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Abstract

State-space models require an accurate knowledge of the process error (Q) and measurement
error (R) covariance matrices for exact state estimation. Even though the matrix R can be,
in many situations, considered to be known from the measuring instrument specifications, it
is still a challenge to infer the Q matrix online while providing reliable estimates along with
a low computational cost. In this paper, we propose an analytically tractable online Bayesian
inference method for inferring the Q matrix in state-space models. We refer to this method as
approximate Gaussian variance inference (AGVI) using which we are able to treat the error
variance and covariance terms in the full Q matrix as Gaussian hidden states and infer them
simultaneously with the other hidden states in a closed-form manner. The two case studies
show that the method is able to provide statistically consistent estimates for the mean and
uncertainties of the error variance terms for univariate and multivariate cases. The method
also exceeds the performance of the existing adaptive Kalman filter methods both in terms of
accuracy and computational efficiency.

Keywords: state-space models, Bayesian inference, Gaussian multiplicative approximation, closed-
form inference, process error covariance matrix, online parameter estimation.

1 Introduction

For linear dynamic systems, the Kalman filter is an exact state estimator if the process error (Q)
and the measurement error (R) covariance matrices are known [30]. In most practical situations,
the deterministic part of the model which includes the transition and the observation models is
formulated based on known system dynamics. In contrast, the stochastic part representing the Q
and R matrices is either unknown or only approximately known [14,29,30]. Previous studies have
also shown that using incorrect error covariance matrices may result in large estimation errors or
even cause divergence [30, 32, 46]. Even though in many situations, the matrix R can be considered
to be known from measuring instrument specification, the Q matrix is often unknown. Hence, an
accurate estimation of the matrix Q is necessary for the exact state estimation [31,32].

This paper provides an analytical Bayesian inference method called the approximate Gaussian
variance inference (AGVI) for performing closed-form online estimation of the error variance and
covariance terms in the full Q matrix. By definition, the expected value of the square of the univariate
process error W 2 is equal to the error variance parameter, i.e., E[W 2] = σ2

W , given that W has a
zero mean. With the approximation that W 2 is Gaussian such that W 2 ∼ N (w2;E[W 2], var(W 2)),
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the error variance parameter is the same as the mean parameter for the probability density function
(PDF) of W 2. Subsequently, considering that this mean parameter E[W 2] is a random variable
itself, inferring its posterior becomes analogous to computing the posterior for the error variance
term. The AGVI method utilizes this definition and formulates the relationship between the process
error W , the square of process error W 2, and E[W 2] by leveraging the Gaussian multiplicative
approximation (GMA) [9,18] that provides the exact moments for W 2. Thereafter, the Gaussian
conjugate prior [16, 33] is used to analytically infer the unknown mean parameter for W 2, i.e.,
E[W 2] = σ2

W , using closed-form equations. The methodology is also extended to the multivariate
observation model case where one error variance term σ2

W is inferred for each observation equation
along with the covariance between each pair of process error terms. The paper also provides a
closed-form square-root filtering technique using the Cholesky decomposition such that the estimated
Q matrix is always positive semi-definite (PSD).

The layout of this paper is as follows: Section 2 presents related works; Section 3 provides
the AGVI method for estimating the univariate process error variance, and Section 4 extends the
methodology to the multivariate case for inferring the full Q matrix. Section 5 presents two case
studies showing the application of the method; Section 5.1 presents the online estimation for the
univariate error variance term and Section 5.2 shows the applicability of AGVI in inferring the full
Q matrix for multiple time series.

1.1 Notations

The following notations are used throughout the manuscript; x : lowercase denotes a variable, X :
slanted uppercase denotes a random variable, X: bold upright uppercase denotes a deterministic
matrix, x : bold lowercase denotes a vector, X : bold slanted uppercase denotes vector of random
variables, y1:t : denote observations from 1 to t, µ : mean vector, Σ : covariance matrix, W
: random process error, W 2: square of process error W , W 2: random variable representing the
expected value for W 2, W iW j : product of any ith and jth process error, W iW j : random variable for
the expected value of W iW j , W p : random vector of all the product terms W iW j , W p : random
vector of all expected values of W p, ΣXW : covariance matrix between X and W , LW : upper

triangular random matrix,
−−→
LW : random vector of all elements in LW .

Throughout the article, consistency is maintained in the notations as we transition from the
univariate to the multivariate case study. For instance, we use W 2 to represent the random variable
denoting the square of the univariate random process error W . Similarly, W iW j represents the
random variable for the product of W i and W j , where the superscripts indicate the ith and jth

error terms. To denote the random expected value for W iW j , we use a bar on top, denoted by
W iW j . In the case of the univariate scenario, this becomes W 2, while for any ith process error,

it is expressed as (W i)2. The expected value and variance for W iW j are denoted as µW iW j
and

(σW iW j
)2, respectively, with the corresponding random variable provided in the superscript.

2 Related Works

The adaptive Kalman filters (AKF) were developed to estimate both the states and the error
covariance matrices together by adaptively adjusting the Kalman filter to the measured data
such that the estimation errors can be either bounded or reduced [32]. The AKFs are broadly
grouped as follows: 1) correlation methods [5, 6,13,30,34,37,47], 2) covariance-matching methods
(CMM) [2,35,39], 3) maximum likelihood methods [23,43], and 4) Bayesian methods [21,22,29,38,42].
One such AKF is the innovation correlation method (ICM) [6, 30] that uses the auto-correlation
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function of the innovations to form a system of linear equations involving the unknown covariance
matrices. A least-square method is then used to solve these equations simultaneously to obtain the
estimates for the Q and R matrices. The correlation methods provide unbiased estimates for linear
time-invariant (LTI) systems and only asymtotically unbiased estimates for linear time-varying
(LTV) systems [10]. A recent correlation approach called the measurement difference method
(MDM) [10,11,13,14, 26] was proposed that is capable of providing unbiased and weakly consistent
estimates for LTV systems, even for datasets with small number of measurements [10,26]. MDM
does not require any prior knowledge on the error covariance matrices and can also be performed
online using recursive least-square methods [24,26]. On the other hand, there are CMM methods
such as the adaptive limited memory filter (ALMF) [35] that computes sample covariance matrices
at each time step for both the state prediction error and the innovation sequence using either the
entire past data or over a moving window. However, such methods have shown to produce biased
estimates for the covariance matrices and often fail to ensure the positive-definiteness of matrices
when the sample size of the data is small [4, 37]. Shumway and Stoffer [43] provided a framework
that uses the expectation-maximization (EM) algorithm [40] to obtain both the states and the error
covariance matrices even when the data is irregularly spaced, but this can only be applied offline [4].
An extensive amount of literature exists for the AKF methods under the Bayesian category. The
Bayesian methods include state augmentation methods primarily relying on nonlinear estimation
techniques such as the extended Kalman filter (EKF) [4], the unscented Kalman filter (UKF) [25], or
the particle filters [36,45] for the joint estimation of both the states and the error covariance matrices
(ECM). While most methods in this category identify the error variances offline, Kontoroupi and
Smyth [25] provided an online estimation method by employing an approximation of the inverse
gamma conjugacy. Online Bayesian inference methods also exists that relies on Markov chain Monte
Carlo moves within a particle filter but they suffer from the particle degeneracy problem [15, 22, 45].
Another Bayesian method is the interactive multiple models (IMM) [27] that defines multiple models
each having a separate dynamic model with its own ECM as well as the transitional probabilities
between one model i and another model j at any given time step t. A set of several Kalman
filters are run on parallel to evaluate the state estimates for each model simultaneously. However,
exact estimates using IMM can be obtained only when an infinitely large numbers of models are
considered [42].

