining the
GMA and Bayesian dynamic linear models (BDLM) is illustrated through the development of (1)
a generic component called online autoregressive that can estimate both the state variable and
the parameter together; (2) a generic component called trend multiplicative for multiplicative
seasonality model to identify non-harmonic periodic pattern whose amplitude changes linearly
with time; and (3) a generic component called double kernel regression to identify non-harmonic
periodic pattern that involves the product of two periodic kernel regression components. The
SHM-based case studies presented confirm that the GMA exceeds the performance of the existing
nonlinear Kalman filter methods in terms of accuracy along with the computational cost.

Keywords: state-space models, online parameter estimation, Gaussian multiplicative approximation,
nonlinear Kalman filter, structural health monitoring, BDLM.

1 Introduction

Time series modeling is an integral part of data-driven structural health monitoring (SHM) [14,
50,53,57,64]. Statistical and machine learning (ML) techniques have been applied in data-based
methods for predicting structural responses [14,50,53] and risk assessment of civil structures [29,30].
The ML techniques can be classified into two types: supervised learning and unsupervised learning.
Supervised learning [42] consists of learning patterns in data using known sequences of input and
output values, i.e., labeled data. On the other hand, unsupervised learning enables learning the
underlying hidden pattern only by using input values without any knowledge of the corresponding
output values. There are many techniques used for data interpretation in SHM, such as pattern-
recognition techniques, regression methods, and ARMA, among many others, see [9,62,76]. Multiple
linear regression (MLR) [21,37,65] and artificial neural networks (ANN) [39] are extensively used to
model time series using labeled data by formulating the relationship between the known observed
response and the covariates [16]. Time series decomposition employs component models, [16] such as
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additive or multiplicative models to decompose a time series into specific patterns having their own
mathematical formulation. However, these methods have several limitations as they are not efficient
in modeling non-stationary components, require a large amount of data, and requires retraining of
the model as new data is collected.
The Bayesian dynamic linear models (BDLM) [26] are one type of state-space models (SSM) with
linear transition and observation models that can be broken down in components. These models are
used in the field of data-driven SHM [17,50,58,73], but not restricted to [75], as it is suitable for
non-stationary components, provide interpretable components and can perform online prediction
without retraining the model. The BDLM uses generic structured components to identify specific
patterns in structural responses that evolves with time. Each of the generic components has their
own mathematical formulation comprising of one or more hidden states. Local level (LL), local
trend (LT) and local acceleration (LA) components are used to model the baseline of any structural
response without external effects such as temperature, pressure or traffic loads. These components
capture the irreversible pattern which can be used to identify an anomaly in the behavior of the
structure [46]. Periodic (PD) and kernel regression (KR) components are used to identify external
effects having periodic pattern that can be, respectively, harmonic or non-harmonic in nature [45].
The autoregressive component (AR) is used in combination with these components to capture the
residuals, i.e., any physical phenomenon that is not captured by the other structured components.
Each component in the BDLM commonly involves unknown model parameters that need to be
estimated. This can be done using offline learning methods such as Expectation-Maximization (EM)
algorithm [23] or gradient-based methods [22], which consider the parameters to be invariant over
time. The aforementioned procedure has the disadvantage of being computationally expensive in the
presence of a large number of unknown model parameters and often converges to local maxima when
the initial parameter values are poor [48]. Online estimation of parameters is possible using the
Rao-Blackwellized Particle Filtering (RBPF) [48]. This method provides consistent estimates but
at a high computational cost owing to the use of sampling methods. Hence, a major limitation in
the existing BDLM framework is the inability to perform the online estimation of parameters in an
analytically tractable manner with a low computational cost. In this article, analytical tractability
is defined as the ability to compute exactly the statistical properties of a random variable using
algebraic expressions. Being able to multiply hidden states would allow, for many cases, to treat
model parameters as hidden states and thus to perform online estimation. Using existing methods,
it is possible to perform the product of hidden states using nonlinear filtering methods such as the
unscented Kalman filter (UKF) [67] and the cubature Kalman filter (CKF) [5]. Nevertheless, these
methods are computationally demanding as they use sample points to approximate the posterior
probability density function (PDF).
Using related and existing work [33,63], this article presents explicitly all the moment equations
for performing the analytically tractable estimation for the product of two hidden states using
either Gaussian moment generating function or 2nd order Taylor series expansion; We refer to this
method as the Gaussian multiplicative approximation (GMA). The potential of combining the GMA
and the BDLM is illustrated through the development of (1) a generic component called online
autoregressive (OAR) that can estimate both the AR state (xAR) and the AR parameter (φAR) together;
(2) a generic component called trend multiplicative (TM) for multiplicative seasonality model to
identify non-harmonic periodic pattern whose amplitude changes linearly with time; and (3) a
generic component called double kernel regression (DKR) to identify non-harmonic periodic pattern
that involves the product of two periodic kernel regression components. Therefore, instead of using
nonlinear filtering methods, the Kalman filter is still applicable for the nonlinear dynamic systems
having product terms by using the GMA in the BDLM framework.
The layout of the paper is as follows. Section 2 presents the Gaussian filters used in nonlinear
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state estimation. Section 3 introduces the GMA for computing the moments associated with the
product of two Gaussian random variables and its application in state estimation using the BDLM.
Section 4 offers the application of the GMA through new generic components called a) OAR for online
estimation of the AR process; b) TM for modeling periodic pattern with linearly changing amplitude;
and c) DKR for modeling periodic pattern with multiple periodicities, along with illustrative examples.
Finally, section 5 presents the conclusion drawn from the results of the proposed method.

2 Gaussian Filters

This section presents two of the main Gaussian filters used for nonlinear functions, namely the UKF
and the CKF, which are widely used in the literature.