The variational Bayes (VB) methods have been proposed to approximate the intractable joint
posterior PDF of the states and the covariance matrices at a comparatively lower computational cost
than using the particle filters or the multiple model methods [14,42]. Sarkaa and Hartikainen [41]
proposed the VB-AKF method to obtain the full R matrix using an inverse Wishart conjugate
prior. However, the same methodology could not be applied to obtain the Q matrix, since it
does not appear in simple conjugate prior form, as opposed to the R matrix [28, 41]. Ardeshiri
et al. [1] proposed a VB based RTS smoother to obtain both the Q and R matrices, but it can
only evaluate the error covariance matrices offline [19, 28]. Huang et al. [19] proposed an online
VB-AKF method, referred to as VBAKF-PR, to directly estimate the joint distribution of the
states, the state prediction error covariance matrix, and the R matrix by using the conjugacy of
the inverse Wishart prior for the covariance matrices. However, the method requires an accurate
nominal Q matrix based on problem-specific expertise without which the performance degrades
drastically. Moreover, the method has additional parameters such as the tuning parameter, the
forgetting factor, and the number of fixed-point iterations per time step that needs to be tuned.
The sliding window variational adaptive Kalman filter (SWVAKF) method overcomes the limitation
of VBAKF-PR as it is robust to the initialization of the nominal Q matrix and proved to be
computationally more efficient by avoiding the fixed-point iteration step. Hence, there are several
methods that have been proposed to estimate the error covariance matrices. However, most methods
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are either offline in nature [30,43], restricted to linear dynamic systems [19,21] or are computationally
demanding [27,40,45]. Furthermore, there is no closed-form method to obtain these matrices and
none of the available methods have demonstrated the capacity to estimate a high-dimensional full
Q matrix. Hence, there is still the challenge to develop a method that performs closed-form online
estimation of the matrix Q and that is scalable to high-dimensional domains.

3 Univariate Process Error

This section presents the mathematical formulation of the AGVI method for inferring the variance
parameter σ2

W associated with the univariate process error W ∼ N (w; 0, σ2
W ) in the context of

state-space models.

3.1 Problem Formulation

Let us consider an N-dimensional hidden state vector at time t−1, xt−1 = [x1 x2 · · ·xN]⊺t−1, having a
Gaussian PDF such that Xt−1|t−1 ∼ N (xt−1;µt−1|t−1,Σt−1|t−1) where µt−1|t−1 = E[Xt−1|y1:t−1] is
the prior mean and Σt−1|t−1 = var(Xt−1|y1:t−1) is the prior covariance matrix. Note that for brevity,
the notation Xt−1|t−1 is used as a shorthand for Xt−1|y1:t−1. The transition and the observation
equations for the linear Gaussian state-space models [17], are given by

xt = Axt−1 +wt, w : W ∼ N (w; 0,Q),
yt = Cxt + vt, v : V ∼ N (v; 0,R),

(1)

where A is the transition matrix, wt = [w1 w2 · · ·wN]
⊺
t is a vector of process error terms for which

Q is the process error covariance matrix, yt is the observation, C is the observation matrix, and vt
is the observation error for which the observation error variance is R = σ2

V . The A and Q matrices
are constructed by assembling S specific components given by

A = blkdiag(A1,A2, · · · ,AS),

Q = blkdiag(Q1,Q2, · · · ,QS), (2)

where blkdiag(·,·) refers to block diagonal assembly of the individual components. The Q matrix in
Equation 2 can be further described by

Q = blkdiag(Q1(σ
2
W1

,∆t),Q2(σ
2
W2

,∆t), · · · ,QS(σ
2
WS

,∆t)), (3)

where each component Qi(σ
2
Wi

,∆t) can be represented as a function of the error variance parameter
σ2
Wi

and the time difference between two successive observations ∆t. For example, consider that the
model comprises two generic components, namely the local trend (LT) and the autoregressive (AR),
for which the global Q matrix is

Q =


 σ2

LT ·
[

∆t4

4
∆t3

2
∆t3

2 ∆t2

]
0

0 σ2
AR


 , (4)

where the Q matrices associated with the local trend Q1 and the autoregressive component Q2 are

Q1 = σ2
LT ·

[
∆t4

4
∆t3

2
∆t3

2 ∆t2

]
, Q2 = σ2

AR,

4

https://doi.org/10.1002/acs.3667


Deka, B., and Goulet, J-A. (2023).Approximate Gaussian Variance Inference for State-Space Models.
International Journal of Adaptive Control and Signal Processing. 1-29 doi

where σ2
LT and σ2

AR are the process error variance terms associated with the LT and the AR components,
respectively [17]. Both matrices Q1 and Q2 are assembled in a block diagonal arrangement to get
the Q matrix as shown by Equation 4. Moreover, for a time series consisting of a single observation
variable yt, it is only possible to infer σ2

W for one component Qi, while all other should be either
known or 0. This is because only a single unknown variable can be uniquely solved per equation.
Hence, for each time series there is one unique process error variance that can be inferred. The next
section describes the various steps for performing AGVI in order to obtain the posterior PDF for a
single error variance parameter.

3.2 Methodology

The proposed method considers the expected value of W 2 as a Gaussian random variable represented
by W 2 such that

W 2 ∼ N
(
w2;µW 2

, (σW 2
)2
)
, (5)

where µW 2
and (σW 2

)2 are the hyperprior mean and variance for W 2. Using Equation 5, the PDF
of W can be re-written as

W ∼ N (w; 0, w2). (6)

Hence, the first objective is to obtain the marginal PDF of W such that the random variance W 2

can be marginalized out. The following lemmas are invoked to show that the marginal PDF of W
can be obtained using the marginal PDF of W 2. The subsequent proposition uses these lemmas to

provide the prior predictive PDF for W at a time t such that Wt|t−1 ∼ N (wt; 0, µ
W 2

t−1|t−1).

Lemma 1. Given that W is Gaussian with a zero mean and W 2 is approximated as a Gaussian
random variable given by W 2 ∼ N (w2;µW 2

, (σW 2
)2) for which the exact moments are provided

by GMA (see Appendix A), it can be shown that the PDF of W 2 is dependent only on the mean
parameter µW 2

so that

W 2 ∼ N
(
w2;µW 2

, 2(µW 2
)2
)
,

where the variance term (σW 2
)2 is equal to 2(µW 2

)2. As a result, the PDF f(w2|µW 2
, (σW 2

)2) can
be shown by f(w2|µW 2

).

Proof. See Appendix B.1.

Lemma 2. Given that the parameter µW 2
in f(w2|µW 2

) is considered as a Gaussian random

variable W 2 ∼ N (w2;µW 2
, (σW 2

)2), the mean and variance of the prior predictive PDF of W 2
t|t−1

are given by

µW 2

t|t−1 = µW 2

t−1|t−1,

(σW 2

t|t−1)
2 = 3(σW 2

t−1|t−1)
2 + 2(µW 2

t−1|t−1)
2,

where µW 2

t−1|t−1 and (σW 2

t−1|t−1)
2 are the prior moments for W 2

t−1|t−1.

Proof. See Appendix B.2.
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Proposition 1. Considering that the mean parameter µW 2
is itself a random variable W 2 so that

W 2
t−1|t−1 ∼ N

(
w2
t−1 ;µ

W 2

t−1|t−1, (σ
W 2

t−1|t−1)
2
)
,

where µW 2

t−1|t−1 and (σW 2

t−1|t−1)
2 are the hyperprior mean and variance for W 2

t−1|t−1, the error variance

σ2
W can be made equal to

σ2
W = µW 2

t−1|t−1. (7)

Proof. Using Lemmas 1 & 2, and considering the one-to-one relationship between the moments of
W and W 2, the prior predictive PDF of Wt|t−1 can be formulated as

f(wt) = N (wt; 0, µ
W 2

t−1|t−1),

where by Lemma 2, the variance of Wt|t−1 is σ2
W = E[W 2

t|t−1] = µW 2

t−1|t−1.

The next objective is to perform the prediction step in the filtering procedure using the model
matrices A, C, Q, and R defined in Section 3.1 and the prior knowledge of σ2

W . The transition

model for w2 is w2
t = w2

t−1, where the hidden state w2 is assumed to be constant from t− 1 to t.
Using the prior knowledge for W , the augmented state vector ht−1 at any time t− 1 is given by

ht−1 = [x w]⊺t−1. (8)

The prior predictive PDF of the hidden states Ht|t−1 is given by

Ht|t−1 ∼ N (ht;µ
H
t|t−1,Σ

H
t|t−1),

where, using Equations 1 & 7, the mean vector and the covariance matrix are given by

µH
t|t−1 =

[
Aµt−1|t−1

0

]

t|t−1

,

ΣH
t|t−1 =

[
AΣt−1|t−1A

⊺ +Q ΣXW

(ΣXW )⊺ µW 2

]

t|t−1

. (9)

The covariance term ΣXW
t|t−1 between Xt|t−1 and Wt|t−1 in Equation 9 is formulated as

ΣXW
t|t−1 = cov(AXt−1|t−1 +Wt|t−1,Wt|t−1), (10)

= cov(W ,W )t|t−1,

where Wt|t−1 is a vector of random variables representing the process error terms in the state vector
h. Moreover the hidden states Xt−1|t−1 and the process error Wt|t−1 are assumed to be independent
of each other. The mean and variance of Yt|t−1 ∼ N (yt;µY , σ

2
Y ) are given by

µY = Cµt|t−1 +��*0
µV ,

σ2
Y = CΣt|t−1C

⊺ + σ2
V ,

given that X and V are assumed to be independent of each other. The covariance term ΣHY

between Ht|t−1 and Yt|t−1 is

ΣHY = ΣH
t|t−1F

⊺
t ,
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where the observation matrix is Ft = [C 0].

The inference for the parameter σ2
W requires two update steps; In the first step, the posterior

PDF f(ht|y1:t) is estimated using the observation model defined in Equation 1 so that

f(ht|y1:t) =
f(ht, yt|y1:t−1)

f(yt|y1:t−1)
≈ N (ht;µ

H
t|t,Σ

H
t|t), (11)

which we approximate by a Gaussian distribution with a posterior mean vector µH
t|t and a covariance

matrix ΣH
t|t that are obtained using the predicted moments provided in Equation 9 and the Gaussian

conditional equations [16,33] such that

µH
t|t = µH

t|t−1 +
ΣHY

σ2
Y

(yt − µY ),

ΣH
t|t = ΣH

t|t−1 −
ΣHY ·Σ⊺

HY

σ2
Y

.

Now that we have the posterior PDF f(wt|y1:t) from Equation 11, we move to the second update
step where we use this new information of W at time t to update our current knowledge of W 2.
Figure 1 shows a graphical model representing the relationship between the random variables Yt|t−1,

Xt|t−1, Wt|t−1, W
2
t|t−1 and W 2

t|t−1. Note that while considering µW = 0, the first moment of W 2

is equal to the second moment of W (under Lemma 1). In this case, the knowledge of W is fully
defined by the knowledge of W 2, which is denoted in Figure 1 by an undirected solid line between
the nodes W 2 and W . Following the structure depicted in Figure 1, the subsequent lemmas are
provided for obtaining the posterior knowledge of W 2

t|t .

X

WW 2W 2

µW 2

(
σW 2

)2

Y

Figure 1: Illustration showing the graphical model for the online inference of the error variance
parameter. The hidden and observed state variables are denoted by green and violet nodes. The
double arrows on the nodes X and W 2 represent that these variables are learnt recursively over
time. For brevity, the subscript t|t− 1 is dropped from each of the variables.

Lemma 3. Considering the joint PDF of the random variables Yt|t−1, W
2
t|t−1, and W 2

t|t−1 , and

marginalizing out W 2 from the joint PDF, the posterior PDF of W 2 can be obtained by the following
integral

f(w2
t|y1:t) =

∫
f(w2

t |y1:t) · f(w2
t|w2

t ,y1:t−1)dw
2
t .

Proof. See Appendix B.3.
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Lemma 4. The posterior mean and variance of W 2
t|t are

µW 2

t|t = (µW
t|t)

2 + (σW
t|t )

2,

(σW 2

t|t )2 = 2(σW
t|t )

4 + 4(σW
t|t )

2(µW
t|t)

2.

Proof. See Appendix B.4.

The Lemmas 3 & 4 are used for proving the following proposition.

Proposition 2. The posterior mean and variance of W 2
t|t ∼ N (µw2

t;W 2

t|t , (σW 2

t|t )2) are given by

µW 2

t|t = µW 2

t|t−1 + kt(µ
W 2

t|t − µW 2

t|t−1),

(σW 2

t|t )2 = (σW 2

t|t−1)
2 + k2t ((σ

W 2

t|t )2 − (σW 2

t|t−1)
2),

k =
(σW 2

t−1|t−1)
2

(σW 2

t|t−1)
2

.

Proof. See Appendix B.5.

Both the update steps 1 and 2 are employed recursively as observations are collected in order
to first estimate the posterior knowledge of W and then use this to update our knowledge of the
expected value of W 2, i.e., W 2, which is a variable that is equal to σ2

W , the parameter we seek to
infer. All the steps performed in a particular time step t are summarized in Algorithm 1 as provided
in Appendix D.

4 Multivariate Process Error

This section extends the mathematical formulation of the AGVI method for inferring error variance
and covariance terms comprising a full Q matrix.

4.1 Problem Formulation

Let us consider D observed time series for which the global state vector is xt = [x1
t x

2
t · · · xD

t ]
⊺, where

xj
t , ∀j ∈ {1, 2, · · · , D} refers to the concatenation of all Sj generic components for the jth time series.

Similarly, the vector of correlated process errors is assembled following wt = [w1
t w2

t · · ·wD
t ]

⊺. The
global transition, observation, process error covariance, and observation error covariance matrices
are assembled block diagonally as

A = blkdiag[A1, A2, · · · ,AD],

C = blkdiag[C1, C2, · · · ,CD],

Q = blkdiag[Q1, Q2, · · · ,QD],

R = blkdiag[R1, R2, · · · ,RD].

Covariance matrices cov(W k,W n) exists between the process errors W k and W n of the kth and
nth time series respectively, where k, n ∈ {1, 2, · · · , D}. The process error covariance matrix Q can
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be reformulated as follows

Q =




Q1 Q1,2 · · · Q1,D
... Q2 · · · Q2,D
... · · · . . .

...
sym. · · · · · · QD



, (12)

where the covariance term cov(W k,W n) is represented by Qk,n. The sub-matrices within the
matrix Qk,n in Equation 12 are themselves represented by cov(W jk,Wmn) = Qjk,mn, where
j ∈ {1, 2, · · · , Sj} and m ∈ {1, 2, · · · , Sm} are the jth and mth component of the kth and nth time
series, respectively. As described in Section 3.1, each of the sub-matrices Qjk,mn(σ

2
jk, σ

2
mn,∆t) can

be represented as a function of the error variance parameters σ2
jk, σ

2
mn, and ∆t. Moreover, each

of the elements within the sub-matrix Qjk,mn is given by cov(W ijk,W lmn), which provides the
covariance between the ith process error term of the jth component in the kth time series, W ijk,
and the lth process error term of the mth component in the nth time series, W lmn. For example,
let us consider two time series each modeled using a local trend (LT) component as described in
Section 3.1. The global Q matrix is assembled block diagonally such that

Q =

[
Q1 Q1,2

Q2,1 Q2

]
,

where Q1 and Q2 are the process error covariance matrices associated with their individual local
trend components and Q1,2 is the cross-covariance matrix between the process errors of the two time
series. Each of these covariance matrices are defined as follows: Q1 = σ2

LT1 · J, Q2 = σ2
LT2 · J, and

Q1,2 = σLT12 · J, where σ2
LT1 , and σ2

LT2 are the two error variance terms for each of the LT component,
σLT12 is the covariance term between the two process error random variables W LT1 and W LT2 . For a
constant acceleration kinematic model [3, 44], the matrix J is defined such that

J =




∆t4

4

∆t3

2
∆t3

2
∆t2


 .

Hence, for this case the terms to be inferred are: σ2
LT1 , σ

2
LT2 , and σLT12 . Similarly, for multiple time

series, the goal is to infer one error variance term per time series along with the covariance terms
for each pair of process error terms.

4.2 Methodology

Let us consider the multivariate process error term w =
[
w1 w2 · · · wi · · · wD

]⊺
, where wi, ∀i ∈

{1, 2, · · · , D} represents the process error term for the ith time series for which the variance term
has to be inferred. Given that the expected value of W is zero, the covariance term between the ith

and jth process error is

cov(W i,W j) = E[W iW j ]−��
��*

0
E[W i]����*

0
E[W j ] = E[W iW j ],

the covariance matrix ΣW is given by

ΣW =




E[(W 1)2] E[W 1W 2] · · · E[W 1W D]
... E[(W 2)2] · · · E[W 2W D]
... · · · . . .