2.1 Moment calculation using a Gaussian approximation

In the Gaussian filters, the prior p(xt|yt−1) and the likelihood p(yt|yt−1) of the hidden states are
assumed to be Gaussian which makes the posterior p(xt|yt) of the hidden states also Gaussian [5].
When the dynamic model is linear, the Gaussian filter is equivalent to the Kalman filter. The
Gaussian assumption in the Kalman filter is useful as it makes the statistical properties of the
conditional distribution analytically tractable, i.e., there is a closed-form solution available for the
first two moments of the states. Hence, the Kalman filter reduces to calculating the mean and
covariance matrices recursively to get the exact posterior PDF of the hidden states.
In the case of nonlinear systems, closed-form solutions are not available and requires approximations
for the posterior PDF leading to sub-optimal solutions [1]. There are two main approaches in the
literature for performing this approximation:

a. Local approach: In this approach the posterior PDF is assumed to be known and computed
using numerical approximations [5]. The approximation is performed either through linearisa-
tion of the nonlinear function (Extended Kalman filter) [38] or by approximating the posterior
PDF directly using weighted samples (UKF and CKF).

b. Global approach: In this approach, there is no assumption made for the type of the posterior
PDF. The particle filter is an example of this approach, where the posterior PDF can have
any type and is approximated using sampling methods [13]. This approach has the limitation
of having high computational cost associated with sampling and can be inefficient for online
state estimation [1].

The methods under the category of local approach are discussed further owing to their advantages
of being accurate, analytically tractable as well as having a low computational cost, hence useful for
online state estimation. The aforementioned techniques approximate the following moment integral,

I =

∫
g(x) · f(x)dx,

where g(x) is the nonlinear function defining the transition and observation models, and f(x) is a
known PDF of the state which can also be Gaussian. The numerical approximation reduces the
integral to the form,

I ≈
n∑
i=1

wi · g(xi),

where xi are the samples, n is the number of samples, and wi are the associated weights.
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2.2 Unscented Kalman Filter (UKF)

The UKF is a nonlinear filtering method that approximates the posterior PDF using a set of points
called the sigma points and an unscented transform (UT) [35] method for the associated weights [67].
The sigma points are generated symmetrically around the prior mean which has a considerably
higher weight than the other points. These sigma points are propagated through the nonlinear
model to estimate the mean and covariance of the posterior PDF, which is accurate to the third
order for any nonlinear function [67]. Hence, the UKF is a derivative free method that is more
accurate than the EKF [1].
Even though the UKF is better than the EKF, it suffers from instabilities and numerical inaccuracies
[1,5]. The covariance matrix may result in non positive-semi-definite (psd) owing to round-off errors
introduced by sensitive numerical operations such as matrix square rooting, matrix inversion, and
covariance update through matrix subtraction. Hence, a square root version of the UKF is necessary
to prevent numerical ill-conditioning due to arithmetic imprecision even though the computational
complexity increases [5]. However, a stable version of the square-root UKF is still not guaranteed
owing to the presence of negatively weighted samples to update the posterior covariance matrix,
which can still result in non-psd outcomes.

2.3 Cubature Kalman Filter (CKF)

The CKF is a nonlinear filtering method similar to the UKF, which is used to compute the
multivariate moment integrals associated with nonlinear functions using numerical integration
methods [5]. It approximates the Gaussian weighted moment integral by using weighted samples,
which are created using the cubature rule. The cubature rule provides exact solutions when the
nonlinear function for a set of hidden states of degree d is in the form

g(x) = xd11 x
d2
2 . . . xdnn ,

where di are non-negative integers and
∑n

i=1 di ≤ d. A third-degree spherical-radial cubature rule is
used to compute the posterior mean exactly and the posterior covariance approximately [1,5]. Using
the invariant theory [61] along with the third degree cubature rule, 2n samples are generated where
n is the size of the hidden state vector. The weights and the samples are only dependent on the size
of the state vector and are independent of the nonlinear function g(x). The CKF formulation is
numerically more stable than the UKF and has the same computational complexity; hence the CKF
is used in this article for comparison with the GMA for the online estimation of parameters.

3 Gaussian Multiplication Approximation (GMA)

This section presents the Gaussian multiplicative approximation for computing the moments associ-
ated with the product of two Gaussian random variables and its application in state estimation
using the BDLM.

3.1 Moments of Product Term

Consider the case where the variables x = [x1 x2]ᵀ are the input of the nonlinear function,

g(x) = x1x2. (1)

The goal is to infer the probability density function (PDF) of X indirectly, using an observation y
that is defined such that,

y = g(x) + v, v : V ∼ N (v; 0, σ2
v), (2)
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where V is a random variable representing the observation error with zero mean and variance σ2
v .

The posterior PDF of X given an observation y can be estimated using Bayes theorem as in,

f(x|y) =
f(x, y)

f(y)
= N (x;µx|y,Σx|y), (3)

which follows a Gaussian distribution with a mean vector µx|y and a covariance matrix Σx|y that
are given by

µx|y = µx +
Σxy

σ2
y

(y − µy),

Σx|y = Σx −
Σxy ·Σᵀ

xy

σ2
y

.

Equation 3 holds when f(x, y) is Gaussian; In the case presented here, y is nonlinearly related to x
through Equation 2 which makes the joint prior PDF, f(x, y), non-Gaussian. As the name indicates,
the Gaussian multiplicative approximation (GMA) approximates the distribution of X1X2 as a
Gaussian random variable for which the expected value, variance and covariance can be calculated
exactly using moment generating functions under the assumption that X1 and X2 are themselves
Gaussian so that

µx = E[X] =

[
E[X1]
E[X2]

]
,

Σx = var(X) =

[
var(X1) cov(X1, X2)

cov(X2, X1) var(X2)

]
.

The mean and variance of Y can be obtained by propagating the uncertainty associated with X
through the model described in Equation 2 so that

µy = E[Y ] = E[g(X)] + E[V ] = E[X1X2],

σ2
y = var(Y ) = var(X1X2) + var(V ) = var(X1X2) + σ2

v .

Using the moment generating function (MGF) [12, 66] for the multivariate Gaussian distribution or
2nd order Taylor series expansion (TSE) [34] of the product of the two Gaussian random variables,
the first two moments associated with the product term X1X2 can be computed exactly using

E[X1X2] = µ1µ2 + cov(X1, X2), (4)

var(X1X2) = σ2
1σ

2
2 + cov(X1, X2)2 + 2cov(X1, X2)µ1µ2 + (5)

σ2
1µ

2
2 + σ2

2µ
2
1,

and the covariance between X and Y is given by

Σxy = cov(X, Y ) =

[
cov(X1, X1X2)
cov(X2, X1X2)

]
.

Similarly, we can also derive the exact solution for the covariance between the product term X1X2

and any other Gaussian random variable X3,

cov(X3, X1X2) = cov(X1, X3)µ2 + cov(X2, X3)µ1. (6)
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Finally, for the general case, the covariance between any two pair of product terms is given by

cov(X1X2, X3X4) = cov(X1, X3)cov(X2, X4) (7)

+cov(X1, X4)cov(X2, X3) + cov(X1, X3)µ2µ4

+cov(X1, X4)µ2µ3 + cov(X2, X3)µ1µ4

+cov(X2, X4)µ1µ3,

where X1X2 and X3X4 are the product terms of the Gaussian random variables X1, X2 and X3,
X4, respectively. The derivation of the GMA equations using both MGF and TSE are presented in
Appendix A.

3.1.1 State Estimation

In the context of state-space models, the state estimation for cases involving product terms in the
transition model can be performed by combining linear estimation theory and the GMA. Given
two state variables x = [x1 x2]ᵀ, a generic multiplication transition model involving product of the
hidden states x1 and x2 is given by

x1,t = x1,t−1x2,t + w1,t, w1 : W1 ∼ N (0, σ2
w1

), (8)

x2,t = x2,t−1 + w2.t, w2 : W2 ∼ N (0, σ2
w2

),

where w = [w1w2]ᵀ is the vector of error term associated with the transition model. The hidden
states at time t− 1 is assumed to follow a Gaussian PDF with mean vector and covariance matrix
given by

Xt−1|t−1 ∼ N (x;µt−1|t−1,Σt−1|t−1),

where, µt−1|t−1 = E[Xt−1|y1:t−1], Σt−1|t−1 = cov(Xt−1|y1:t−1) and y1:t−1 = {y1, . . . , yt−1}. In its
current form, the transition model given by Equation 8 is nonlinear. However, the nonlinear
transition model can be formulated as a linear dynamic model by augmenting the state vector
x̃ = [x xp]ᵀ so that

X̃t−1|t−1 ∼ N (x̃; µ̃t−1|t−1, Σ̃t−1|t−1),

where µ̃t−1|t−1 =

[
µ
µp

]
t−1|t−1

and Σ̃t−1|t−1 =

[
Σ cov(X, Xp)

cov(Xp,X) (σp)2

]
t−1|t−1

.

The hidden state variable Xp = X1X2 represents the product term and is assumed to be Gaussian
with expected value µp = E[X1X2] and variance (σp)2 = var(X1X2). The covariance terms between
X and Xp in Σ̃t−1|t−1 is given by

cov(X, Xp) =

[
cov(X1, X1X2)
cov(X2, X1X2)

]
.

Using linear algebra, the transition model in Equation 8 can be written as

x̃t = Ax̃t−1, (9) x1

x2

xp


t

=

 0 0 1
0 1 0
0 0 0

 x1

x2

xp


t−1

,

where x̃ = [x1 x2 x
p]ᵀ. The augmented state vector X̃t|t−1 follows a Gaussian PDF given by

X̃t|t−1 ∼ N (µ̃t|t−1, Σ̃t|t−1), (10)
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where µ̃t|t−1 = Aµ̃t−1|t−1 and Σ̃t|t−1 = AΣ̃t−1|t−1A
ᵀ + Q, considering Q is the process noise

covariance matrix. The variance terms in the Q has to be estimated using offline optimization
algorithms that maximizes the log-likelihood function. The observation model is defined as

yt = Cx̃t + vt, v : V ∼ N (0,R), (11)

where C is the observation matrix, vt is the observation error, and R = σ2
v is the observation noise

covariance matrix. Using Equations 10 and 11, both the prediction and the update steps in the
Kalman filter can be carried out for a nonlinear system having product terms. Note that in this
paper, the application of the GMA equations is shown explicitly using a product term in the state
vector to simplify the use of the method, hence the last row in the A matrix has 0’s as the product
term xp is a placeholder. However, the GMA equations can also be applied implicitly without the
need to store the information specifically in a variable. At each step t− 1 of the recursive procedure,
the GMA equations 4-7 are applied to compute the moments of the product term X1X2 using
the moments of X1 and X2 obtained from the Kalman filter. The method can also be extended
to more than one product terms in the state vector either by placing more placeholders as shown
by Equation 9 or computing the moments implicitly. The case studies 2 and 3 in this article are
examples of more than one product terms in the state vector.
The computational complexity of using the GMA for estimating a state vector of size n is O(3n3).
When using either the UKF or the CKF to perform the same state estimation, the computational
complexity is to the order O(14n3) [6]. Hence, using the GMA for state estimation of product
terms is more than four times faster than using a state-of-the-art nonlinear filter like the CKF. The
derivation of the computational complexity for the GMA is provided in Appendix C.

4 Applied Examples

This section presents three cases where the performance of the GMA and the CKF is compared for
the task of estimating the state variables in SSM having product terms. Case study 1 presents the
application of the proposed method for the online estimation of the state and parameter for a first
order autoregressive process. Case studies 2 and 3 are issued from SHM application for real data.