...
sym. · · · · · · E[(W D)2]



, (13)
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where var(W i) = E[(W i)2] is the error variance for the ith time series, and cov(W i,W j) = E[W iW j ]
is the covariance term between the two process errors for the ith and jth time series. Similarly to the
univariate process error, let us consider the approximation that each of the product terms W iW j is
a Gaussian random variable such that

W iW j ∼ N (wiwj ;µW iW j
, (σW iW j

)2), (14)

where E[W iW j ] = µW iW j
is the mean parameter and var(W iW j) = (σW iW j

)2 is the variance. For

D time series, there are a total of D·(D+1)
2 product terms which are represented by the random vector

wp = [(w1)2 (w2)2 · · · wiwj · · · wDwD-1]⊺ such that

W p ∼ N (wp;µW p
,ΣW p

), (15)

where using Equation 14, the mean vector of W p is given by

µW p
=

[
µ(W 1)2 µ(W 2)2 · · ·µ(W D)2 µW 1W 2 · · · µW D-1W D

]⊺
k×1

. (16)

Similarly to Lemma 1, the covariance matrix ΣW p
can be obtained in terms of the mean parameters

in µW p
such that

ΣW p
=




2(µ(W 1)2)2 2(µW 1W 2
)2 · · · 2µW 1W D−1

µW 1W D

... 2(µ(W 2)2)2 · · · 2µW 2W D−1
µW 1W D

... · · · · · · ...

... · · · . . .
...

sym. · · · · · · µ(W D−1)2µ(W D)2 + (µW D-1W D
)2



k×k

,

where the variance var(W iW j) and the covariance cov(W iW j ,W kWm) terms for the product of
the errors ∀i, j, k,m ∈ {1, 2, · · · , D} are obtained using the GMA equations presented in Appendix
A. The mean vector µW p

defined in Equation 16 is considered to be random and denoted by W p

having a Gaussian PDF given by

W p ∼ N (wp;µW p
,ΣW p

), (17)

where the vector wp =
[
(w1)2 (w2)2 · · · (wD)2 w1w2 · · · wD-1wD

]⊺
. The mean vector and the

covariance matrix of W p are

µW p
=

[
µ(W 1)2 µ(W 2)2 · · · µW D-1W D

]⊺
k×1

,

ΣW p
=




(σ(W 1)2)2 0 · · · 0
... (σ(W 2)2)2 · · · 0
... · · · · · · 0
... · · · . . .

...

sym. · · · · · · (σW D-1W D
)2




k×k

,

where the random variables in W p are assumed to be independent from each other as shown by the
covariance matrix ΣW p

where the off-diagonal terms are zero.
Using the hyperprior W p defined in Equation 17, the first objective is to obtain the covariance

matrix ΣW defined in Equation 13 by obtaining the prior predictive PDF of W p
t|t−1 as provided by

the following lemma and proposition.
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Lemma 5. Using the transition model wp
t = wp

t−1, the prior predictive PDF of W p
t|t−1 is given by

W p
t|t−1 ∼ N (µW p

t|t−1,Σ
W p

t|t−1),

where the mean terms in µW p

t|t−1, and the variance and covariance terms in ΣW p

t|t−1 are given by

E[W iW j ] = µW iW j
,

var((W i)2) = 3(σ(W i)2)2 + 2(µ(W i)2)2,

var(W iW j) = (σW iW j
)2

+
(µW iW j

)2

µ(W i)2µ(W j)2 + (µW iW j )2
· (σW iW j

)2

+ µ(W i)2µ(W j)2 + (µW iW j
)2,

cov(W iW j ,W lWm) = µW iW l
µW jWm

+ µW iWm
µW jW l

.

Proof. See Appendix C.1.

Proposition 3. The prior predictive PDF of W has a zero mean vector and covariance matrix
ΣW

t|t−1 defined by

ΣW
t|t−1 =




µ(W 1)2 µW 1W 2 · · · µW 1W D

... µ(W 2)2 · · · µW 2W D

... · · · . . .
...

sym. · · · · · · µ(W D)2




t|t−1

. (18)

Proof. Using Lemma 5, the covariance matrix ΣW for the prior predictive PDF of W is obtained by

substituting the terms E[W iW j ] in Equation 13 by the mean parameters of W p, i.e., µW iW j
.

In order to maintain positive semi-definiteness of ΣW
t|t−1 shown by Equation 18, the prior

information is built from a random vector
−−→
LW using Cholesky decomposition as shown by the

following lemma.

Lemma 6. Any ijth element of ΣW is obtained such that

µW iW j
= E

[
D∑

k=1

LjkLki

]
,

where all elements of
−−→
LW are assumed to be Gaussian, Lij ∼ N (µLij , σ

2
Lij

), and the expectation of
the product terms are obtained using the GMA equations. Moreover, any covariance term between

the random vectors
−−→
LW and W p given by Σ

−−→
LWW p

t|t−1 , can be shown as

cov(Lij ,W iW j) = cov(Lij ,
D∑

k=1

LjkLki).

Proof. See Appendix C.2.
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Using the prior predictive PDF of W , the next objective is to perform the prediction step.
Let us consider the augmented vector of hidden states ht−1 = [x⊺

t−1 w
⊺
t−1]

⊺ such that the PDF of
Ht|t−1 ∼ N (ht,µ

H
t|t−1,Σ

H
t|t−1) has a mean vector µH

t|t−1 and a covariance matrix ΣH
t|t−1 defined by

µH
t|t−1 =

[
µ⊺
t|t−1 0

]⊺
, (19)

ΣH
t|t−1 =

[
AΣt−1|t−1A

⊺ +Q ΣXW

(ΣXW )⊺ ΣW

]

t|t−1

, (20)

where the covariance matrix ΣW defined in Equation 18 is obtained using the prior knowledge of−−→
LW defined in the Cholesky space as stated in Lemma 6. Similarly to Equation 10, the covariance
matrix between X and W is given by

ΣXW
t|t−1 = cov(X,W )t|t−1

= cov(X, [W 1 W 2 · · · W D]⊺)t|t−1,

= cov(AXt−1|t−1 +Wt|t−1, [W
1 W 2 · · · W D]⊺t|t−1),

= cov(W , [W 1 W 2 · · · W D]⊺)t|t−1,

where Wt|t−1 = [W 1 W 2 · · · W D]⊺t|t−1 is a vector of random variables that includes one process
error term W from each of the D time series.

The inference for the covariance matrix ΣW requires two update steps. Similarly to the univariate
case shown in Section 3, the Gaussian conditional equations are used to perform the first update
step to obtain the posterior PDF of H shown by

Ht|t ∼ N (ht,µ
H
t|t,Σ

H
t|t). (21)

We now move to the second update step where we use the posterior PDF f(wt|y1:t) obtained from
Equation 21, and the GMA equations to obtain the posterior PDF f(wp

t |y1:t) such that

f(wp
t |y1:t) = N (wp

t ;µ
W p

t|t ,ΣW p

t|t ).

The posterior PDF of W p is defined using the following lemma.

Lemma 7. The posterior mean, variance and covariance terms of W p are

µW p

t|t = µW p

t|t−1 +Kt(µ
W p

t|t − µW p

t|t−1),

ΣW p

t|t = ΣW p

t|t−1 +Kt(Σ
W p

t|t −ΣW p

t|t−1)K
⊺
t ,

Kt = ΣW pW p

t|t−1 (ΣW p

t|t−1)
−1,

ΣW pW p

t|t−1 = ΣW p

t|t−1.

Proof. See Appendix C.3.

Using the updated knowledge of W p in Lemma 7, the posterior moments for
−−→
LW in the Cholesky

space is defined using the following proposition.

Proposition 4. The posterior moments of
−−→
LW are

µ
−−→
LW

t|t = µ
−−→
LW

t|t−1 +KL
t (µ

W p

t|t − µW p

t|t−1),

Σ
−−→
LW

t|t = Σ
−−→
LW

t|t−1 +KL
t (Σ

W p

t|t −ΣW p

t|t−1)(K
L
t )

⊺,

KL
t = Σ

−−→
LWW p

t|t−1 (ΣW p

t|t−1)
−1.
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Proof. The proposition 4 is derived using the Lemmas 5, 6, and 7.