4.1 Case Study 1: First order online autoregressive process (OAR)

4.1.1 Model Formulation

Consider the transition model for a first order autoregressive process (AR) given by

xARt = φARxARt−1 + wAR
t︸ ︷︷ ︸

transition model

,

process noise︷ ︸︸ ︷
wAR
t : W ∼ N (wAR; 0, (σAR)2),

where xAR is the AR hidden state, φAR is the AR coefficient and W is the zero mean Gaussian noise
that is independent of XAR

t−1. The AR coefficient φAR can be estimated online by considering it as a
hidden state xφ. The new transition model is defined as

xARt = xφt x
AR
t−1 + wAR

t , (12)

xφt = xφt−1,
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Table 1: Comparison of mean square error and log-likelihood estimates for the GMA and the CKF

metric MSE Log-likelihood,
∑T

t=1 ln f(xt|y1:t)

xAR xφ xAR xφ (xAR, xφ)

GMA 3.3e-03± 1.9e-04 2.9e-02 ± 1.6e-02 1181.3± 34.2 2081.9± 250.2 3281.4± 263.2
CKF 3.3e-03± 1.6e-04 3.3e-02± 1.2e-02 1199.5 ± 30.15 2175.3 ± 198.8 3386.4 ± 201.8

where the hidden states at time step t− 1 are xt−1 = [xAR xφ]ᵀt−1. The linear transition model for

this case is given by Equation 9. The mean vector µ̃t−1|t−1 and the covariance matrix Σ̃t−1|t−1 of
x̃t−1 are given by

µ̃t−1|t−1 =

 E[XAR]
E[Xφ]

E[XφXAR]


t−1|t−1

,

Σ̃t−1|t−1 =

 var(XAR) cov(XAR, Xφ) cov(XAR, XφXAR)
... var(Xφ) cov(Xφ, XφXAR)

sym. . . . var(XφXAR)


t−1|t−1

,

where the elements of µ̃t−1|t−1 and Σ̃t−1|t−1 can be computed analytically using Equations 4-7. The
observation model is given by

yt = Cx̃t + vt, vt : V ∼ N (v; 0, σ2
v),

where the observation matrix C = [1 0 0].

4.1.2 Numerical example

Simulated data is generated from a first order AR process using the following parameters: σv = 0.1,
σAR = 0.05 and φAR = 0.9. Five datasets containing 1000 data points are generated using these
parameters with a uniform time step of one unit. The prior knowledge of the hidden states are
initialized by

µ̃0 = [0 0 0]ᵀ,

Σ̃0 = diag([100 100 0]).

Both µ̃t|t and Σ̃t|t of x̃t are estimated using the GMA and the CKF methods. Table 1 shows
the average results along with their standard deviation for the mean square error (MSE) [42] and
log-likelihood (LL) [26,42] values for xAR, xφ, as well as their joint log-likelihood. Figure 1 compares
the actual and estimated hidden state values obtained using the GMA and the CKF methods, which
shows the convergence of the estimated states to the true values while there is a slight difference
early on in state estimation. The results presented in Table 1 shows that the predictive performance
of both the methods using MSE and LL values have negligible discrepancies. The LL values using
the CKF are slightly higher than the GMA owing to the difference in the state estimation at the
initial stage, which disappears as the state estimates merge together and move towards the true
values.
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Figure 1: Comparison of the GMA and the CKF method for estimating a) xAR and b) xφ. Note
that Figure 1a is a close-up view from the actual plot showing the first 100 time steps.

4.2 Case Study 2: Trend Multiplicative model

4.2.1 Data description

This case study is conducted on the water infiltration flow rate data [14,53,70] recorded on a concrete
gravity dam in Canada. Such data is employed by engineers as a proxy for the dam health. The
data ranges from September 26th 2006 to December 31st 2012. The raw data is averaged daily to
have 2289 data points. The data have an increasing baseline along with a periodic component whose
amplitude is increasing with time. A multiplicative model is the classical approach [16] to handle
periodicity that varies with time, which can be performed by the product of baseline component
with the static periodic component. The data are divided into a training set (1618 points) and a
test set (671 points) to evaluate the predictive performance of the model. Figure 2 shows the entire
dataset where the test set is represented by the shaded region.
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Figure 2: Flow rate data on the concrete gravity dam
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4.2.2 Model Formulation

The components used for this model are a local trend (LT) that includes the level (LL) and the
trend (LT) hidden states to model the baseline of the time series, a periodic component (S) that
includes the amplitude (S1) to model the periodic pattern with a periodicity of one year, an online
first order autoregressive component (OAR) to model the residual, and a new component called trend
multiplicative (TM) to model the increasing amplitude with time. The TM component includes a new
set of local level (LP) and trend (TP) hidden states to capture the constant rate of change in the
local level of the periodic component. In this case, the transition model has two placeholders for the
two product terms represented by x

p1
t−1 = {xARt−1 · xφt−1} for OAR and x

p2
t = {xLPt · xS1t } for TM. The

transition model for the new component TM is given by augmenting the product term, xp2 to model
the time-varying amplitude, with the local trend component provided by xLP

xTP

xp2


t

=

 1 ∆t 0
0 1 0
0 0 0

 xLP

xTP

xp2


t−1

.

The vector of hidden states of size n = 10 at time t− 1 for all the components combined together is
defined as

xt−1 = ︸ ︷︷ ︸
xs3

[

xs1︷ ︸︸ ︷
xLL xLT xS1 xS2 xAR xφ xp1

xs2︷ ︸︸ ︷
xLP xTP xp2 ]ᵀt−1,

where xs1t−1, xs2t−1 and xs3t−1 are subsets of the vector xt−1 of sizes n1, n2 and n3 respectively. The
prediction step in the Kalman filter is carried out sequentially using the mean vector µt−1|t−1 and
the covariance matrix Σt−1|t−1 of Xt−1 given by

1. µ̃1,t−1|t−1 = µt−1|t−1 +

 0n1×1

E[Xp1 ]
0n2×1


t−1|t−1

,

Σ̃1,t−1|t−1 = Σt−1|t−1 +
[

0n×n1 cov(X, Xp1) 0n×n2

]
t−1|t−1

,

2. µ̃1,t|t−1 = Aµ̃1,t−1|t−1,

Σ̃1,t|t−1 = AΣ̃1,t−1|t−1A
ᵀ + Q,

3. µ̃t|t−1 = µ̃1,t|t−1 +

[
0n3×1

E[Xp2 ]