Both steps are employed recursively in order to estimate the elements of the covariance matrix
ΣW and then use this to update our knowledge of the mean vector of W p, i.e., W p. All the steps
performed in a particular time step t are summarized in Algorithm 2 as provided in Appendix D.

5 Applied Examples

In this section, two case studies are presented to demonstrate the use of AGVI for online inference
of error variance terms. Case study 1 focuses on the online estimation of error variance for a
linear time-varying (LTV) model. The study includes statistical consistency tests to showcase
the filter’s optimality, t-tests to prove that the estimates are unbiased, empirical validation of
uncertainty associated with error variance estimates, and analysis of the impact of Q

R ratio on the
posterior mean estimate µT|T of the error variance term. The AGVI method is also compared to
two adaptive Kalman filtering (AKF) approaches: the sliding window variational adaptive Kalman
filter (SWVAKF) [21] and the measurement difference method (MDM) [11,13,14,26]. These AKF
methods fall under different categories, with MDM being a correlation method and SWVAKF being
a Bayesian method. Case study 2 presents a simulated multivariate random walk model with a full
process error covariance matrix Q and a comparison of the AGVI method to the AKF methods.

5.1 Case Study 1 – Univariate Linear Time-Varying (LTV)

For this case study, a linear time-varying dynamic model is considered given by

xt = Atxt−1 + wt w : W ∼ N (w; 0, σ2
W ),

yt = Ctxt + vt v : V ∼ N (v; 0, σ2
V ), (22)

where the transition (At) and observation (Ct) equations at a time t are

At = 0.8− 0.1 sin

(
7πt

T

)
,

Ct = 1− 0.99 sin

(
100πt

T

)
,

in which T represents the total number of time steps. The process error (w) and observation error
(v) are Gaussian and are assumed to be independent at any time t. The process error variance σ2

W

is unknown and needs to be inferred. The observation error variance σ2
V is assumed to be known

and is equal to the true σ2
W which is randomly selected from the prior PDF of W 2

0|0 such that

W 2
0|0 ∼ N (w2

0 ;µ
W 2

0|0 , (σ
W 2

0|0 )
2).

Three different true values for σ2
W are generated by considering different prior initialization for

the pair of {µW 2

0|0 , (σ
W 2

0|0 )
2} such that the three cases are (a) {µW 2

0|0 = 0.2, (σW 2

0|0 )
2 = 0.01}, (b)

{µW 2

0|0 = 2, (σW 2

0|0 )
2 = 1}, and (c) {µW 2

0|0 = 20, (σW 2

0|0 )
2 = 100}.
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Figure 2: Online estimation of the error variance term for each of the three cases for which the

different prior initializations are (a) µW 2

0|0 = 0.2, (σW 2

0|0 )
2 = 0.01, (b) µW 2

0|0 = 2, (σW 2

0|0 )
2 = 1, and (c)

µW 2

0|0 = 20, (σW 2

0|0 )
2 = 100. The true σ2

W value in each case is shown in red dashed line, while the
estimated values and their ±1σ uncertainty bound are shown in black and green shaded area.

Table 1: T-values computed in all three cases, i.e., (a) {µW 2

0|0 = 0.2, (σW 2

0|0 )
2 = 0.01}, (b) {µW 2

0|0 =

2, (σW 2

0|0 )
2 = 1}, and (c) {µW 2

0|0 = 20, (σW 2

0|0 )
2 = 100}.

t-values

case (a) case (b) case (c)

−1.67 0.46 1.53
−1.29 −0.94 1.51
−0.87 1.26 −1.19
−0.79 1.21 1.03
−1.88 −0.64 −1.87

5.1.1 Online Estimation of Error Variance

Data was simulated using the model specified in Equation 22 with a total of T = 1000 observations.
Figure 2 shows the online state estimation of the error variance term for each of the three cases.
These results confirm that the method is able to perform online inference for different magnitudes
of the error variance starting from arbitrary initial estimates.

Two-tailed t-tests were carried out to test the null hypothesis that the error variance estimates
obtained using AGVI are equal to the true values. This empirical test, if accepted, proves that the
estimates are unbiased. A 95% significance level is chosen for which the critical t-value is 1.96, given
that the degrees of freedom are T− 1 = 999. The t-test is carried out five times for each three cases.
Table 1 shows the t-values where five different runs were carried out for each case. The results show
that the computed t-values are within the bounds of the critical t-value, i.e., −1.96 < t-value < 1.96,
proving that the estimates are unbiased.

5.1.2 Statistical Consistency

The optimality of the filter is evaluated using two chi-square (χ2) tests that rely on the normalised
estimation error squared (NEES) and the normalised innovation error squared (NIS) values [3].
These tests are conducted using 50 random simulations. Considering a 95% confidence interval (C.I.)
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and the degrees of freedom v = X = Y = 1, i.e., the size of the state and observation vector, the
two-sided probability region is given by

[
χ2
50(0.025) χ

2
50(0.975)

]
= [32.3 71.4]. By dividing the range

by 50, we obtain the probability region for the average NEES and NIS values [0.647 1.428]. Figure
3 illustrates an example of the 95% region marked by the green and red lines for both the average
NEES and NIS values in case (a). From the definition of the test, there should be approximately
5% of the total number of points outside the 95% region. The length of the time series for the case
study is 1000 and hence, approximately 50 points should be outside the region. Table 2 presents
the average number of points outside the probability region for both the NEES and NIS tests in all
three cases where each of the 50 runs are carried out five times in order to compute the average
value. The results verify that the filter is optimal and provide consistent estimates for the error
variance term, given that the number of points outside the 95% probability region are in accordance
to the theoretical results.

0 1000

0.647

1.428

t

N
EE

S

(a) NEES

0 1000

0.647

1.428

t

N
IS

(b) NIS

Figure 3: Illustration showing the average normalized state estimation error squared (NEES) and the

average normalized innovation squared (NIS) for the case study (a), i.e., {µW 2

0|0 = 0.2, (σW 2

0|0 )
2 = 0.01},

with its 95% probability region given by [0.647, 1.428] is marked by the green and red lines.

Table 2: Average number of points outside the 95% probability region for the NEES and NIS values

in all the three cases, i.e., (a) {µW 2

0|0 = 0.2, (σW 2

0|0 )
2 = 0.01}, (b) {µW 2

0|0 = 2, (σW 2

0|0 )
2 = 1}, and (c)

{µW 2

0|0 = 20, (σW 2

0|0 )
2 = 100}.

Average number of points

Criteria case (a) case (b) case (c)

NEES 51 50.8 51.2
NIS 53 51.2 49.8

5.1.3 Statistical Consistency for the Variance of the Error Variance

In order to check the statistical consistency for the variance of the error variance term, we created
1000 simulated time series where the true values of the error variance in each time series is generated
from the prior knowledge of W 2

0|0. Figure 4 presents, for each time step, the percentage of realizations

(γ) where the true value lies within the confidence interval (C.I.) for 1, 2, and 3 standard deviations
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from the mean estimate in each of the three case studies. The results in Figure 4 show that the
γ values match the theoretical C.I. quantities, i.e., {68, 95, 99}%, for the Gaussian distribution
supporting the hypothesis that the Gaussian PDF for the error variance is adequate at each time
step.

0 1000
25

68

95

t

γ
[in

%
]

(a) case (a)

0 1000
25

68

95

t

γ
[in

%
]

(b) case (b)

0 1000
25

68

95

t

γ
[in

%
]

(c) case (c)

µ± σ µ± 2σ µ± 3σ

Figure 4: Empirical consistency check for the variance of the error variance estimate, where γ
is the percentage of realizations where the true value lies within the three C.I. for the cases (a)

{µW 2

0|0 = 0.2, (σW 2

0|0 )
2 = 0.01}, (b) {µW 2

0|0 = 2, (σW 2

0|0 )
2 = 1}, and (c) {µW 2

0|0 = 20, (σW 2

0|0 )
2 = 100}.