]
t|t−1

,

Σ̃t|t−1 = Σ̃1,t|t−1 +

[
0n3×n3 cov(Xs3 , Xp2)

cov(Xp2 ,Xs3) var(Xp2)

]
t|t−1

,

where in Step 1 we explicitly compute the expected value E[Xp1 ] and the covariance matrix
cov(X, Xp1) associated with the first product term x

p1
t−1, thereby computing the augmented mean

vector µ̃1,t−1|t−1 and covariance matrix Σ̃1,t−1|t−1, in Step 2 we carry out the prediction step using

µ̃1,t−1|t−1, Σ̃1,t−1|t−1, and the matrices A and Q, and finally in Step 3 we compute the moments for
the second product term x

p2
t to obtain the predicted mean vector µ̃t|t−1 and the covariance matrix

Σ̃t|t−1. Using µ̃t|t−1, Σ̃t|t−1, and Equation 11, the update step of the Kalman filter is performed.
The complete model matrices A, C, Q and R required for state estimation using the Kalman filter
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are described in Appendix B. The vector of unknown parameters which need to be estimated using
an optimization algorithm [26,42,49] is given by

θ = [σLTw σARw σTPw σv]
ᵀ,

where σLTw is the standard deviation of the local trend, σARw is the standard deviation of the AR

process, σTPw is the standard deviation of the local trend (TP) in TM, and σv is the standard deviation
for the observation error. The initial parameter and the optimized parameter values using Newton-
Raphson [42] optimization technique by maximizing the joint log-likelihood [27] are

θ0 = [10−6 0.1 10−6 1]ᵀ,

θ∗ = [2.16× 10−6 0.092 6.5× 10−7 0.054]ᵀ.

4.2.3 State estimation

Figure 3 shows the observed flow rate data and the estimated values µt|t along with its uncertainty
bound µt|t ± σt|t obtained using the Kalman filter for the training set and the test set. The grey
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Figure 3: Estimated values of flow rate data using the GMA and the CKF

region shows the forecast period. Figure 4 shows the hidden state estimation of the flow rate
data. The test set MSE and LL values obtained using the CKF and the GMA are {0.28,−541.5}
and {0.28,−541.6} respectively. These results show that the proposed methodology has the same
predictive capacity as that of the CKF and also provide interpretable sub-components of the
time-varying amplitude hidden state.

4.3 Case Study 3: Double Kernel Regression

4.3.1 Data description

This case study is conducted on the traffic-load data [15, 28, 45] recorded on the Tamar bridge
in UK. Correctly modeling traffic data is required for removing its effect on structural responses.
The data ranges from September 01 to October 21, 2007. The raw data have 2409 data points
with a uniform time steps of 30 minutes. The raw data show a constant baseline and two periodic
components having a daily and a weekly periodicity. A multiplicative model is used to capture
the dual periodicity using the product of the two periodic components. The data is divided into a
training set (1649 points) and a test set (760). The entire dataset is shown in Figure 5.
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Figure 4: Illustration of the hidden state estimation of the flow rate data. Figure (a-c) represents
the hidden states of TM component and Figure (d) represents xφ.
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Figure 5: Traffic load on the bridge

4.3.2 Model Formulation

The components used for this model in the BDLM are a local level (LL) to model the constant
baseline, two kernel regression (KR) components [45] each having 50 non-uniform and 30 uniform
control-points to model periodic pattern with periodicity of 7 days and 1 day respectively, an online
autoregressive component (OAR) and a new component called double kernel regression (DKR). DKR
is used to model the product of two periodic pattern represented by the hidden states xKR10 and
xKR20 . The KR component for modeling 7 day periodic pattern requires more control points in the
first two days due to the higher complexity in the sub-daily pattern compared to the rest of week.
Note that increasing the number of control points can further improve accuracy at the cost of
increasing computational cost. In this case, the transition model has two product terms represented
by x

p1
t−1 = {xARt−1 · xφt−1} for OAR and x

p2
t = {xKR10 · xKR20 }t for DKR. The vector of hidden states at time

t− 1 for all the components is defined as

xt−1 = ︸ ︷︷ ︸
xs3

[

xs1︷ ︸︸ ︷
xLL xAR xφ xp1

xs2︷ ︸︸ ︷
xKR10 . . . xKR150 xKR20 . . . xKR230 xp2 ]ᵀt−1. (13)

The prediction step in the Kalman filter is carried out sequentially using the mean vector µt−1|t−1

and the covariance matrix Σt−1|t−1 of Xt−1 as shown in Section 4.2.3. The complete model matrices
A, C, Q and R are described in Appendix B. The vector of unknown parameters is given by

θ = [σLLw `KR1 `KR2 σARw σv]
ᵀ,

where σLLw is the standard deviation of the local level, `KR1 is the kernel length for the KR component
with a period of 1 day, `KR2 is the kernel length for the KR component with a period of 7 days, σARw
is the standard deviation of the AR process, and σv is the standard deviation for the observation
error. The initial parameter values and the optimized values using Newton-Raphson optimization
technique are

θ0 = [10−6 0.05 0.5 0.1 0.1]ᵀ

θ∗ = [1.01× 10−6 0.359 0.24 0.275 1.93× 10−7]ᵀ.