5.1.4 Impact of the Q
R Ratio

Also, we noticed the effect of the Q
R =

σ2
W

σ2
V

ratio on the estimation accuracy. Figure 5 shows the

posterior mean estimate µT|T and the confidence interval µT|T ± σT|T for the error variance after

T time steps with respect to different Q
R values for the three cases, where T = 1000 is the total

length of the time series. The results validate that the AGVI method is accurate for Q
R ≥ 10. For

1 < Q
R < 10, the estimates are accurate with negligible biases in comparison to the true values,

whereas for Q
R < 1, the estimates are inaccurate with large biases. This phenomenon is explained by

the fact that, given that the system is observable [7, 44], the Kalman gain has a higher value with
an increase in the Q

R ratio. As a result, the Kalman filter puts more weight on the measurements.
Hence, we obtain a better mean and variance estimate of W by learning from each measurement
which in turn provide better estimates for W 2.

10−1 100 101 102
0.1

0.2

0.3

Q/R

σ
2 W

(a) case (a)

10−1 100 101 102
1

2

3

Q/R

σ
2 W

(b) case (b)

10−1 100 101 102
10

20

30

Q/R

σ
2 W

(c) case (c)

µT|T µT|T ± σT|T

Figure 5: The posterior mean estimate and C.I of the error variance for different values of Q
R for the

cases (a) {µW 2

0|0 = 0.2, (σW 2

0|0 )
2 = 0.01}, (b) {µW 2

0|0 = 2, (σW 2

0|0 )
2 = 1}, and (c) {µW 2

0|0 = 20, (σW 2

0|0 )
2 =

100}. Note that the x-axis is in log-scale.
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5.1.5 Comparison of AGVI with Adaptive Kalman Filters (AKF)

The AGVI method is compared with two existing adaptive Kalman filter (AKF) methods, namely
SWVAKF [20] and MDM [11,26]. Three cases are created for comparison, where the true values for
the process error variances are (a) σ2

W = 0.42, (b) σ2
W = 1.35, and (c) σ2

W = 18.75, using the same
dynamic model shown in Equation 22. In this case study, we use the publicly available codes for
MDM [12] and SWVAKF [20] that only provides point estimates of Q and R matrices. As the codes
are not available for obtaining the uncertainty associated with the error variance estimates, our
study is restricted to analyzing the mean estimates, as made available by the authors. The MDM
method involves no prior knowledge of the hidden states or the error variances, and the user-defined
lag parameter is set to 1. For SWVAKF, the same values are used for filtering parameters as
provided in the method’s implementation code [21]. The prior knowledge for the hidden states in
both AGVI and SWVAKF are set to µ0|0 = 0 and σ2

0|0 = 100.

Table 3 compares the average root mean square error (RMSE) values and computational time
obtained using all three methods for the three cases, where the true values are (a) σ2

W = 0.42, (b)
σ2
W = 1.35, and (c) σ2

W = 18.75. The results show that AGVI outperforms all methods in terms
of predictive capacity. In comparison to SWVAKF, which is a Bayesian method, AGVI is more
than two orders of magnitude faster, and compared to MDM, which is a correlation method, it
is an order of magnitude faster. Thus, we conclude that AGVI provides unbiased and consistent
estimates for the process error variance given that the observation error variance is known. The
comparative study shows that AGVI provides better predictive capacity and computational speed
than both AKF methods.

Table 3: Comparison of the average RMSE values and the computational time (s) obtained from
each method in all three cases where the true values are (a) σ2

W = 0.42, (b) σ2
W = 1.35, and (c)

σ2
W = 18.75. The results are averaged over five independent runs. Both the methods are picked from

different AKF categories where AGVI and SWVAKF are Bayesian methods, MDM is a correlation
method.

Category Methods RMSE Time (s)

σ2
W = 0.42 σ2

W = 1.35 σ2
W = 18.75

Bayesian AGVI 0.043 0.083 2.06 0.004
Bayesian SWVAKF 0.067 0.138 3.18 2.638

Correlation MDM 0.053 0.094 2.65 0.069

5.2 Case Study 2 – Multivariate Random Walk Model

This case study is conducted using five simulated datasets of 1000 time steps with a transition
process error having a full covariance matrix Q. The vector of hidden states xt associated with the
five time series is given by

xt = [xLL1t xLL2t xLL3t xLL4t xLL5t ]⊺.
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The state transition matrix A and the observation matrix C are defined as A = I5, and C = I5,
The Q and R matrices are defined as

Q =




1 −0.3 −0.2 −0.1 0.25
−0.3 3 0.35 0.4 0.45
−0.2 0.35 4 0.5 0.55
−0.1 0.4 0.5 0.8 0.6
0.25 0.45 0.55 0.6 2



,

R = 0.1 · I5,

where the off-diagonal covariance terms in the Q matrix are selected arbitrarily such that it is
symmetric and semi positive-definite.

5.2.1 Online Estimation of Full Q Matrix

For AGVI, the prior knowledge for the augmented hidden states µ̃0|0 = [µ0|0;µ
−−→
LW

0|0 ] and Σ̃0|0 =

blkdiag(Σ0|0,Σ
−−→
LW

0|0 ) are initialized by

µ̃0|0 = [0⊺5 2 · 1⊺5 0.8 · 1⊺10]⊺,
Σ̃0|0 = diag([1⊺5 0.5 · 1⊺5 0.5 · 1⊺10]), (23)

where 0 and 1 represent vector of zeros and ones, respectively. The mean vector and the covariance
matrix for −−→

LW
0|0 = [L11 L22 · · ·L55 L12 · · ·L45]

⊺
0|0,

are given by

µ
−−→
LW

0|0 = [2 · 1⊺5 0.8 · 1⊺10]⊺,

Σ

−−→
LW

0|0 = diag([ 0.5 · 1⊺5 0.5 · 1⊺10]). (24)

Note that the matrix R is assumed to be known and only the matrix Q is inferred. Figure 6 shows
the estimates obtained using AGVI for four elements of the Q matrix, namely σ2

11, σ
2
22, σ12, and

σ13, chosen arbitrarily. The plots for the remaining elements are provided in Appendix E.
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Figure 6: Online estimation of the error variance terms (a) σ2
11 and (b) σ2

22 and the covariance terms
(c) σ12 and (d) σ13 from the full Q matrix compared to their true values marked by the dashed red
line. The estimated values are shown by the black solid line and their ±1σ uncertainty bound is
shown using the green shaded region.
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The two-tailed t-test was carried out to test the null hypothesis that the error variance estimates
obtained using AGVI are equal to the true values and hence, unbiased. A 95% significance level
was chosen for which the critical t-value is 1.96, given that the degree of freedom is T− 1 = 999.
Table 4 shows the average t-values for all the variance terms. The results show that the computed
t-values are within the bounds of the critical t-value, i.e., −1.96 < t-value < 1.96, proving that the
estimates are unbiased.

Table 4: Average t-values for all the variance terms in the full Q matrix. Five independent
runs were carried out. The variance terms and the covariance terms are represented by σ2

ii and
σij , ∀i, j ∈ 1, · · · , D, respectively.

Variance terms

σ2
11 σ12 σ13 σ14 σ15 σ2

22 σ23 σ24 σ25 σ2
33 σ34 σ35 σ2

44 σ45 σ2
55

t-values 0.6002 −0.0736 0.1006 0.1380 −0.2828 0.3387 0.2157 0.2527 −0.1177 −0.0423 −0.0981 −0.2424 0.0692 −0.0855 −0.0287

5.2.2 Statistical Consistency

The normalized innovation square (NIS) metric is used to check the consistency of the estimator.
The two-sided probability region for a 95% C.I. having five degrees of freedom, i.e., the size of
the observation vector Y, is [0.831 12.833]. Considering that the total length of the training set is
1000, the theoretical 5% value for the number of acceptable points outside the 95% C.I. is 50. The

different prior initialization are chosen such that µ
−−→
LW

0|0 = [α · 1⊺5 β · 1⊺10]⊺, where α = {1.5 : 0.1 : 2}
and β = {0.5 : 0.1 : 1} while considering the same covariance matrix as defined in Equation 24.
Table 5 presents the average number of points outside the probability region for the different prior

initialization of
−−→
LW

0|0 where the average value is computed using five simulated datasets for each
combination of {α, β}. The results show that, on average, there are ≈ 56 points that lie outside the
95% probability region, which is comparable to the theoretical value of 50. This verifies that the
filter is optimal and provides consistent estimates for the error variance and covariance terms of the
full Q matrix.

Table 5: Average number of points outside the 95% probability region for the different prior

initialization of
−−→
LW

0|0. Each column presents the average value computed using the five simulated
datasets for one combination of {α, β}.