4.3.3 State estimation

Figure 6 shows the observed traffic-load data and the estimated values µt|t along with its uncertainty
bound µt|t ± σt|t obtained using Kalman filter for the training set and the test set using the GMA
and the CKF. These results show that using the GMA in the BDLM has better predictive capacity
than the CKF. The predictive capacity is also compared to the results presented in Nguyen et
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al. [45] for the same dataset while using a single KR component with 101 control-points having a
periodicity of 7 days. Table 2 presents the MSE, LL as well as the training time using DKR and
KR. The results show that DKR has better predictive capacity than the KR component, fewer hidden
states, and also has fewer parameters to optimize, which makes it computationally faster.
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Figure 6: Estimated values of traffic load data using the GMA and the CKF

Table 2: Comparison of mean square error and log-likelihood estimates for DKR and KR

metric MSE Log-likelihood,
∑T

t=1 ln f(xt|y1:t)

DKR 0.30 −616.96
KR 0.34 −656.30
CKF 0.32 −629.59
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Figure 7: Illustration of the hidden state estimation of the traffic load data. Figure (a-c) represents
the hidden states of DKR component and Figure (d) represents xφ.
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5 Conclusion

The Gaussian multiplicative approximation (GMA) method proposed in this paper is an analytical
method for solving multiplicative state-space models. The method enables: (1) the analytical
inference of the mean vector and the covariance matrix of the product of two hidden states in the
transition and/or observation models using linear estimation theory, and (2) analytically tractable
online estimation of model parameters as hidden states. The application of the GMA in the three
case studies confirms that the method exceeds the performance of the existing nonlinear Kalman
filter methods such as cubature Kalman filter in terms of both predictive capacity and computational
complexity.
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[73] Gang Yan, Hao Sun, and Oral Büyüköztürk. Impact load identification for composite structures
using bayesian regularization and unscented kalman filter. Structural Control and Health
Monitoring, 24(5):e1910, 2017.

[74] F Yu, Q Sun, C Lv, Y Ben, and Y Fu. A SLAM algorithm based on adaptive cubature Kalman
filter. Mathematical Problems in Engineering, 2014, 2014.

[75] Yong Zeng and Shu Wu. State-space models: Applications in economics and finance, volume 1.
Springer, 2013.

[76] H Zheng and A Mita. Damage indicator defined as the distance between ARMA models for
structural health monitoring. Structural Control and Health Monitoring: The Official Journal
of the International Association for Structural Control and Monitoring and of the European
Association for the Control of Structures, 15(7):992–1005, 2008.

21



Deka, B., Ha Nguyen, L., Amiri, S and Goulet, J-A. (2022).The Gaussian Multiplicative Approximation for
State-Space Models. Structural Control and Health Monitoring. Volume 29, Issue 3, e2904.

Appendix A

The GMA Equations using Gaussian moment generating function

Let X = [X1 . . . Xp]
ᵀ be a vector of Gaussian random variables, X ∼ N (x;µ,Σ), where µ is the

mean vector, Σ is the covariance matrix, and t = [t1 . . . tp]
ᵀ ∈ Rp, then the following Equation [33,63]

is held which analytically computes the multivariate moments encountered in the nonlinear Kalman
filter given by

E[Xk1
1 . . . X

kp
p ] =

∂k

∂tk1 . . . ∂tkp
exp

( p∑
i=1

tiµi +
1

2

p∑
i,j=1

titjcov(Xi, Xj)
)∣∣∣
t1=...=tp=0

(14)

where ki’s are non-negative integers and k =
∑p

i=1 ki. This Equation is derived from the moment
generating function of multivariate Gaussian;

∂k

∂tk11 . . . ∂t
kp
p

Mx(tᵀ) =
∂k

∂tk11 . . . ∂t
kp
p

E(exp

(
p∑
i=1

tiXi

)
) (15)

= E
( ∂k

∂tk1 . . . ∂tkp
exp

(
p∑
i=1

tiXi

))
= E[Xk1

1 . . . X
kp
p exp

(
p∑
i=1

tiXi

)
]

Setting t = [0 . . . 0]ᵀ, we obtain

E[Xk1
1 . . . X

kp
p ] =

∂k

∂tk1 . . . ∂tkp
Mx(tᵀ)

Given Gaussian random variables, Mx(tᵀ) = E[et
ᵀx] = et

ᵀµ+ 1
2
tᵀΣt, the following equations to

evaluate product terms can be directly obtained from Equation 14.

E[X1X2] = µ1µ2 + cov(X1, X2),

E[X1X2X3] = cov(X1, X2)µ3 + cov(X1, X3)µ2 + cov(X2, X3)µ1 + µ1µ2µ3,

E[X1X2X3X4] = cov(X1X2)
(
cov(X3, X4) + µ3µ4

)
+ cov(X1X3)

(
cov(X2, X4) + µ2µ4

)
+

cov(X2X3)
(
cov(X1, X4) + µ1µ4

)
+ cov(X1, X4)µ2µ3 + cov(X2, X4)µ1µ3

+cov(X3, X4)µ1µ2 + µ1µ2µ3µ4.

The GMA Equations using 2nd order Taylor series expansion

Let us consider the function h(·) in two variables x1 and x2, where h(x1, x2) = x1x2 that represents
the product of two random variables. Using 2nd order Taylor series expansion, we express h(x1, x2)
as

h(x1, x2) ≈ h(µ1, µ2) +
∂h

∂x1

∣∣
µ1,µ2

(x1 − µ1) +
∂h

∂x2

∣∣
µ1,µ2

(x2 − µ2) + 0.5 · ∂
2h

∂x2
1

∣∣
µ1,µ2

(x1 − µ1)2

+ 0.5 · ∂
2h

∂x2
2

∣∣
µ1,µ2

(x2 − µ2)2 + · ∂2h

∂x1∂x2

∣∣
µ1,µ2

(x1 − µ1)(x2 − µ2),

≈ µ1µ2 + µ2(x1 − µ1) + µ1(x2 − µ2) + (x1 − µ1)(x2 − µ2), (16)
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where h(µ1, µ2) = µ1µ2, ∂h
∂x1

∣∣
µ1,µ2

= µ2, ∂h
∂x2

∣∣
µ1,µ2

= µ1, and ∂2h
∂x1∂x2

∣∣
µ1,µ2

= 1. Using Equation 16,

the expected value E[X1X2] is

E[X1X2] = µ1µ2 + E[(X1 − µ1)(X2 − µ2)],

= µ1µ2 + cov(X1, X2), (17)

where using the properties of random variables E[(X1 − µ1)(X2 − µ2)] = cov(X1, X2). The variance
term var(X1X2) is given by

var(X1X2) = var
(
µ1µ2 + µ2(X1 − µ1) + µ1(X2 − µ2) + (X1 − µ1)(X2 − µ2)

)
,

= var
(
µ2(X1 − µ1)

)
+ var

(
µ1(X2 − µ2)

)
+ var

(
(X1 − µ1)(X2 − µ2)

)
+ 2cov

(
µ2(X1 − µ1), µ1(X2 − µ2)

)
+ 2cov

(
µ2(X1 − µ1), (X1 − µ1)(X2 − µ2)

)
+ 2cov

(
(x1 − µ1)(X2 − µ2), µ1(X2 − µ2)

)
,

= µ2
2σ

2
1 + µ2

1σ
2
2 + σ2

1σ
2
2 + cov(X1, X2)2 + 2µ1µ2cov(X1, X2), (18)

where the terms in Equation 18 are evaluated as follows

var
(

(X1 − µ1)(X2 − µ2)
)

= E[(X1 − µ1)2(X2 − µ2)2]− E[(X1 − µ1)(X2 − µ2)]2 (19)

= σ2
1σ

2
2 + 2cov(X1, X2)2 − cov(X1, X2)2,

= σ2
1σ

2
2 + cov(X1, X2)2, (20)

where using Isserlis theorem [66], E[(X1 − µ1)2(X2 − µ2)2] = σ2
1σ

2
2 + 2cov(X1, X2)2. Similarly, the

covariance terms in Equation 18 are given by

2cov
(
µ2(X1 − µ1), µ1(X2 − µ2)

)
= 2µ1µ2cov(X1, X2), (21)

2cov
(
µ2(X1 − µ1), (X1 − µ1)(X2 − µ2)

)
= 2µ2

(
E[(X1 − µ1)2(X2 − µ2)]

− ���
���:

0
E[X1 − µ1]E[(X1 − µ1)(X2 − µ2)]

)
,

= 0, (22)

2cov
(
µ1(X2 − µ2), (X1 − µ1)(X2 − µ2)

)
= 2µ1

(
E[(X2 − µ2)2(X1 − µ1)]

− ���
���:

0
E[X2 − µ2]E[(X1 − µ1)(X2 − µ2)]

)
,

= 0, (23)

where using Isserlis theorem, E[(X1 − µ1)2(X2 − µ2)] = E[(X2 − µ2)2(X1 − µ1)] = 0 as the expected
values of the product of odd powers of Gaussian random variables of zero-mean values are 0. The
covariance between X3 and X1X2 is

cov(X3, X1X2) = cov
(
X3, µ1µ2 + µ2(X1 − µ1) + µ1(X2 − µ2) + (X1 − µ1)(X2 − µ2)

)
,

= cov
(
X3, µ2(X1 − µ1)

)
+ cov

(
X3, µ1(X2 − µ2)

)
+ cov

(
X3, (X1 − µ1)(X2 − µ2)

)
,

= µ2cov(X3, X1) + µ1cov(X3, X2),
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where similar to Equations 22 and 23, the term cov
(
X3, (X1 − µ1)(X2 − µ2)

)
= 0 and evaluated as

follows

cov
(
X3, (X1 − µ1)(X2 − µ2)

)
= E[X3(X1 − µ1)(X2 − µ2)]− E[X3]E[(X1 − µ1)(X2 − µ2)],

= E[(X3 − µ3 + µ3)(X1 − µ1)(X2 − µ2)]− µ3cov(X1, X2),

= E[(X3 − µ3)(X1 − µ1)(X2 − µ2)] + E[(µ3)(X1 − µ1)(X2 − µ2)]

− µ3cov(X1, X2),

= 0 + µ3cov(X1, X2)− µ3cov(X1, X2),

= 0.

The covariance between the product terms X1X2 and X3X4 is given by

cov(X1X2, X3X4) = cov
(
µ1µ2 + µ2(X1 − µ1) + µ1(X2 − µ2) + (X1 − µ1)(X2 − µ2),

µ3µ4 + µ4(X3 − µ3) + µ3(X4 − µ4) + (X3 − µ3)(X4 − µ4)
)
,

= cov
(
µ2(X1 − µ1), µ4(X3 − µ3)

)
+ cov

(
µ2(X1 − µ1), µ3(X4 − µ4

)
+ cov

(
µ2(X1 − µ1), (X3 − µ3)(X4 − µ4)

)
+ cov

(
µ1(X2 − µ2), µ4(X3 − µ3)

)
+ cov

(
µ1(X2 − µ2), µ3(X4 − µ4)

)
+ cov

(
µ1(X2 − µ2), (X3 − µ3)(X4 − µ4)

)
+ cov

(
(X1 − µ1)(X2 − µ2), µ4(X3 − µ3)

)
+ cov

(
(X1 − µ1)(X2 − µ2), µ3(X4 − µ4)

)
+ cov

(
(X1 − µ1)(X2 − µ2), (X3 − µ3)(X4 − µ4)

)
,

= cov(X1, X3)cov(X2, X4) + cov(X1, X4)cov(X2, X3) + µ2µ4cov(X1, X3)

+ µ2µ3cov(X1, X4) + µ1µ4cov(X2, X3) + µ1µ3cov(X2, X4), (24)

where the terms in Equation 24 are evaluated as follows

cov
(
µ2(X1 − µ1), µ4(X3 − µ3)

)
= µ2µ4cov(X1, X3),

cov
(
µ2(X1 − µ1), µ3(X4 − µ4

)
= µ2µ3cov(X1, X4),

cov
(
µ2(X1 − µ1), (X3 − µ3)(X4 − µ4)

)
= µ2cov

(
(X1 − µ1), (X3 − µ3)(X4 − µ4)

)
,

= µ2E[(X1 − µ1)(X3 − µ3)(X4 − µ4)] (25)

− E[(X1 − µ1)]E[(X3 − µ3)(X4 − µ4)],

= 0,
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cov
(
µ1(X2 − µ2), µ4(X3 − µ3)