{1.5, 0.5} {1.6, 0.6} {1.7, 0.7} {1.8, 0.8} {1.9, 0.9} {2, 1} Mean

NIS 54.8 54.6 53.8 53.8 53.6 53.6 54.03

5.2.3 Comparison with Adaptive Kalman Filters (AKF)

For this case study, the AGVI method is compared to SWVAKF and MDM. For the SWVAKF
method, the hidden states are initialized similarly to Equation 23, where the mean vector is µ0|0 = 05
and the covariance matrix is Σ0|0 = I5. The same values are used for filtering parameters as provided
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in the method’s implementation code [21]. The MDM method involves no prior knowledge of the
hidden states or error variances, and the user-defined lag parameter is set to 1. Table 6 shows the
average RMSE values for estimating some of the elements chosen arbitrarily from the Q matrix as
well as the average computational time for each method. The results show that AGVI outperforms
other methods in terms of predictive capacity for most of the variance and covariance terms. In
comparison to SWVAKF which is a Bayesian method, it is more than an order of magnitude faster.
The MDM is an order of magnitude faster than AGVI but the current implementation code only
provides point estimates, whereas AGVI estimates the mean as well as the variance of the error
variance terms. The results for both case studies were obtained using the AGVI MATLAB library [8].

Table 6: Comparison of the average RMSE values and the computational time for each method.
Each of the methods are picked from different AKF categories where AGVI and SWVAKF are
Bayesian methods, MDM is a correlation method. The variance terms and the covariance terms are
represented by σ2

ii and σij , ∀i, j ∈ 1, · · · , D, respectively.

Methods Variance terms Time (s)

σ2
11 σ12 σ13 σ14 σ15 σ2

22 σ23 σ24 σ25 σ2
33 σ34 σ35 σ2

44 σ45 σ2
55

AGVI 0.0766 0.0409 0.0160 0.0476 0.0139 0.0468 0.2097 0.0004 0.0578 0.1653 0.0528 0.0123 0.0251 0.0115 0.0422 1.4
SWVAKF 0.0246 0.0789 0.1364 0.0857 0.1023 0.5607 0.0754 0.0995 0.2539 1.1391 0.1661 0.1366 0.0130 0.0265 0.2304 9.4

MDM 0.0034 0.0197 0.0675 0.0437 0.0629 0.4431 0.5396 0.0581 0.1306 0.0347 0.0009 0.0736 0.0413 0.0609 0.1412 0.03

6 Conclusion

The approximate Gaussian variance inference (AGVI) method proposed in this paper is an analyt-
ically tractable Bayesian inference method that provides many advantages. Firstly, it allows for
online inference of the process error variance and covariance terms in the full Q matrix as Gaussian
random variables. Secondly, it provides accurate, unbiased, and statistically consistent estimates of
the mean and uncertainties associated with the error variance terms at each time step. Thirdly, it
employs a closed-form square-root filtering technique using the Cholesky decomposition to maintain
the estimated Q matrix as positive semi-definite.

The case study 1 shows the application of the AGVI method for a linear time-varying model
where the univariate process error variance was inferred starting from different prior initializations.
The t-test proves that the estimates are unbiased. The statistical consistency tests verify that the
filter is optimal and that the AGVI method provide consistent estimates for the mean as well as the
uncertainties associated with the error variance term. In comparison to the existing adaptive Kalman
filter (AKF) methods, the AGVI method provides a better predictive capacity in all cases. In
comparison to SWVAKF, which is a Bayesian method, AGVI is more than two orders of magnitude
faster, and compared to MDM, which is a correlation method, it is an order of magnitude faster.
The case study 2 shows the application of AGVI for a multivariate random walk model with a full
Q matrix and compares its performance with the two AKF methods. The results show that AGVI
outperforms all methods in terms of predictive capacity for most of the variance and covariance
terms, and yields statistically consistent estimates. Hence, the proposed method is capable of online
estimation of error variances in regard to state-space models involving multiple time series.
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[13] Jindřich Duńık, Ondřej Straka, and Oliver Kost. Measurement difference autocovariance
method for noise covariance matrices estimation. 2016 IEEE 55th Conference on Decision and
Control (CDC), pages 365–370. IEEE, 2016.

21

https://doi.org/10.1002/acs.3667
https://github.com/CivML-PolyMtl/AGVI
https://idm.kky.zcu.cz/sw.html


Deka, B., and Goulet, J-A. (2023).Approximate Gaussian Variance Inference for State-Space Models.
International Journal of Adaptive Control and Signal Processing. 1-29 doi
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Noise covariance matrix estimation with subspace model identification for Kalman filtering.
International Journal of Adaptive Control and Signal Processing, 35(4):591–611, 2021.

[35] Kenneth Myers and BD Tapley. Adaptive sequential estimation with unknown noise statistics.
IEEE Transactions on Automatic Control, 21(4):520–523, 1976.

[36] H Nguyen and J-A Goulet. Real-time anomaly detection with Bayesian dynamic linear models.
Structural Control and Health Monitoring, page e2404, 2019.

[37] Brian J Odelson, Murali R Rajamani, and James B Rawlings. A new autocovariance least-
squares method for estimating noise covariances. Automatica, 42(2):303–308, 2006.
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[41] Simo Särkkä and Jouni Hartikainen. Non-linear noise adaptive Kalman filtering via variational
Bayes. 2013 IEEE International Workshop on Machine Learning for Signal Processing, pages
1–6. IEEE, 2013.

[42] Simo Sarkka and Aapo Nummenmaa. Recursive noise adaptive Kalman filtering by variational
Bayesian approximations. IEEE Transactions on Automatic control, 54(3):596–600, 2009.

[43] Robert H Shumway, David S Stoffer, and David S Stoffer. Time series analysis and its
applications. Springer, 2000.

[44] Dan Simon. Optimal state estimation: Kalman, H infinity, and nonlinear approaches. John
Wiley & Sons, 2006.

[45] Geir Storvik. Particle filters for state-space models with the presence of unknown static
parameters. IEEE Transactions on Signal Processing, 50(2):281–289, 2002.

23

https://doi.org/10.1002/acs.3667


Deka, B., and Goulet, J-A. (2023).Approximate Gaussian Variance Inference for State-Space Models.
International Journal of Adaptive Control and Signal Processing. 1-29 doi

[46] J Wang. Stochastic Modeling for Real-Time Kinematic GPS/GLONASS Positioning. Navigation,
46(4):297–305, 1999.

[47] J Zhou and RH Luecke. Estimation of the covariances of the process noise and measurement
noise for a linear discrete dynamic system. Computers & Chemical Engineering, 19(2):187–195,
1995.

24

https://doi.org/10.1002/acs.3667


Deka, B., and Goulet, J-A. (2023).Approximate Gaussian Variance Inference for State-Space Models.
International Journal of Adaptive Control and Signal Processing. 1-29 doi

A Gaussian Multiplication Approximation (GMA)

Consider X = [X1 X2 X3 X4]
⊺, a vector of Gaussian random variables such that X ∼ N (µ,Σ),

with mean vector µ and covariance matrix Σ. Using the Gaussian moment generating function or
2nd order Taylor series expansion, the following equations hold for the product of any two Gaussian
random variables such that

E[X1X2] = µ1µ2 + cov(X1, X2), (25)

var(X1X2) = σ2
1σ

2
2 + cov(X1, X2)

2

+ 2cov(X1, X2)µ1µ2 (26)

+ σ2
1µ

2
2 + σ2

2µ
2
1,

cov(X3, X1X2) = cov(X1, X3)µ2 + cov(X2, X3)µ1, (27)

cov(X1X2, X3X4) = cov(X1, X3)cov(X2, X4) (28)

+ cov(X1, X4)cov(X2, X3)

+ cov(X1, X3)µ2µ4

+ cov(X1, X4)µ2µ3 + cov(X2, X3)µ1µ4

+ cov(X2, X4)µ1µ3.

These equations can be obtained either using moment generating functions [18] or second-order
Taylor series expansion [9].