)
= µ1µ4cov(X2, X3),

cov
(
µ1(X2 − µ2), µ3(X4 − µ4)

)
= µ1µ3cov(X2, X4),

cov
(
µ1(X2 − µ2), (X3 − µ3)(X4 − µ4)

)
= 0,

cov
(

(X1 − µ1)(X2 − µ2), µ4(X3 − µ3)
)

= 0,

cov
(

(X1 − µ1)(X2 − µ2), µ3(X4 − µ4)
)

= 0,

cov
(

(X1 − µ1)(X2 − µ2), (X3 − µ3)(X4 − µ4)
)

= E[(X1 − µ1)(X2 − µ2)(X3 − µ3)(X4 − µ4)]

− E[(X1 − µ1)(X2 − µ2)]E[(X3 − µ3)(X4 − µ4)],

= cov(X1, X2)cov(X3, X4) + cov(X1, X3)cov(X2, X4)

+ cov(X1, X4)cov(X2, X3)− cov(X1, X2)cov(X3, X4),

= cov(X1, X3)cov(X2, X4) + cov(X1, X4)cov(X2, X3),

where using Isserlis theorem [66], the expected value of the product of centered-Gaussian random vari-
ables Xi, Xj , Xk, andXn is E[XiXjXkXn] = σijσkn +σikσjn +σinσjk, considering σij = cov(Xi, Xj).

Appendix B

This appendix presents the model matrices, A, C, Q and R used in the BDLM for case study 2
and 3 in the Section 4.2 and 4.3 as follows:

Trend Multiplicative

A = blockdiag

[ 1 ∆t
0 1

]
,

[
cosω sinω
− sinω cosω

]
,

 0 0 1
0 1 0
0 0 0

 ,
 1 ∆t 0

0 1 0
0 0 0

 ,

C = [1 0 0 0 1 0 0 0 0 1],

R = (σv)
2,

Q = blockdiag

(σLTw )2

[
∆t3

3
∆t2

2
∆t2

2 ∆t

]
, (σSw)2

[
1 0
0 1

]
, (σARw )2

 1 0 0
0 0 0
0 0 0

 , (σTPw )2

 ∆t3

3
∆t2

2 0
∆t2

2 ∆t 0
0 0 0


 .

where frequency ω =
2π∆t

p
with p = 365.24 days and ∆t = 1 day. The prediction and update steps

in the Kalman filter are given by

[µ̃t|t−1, Σ̃t|t−1] = Predict
(
µt−1|t−1,Σt−1|t−1,A,C,Q,R

)
,

[µt|t,Σt|t] = Update
(
µ̃t|t−1, Σ̃t|t−1,A,C,Q,R

)
.
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Double Kernel Regression

A = blockdiag

1,

 0 0 1
0 1 0
0 0 0

 , [ 0 k̃KR1(t, tKR)
050×1 I50×50

]
,

[
0 k̃KR2(t, tKR)

030×1 I30×30

]
, 0

 ,

C = [1 1 0 0 01×51 01×31 1],

R = (σv)
2,

Q = blockdiag

(σLLw )2, (σARw )2

 1 0 0
0 0 0
0 0 0

 ,051×51,031×31, 0

 .

Appendix C

Computational Complexity

Algorithm 1 Kalman filter algorithm with the GMA

Input: µt−1|t−1,Σt−1|t−1

Output: µt|t,Σt|t
1: µt|t−1 = Aµ̃t−1|t−1.

2: Σt|t−1 = AΣ̃t−1|t−1A
ᵀ + Q.

3: K = Σt−1|t−1C
ᵀ(CΣt−1|t−1C

ᵀ + R)−1.
4: rt = yt −Cµt|t−1.
5: µt|t = µt|t−1 + Krt.
6: Σt|t = (I−KC)Σt|t−1.

Since the filtering method is recursive, it is enough to determine the computational complexity
of a single time step going from t− 1 to t to evaluate the total complexity of the algorithm. The
computational complexity here refers to the time complexity of an algorithm which is denoted by
the big O notation. The time complexity (or from here on complexity) of the matrix operations to
be used in algorithm 1 are described as follows.

1. Matrix multiplication: The multiplication of two matrices of size n × n has a complexity
of O(n3). In general, matrix multiplication of two matrices of size n ×m and m × p has a
complexity of O(mnp).

2. Matrix addition: The addition of matrices of size m× n has a complexity of O(mn).

3. Algebraic operations: Algebraic operations are considered to have constant complexity or
O(1) as these operations are unaffected by the size of state vector and will be performed in
the same time.

Considering the big O notation for the various matrix operations and the size of the state vector to
be n, the step-by-step complexity of algorithm 1 is presented.
Step 1: This step consists of multiplication of two matrices, [A]n×n and [µ̃]n×1 with a complexity is
O(n2). The complexity of computing µ̃ is O(n). Since, the GMA equations are algebraic operations
unaffected by the size of the state vector, these will have a complexity of O(1). Hence the total
complexity in Step 1 is O(n2 + n).
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Step 2: This step consists of two matrix multiplication and one transposition operation for computing
[A]n×n[Σ̃]n×n[A]ᵀn×nand one matrix addition. The complexity for this step is O(2n3 + n2).
Step 3: This step consists of computing the terms [Σ]n×n[Cᵀ]n×1 having a complexity of O(n2) and
[C]1×n[Σ]n×n[Cᵀ]n×1 having a complexity of O(2n2). Finally, the total complexity of calculating
the Kalman gain is O(3n2 + n).
Step 4: This step consists of a matrix multiplication of [C]1×n[µ]n×1 having a complexity of O(n).
Step 5: This step consists of a matrix addition of [µ]n×1 and multiplication of a matrix by a scalar,
[K]n×1[r]1×1. The total complexity in this step is O(2n).
Step 6: The final step to compute Σt|t consists of two matrix multiplication and one matrix
subtraction. The total complexity in this step is O(n3 + 2n2).
Hence, the total complexity of the Kalman filter algorithm using the GMA is of the order ≡ O(3n3).
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