B Proofs for Univariate Process Error

B.1 Proof for Lemma 1

Proof. Given that W is Gaussian and has a zero mean, the moments of W can be derived using a
Gaussian moment generating function so that

µW = E[W ] = 0,

σ2
W = E[(W − µW )2] = E[W 2]− E[W ]2, (29)

= E[W 2],

E[W 4] = 3E[W 2]2, (30)

where using Equations 29 & 30, we can define the variance of W 2 such that

var(W 2) = E[(W 4)]− E[W 2]2 = 2E[W 2]2. (31)

If we make the approximation that W 2 ∼ N (w2;µW 2
, (σW 2

)2) is a Gaussian random variable, then
the PDF can be fully defined by its mean and variance,

µW 2
= E[W 2],

(σW 2
)2 = var(W 2) = 2E[W 2]2,

where by using Equation 31, the variance var(W 2) can also be expressed in terms of the expected
value E[W 2]. Hence, the PDF of W 2 only depends on the unknown hyper parameter µW 2

such that

f(w2|µW 2
, (σW 2

)2) ≡ f(w2|µW 2
),

= N (w2, µW 2
, 2(µW 2

)2). (32)
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B.2 Proof for Lemma 2

Proof. Let us consider that the mean parameter µW 2
is described by the random variable W 2 :

w2 ∈ (0,∞) for which

f(w2) ∼ N (w2;µW 2
, (σW 2

)2). (33)

Using (32) and (33), we can rewrite the PDF of W 2 as

f(w2|w2) = N (w2;w2, 2(w2)2). (34)

Using the acyclic graph in Figure 1, the joint PDF of Yt|t−1, Xt|t−1, W
2
t|t−1, and W 2

t|t−1 is shown by

f(yt, xt, w
2
t , w

2
t|y1:t−1) = f(yt|xt, w2

t ) · f(xt|y1:t−1)

· f(w2
t |w2

t) · f(w2
t|y1:t−1). (35)

Using Equation 34 and marginalizing Yt|t−1, Xt|t−1, and W 2
t|t−1 from the joint PDF defined in

Equation 35, the prior predictive PDF of W 2
t|t−1 is

f(w2
t |y1:t−1) =

∫
f(w2

t |w2
t) · f(w2

t|y1:t−1)dw2
t, (36)

=

∫
N (w2

t ;w
2
t, 2(w2

t)
2) · N (w2

t;µ
W 2

t−1|t−1, (σ
W 2

t−1|t−1)
2)dw2

t.

The integration in Equation 36 can be solved in closed-form. The equivalent formulation to obtain
this is to represent the Gaussian random variables W 2 and W 2 in terms of the standard Gaussian
variable ϵ and ζ shown by

W 2 = W 2 +
√
2 W 2ϵ, ϵ ∼ N (0, 1) (37)

W 2 = µW 2
+ σW 2

ζ, ζ ∼ N (0, 1). (38)

Using Equations 37 & (38), the mean and variance of the prior predictive PDF of W 2
t|t−1 are given

by

E[W 2
t|t−1] = E[W 2

t|t−1] +
√
2������:0
E[W 2

t|t−1ϵ],

= µW 2

t−1|t−1, (39)

var(W 2
t|t−1) = var(W 2

t|t−1) + 2 var(W 2
t|t−1ϵ),

= (σW 2

t−1|t−1)
2 + 2(var(W 2

t|t−1) ·����:1
var(ϵ)

+ ����:1
var(ϵ) · E[W 2

t|t−1]
2),

= 3(σW 2

t−1|t−1)
2 + 2(µW 2

t−1|t−1)
2, (40)

where the term var(W 2
t|t−1ϵ) in Equation 40 is obtained using the GMA equations,

var(W 2
t|t−1ϵ) = var(W 2

t|t−1) · var(ϵ) + var(ϵ) · E[W 2
t|t−1]

2.

Using Equations 29 & 39, the error variance term is given by

σ2
W = µW 2

t−1|t−1. (41)
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B.3 Proof for Lemma 3

Proof. Let us consider the joint PDF of Yt|t−1, W
2
t|t−1, and W 2

t|t−1as shown by Figure 1,

f(yt, w
2
t , w

2
t|y1:t−1) = f(yt|w2

t ) · f(w2
t |w2

t) · f(w2
t|y1:t−1).

= f(yt|w2
t ) ·

f(w2
t |w2

t) · f(w2
t|y1:t−1)

f(w2
t |y1:t−1)

· f(w2
t |y1:t−1),

= f(yt|w2
t ) ·

f(w2
t , w

2
t|y1:t−1)

f(w2
t |y1:t−1)

· f(w2
t |y1:t−1),

= f(yt|w2
t ) · f(w2

t|w2
t ,y1:t−1) · f(w2

t |y1:t−1). (42)

By dividing both sides in Equation 42 by f(yt|y1:t−1) we obtain

f(yt, w
2
t , w

2
t|y1:t−1)

f(yt|y1:t−1)
=

f(yt|w2
t ) · f(w2

t |y1:t−1)

f(yt|y1:t−1)
· f(w2

t|w2
t ,y1:t−1),

f(w2
t , w

2
t|y1:t) = f(w2

t |y1:t) · f(w2
t|w2

t ,y1:t−1), (43)

By marginalizing out W 2 from the joint PDF defined in Equation 43, the posterior PDF of W 2
t|t is

obtained such that

f(w2
t|y1:t) =

∫
f(w2

t |y1:t) · f(w2
t|w2

t ,y1:t−1)dw
2
t . (44)

B.4 Proof for Lemma 4

Proof. Using the GMA equations in Section A, the posterior PDF of W 2 can be shown by

f(w2
t |y1:t) ∼ N (w2

t ;µ
W 2

t|t , (σW 2

t|t )2), (45)

where the mean and variance of W 2
t|t are

µW 2

t|t = (µW
t|t)

2 + (σW
t|t )

2,

(σW 2

t|t )2 = 2(σW
t|t )

4 + 4(σW
t|t )

2(µW
t|t)

2.

B.5 Proof for Proposition 2

Proof. Given that the prior predictive PDF of both W 2 and W 2 are Gaussian, the joint multivariate
Gaussian PDF f(w2

t, w
2
t |y1:t−1) is shown by

f(w2
t, w

2
t |y1:t−1) = N

((
w2

t

w2
t

)
;µW 2,W 2

t|t−1 ,ΣW 2,W 2

t|t−1

)
, (46)

having a mean vector µW 2,W 2

t|t−1 and a covariance matrix ΣW 2,W 2

t|t−1 defined as

µW 2,W 2

t|t−1 =
[
µW 2

t|t−1 µ
W 2

t|t−1

]⊺
,

ΣW 2,W 2

t|t−1 =

[
(σW 2

)2t|t−1 cov(W 2,W 2)t|t−1

cov(W 2,W 2)t|t−1 (σW 2
)2t|t−1

]
, (47)
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and where using the transition model w2
t = w2

t−1, the mean and the variance of W 2
t|t−1 = W 2

t−1|t−1

are given by Equations 39 & 40. The covariance term cov(W 2,W 2)t|t−1 between W 2
t|t−1 and W 2

t|t−1
in Equation 47 is obtained using Equations 33 & 37, and the GMA equations from Section A so that

cov(W 2
t|t−1,W

2
t|t−1) = cov(W 2,W 2)t|t−1,

= cov(W 2 +
√
2 W 2ϵ,W 2)t|t−1,

= var(W 2)t|t−1 +
√
2cov(W 2ϵ,W 2)t|t−1,

= var(W 2)t|t−1 +
√
2(cov(W 2,W 2)�

��>
0

E[ϵ]

+������:0
cov(ϵ,W 2)E[W 2]),

= (σW 2

t−1|t−1)
2.

Given that the joint Gaussian PDF is defined as shown by Equation 46, the Gaussian conditional
properties are used to obtain the conditional PDF f(w2

t|w2
t ,y1:t−1) which is part of the integrand

shown in Equation 44,

f(w2
t|w2

t ,y1:t−1) = N (w2
t;µ

W 2|W 2

t|t−1 , (σ
W 2|W 2

t|t−1 )2), (48)

for which the conditional mean and variance are

µ
W 2|W 2

t|t−1 = µW 2

t|t−1 + kt(w
2
t − µW 2

t|t−1), (49)

(σ
W 2|W 2

t|t−1 )2 = (σW 2

t|t−1)
2 − k2t (σ

W 2

t|t−1)
2, (50)

kt =
cov(W 2

t|t−1,W
2
t|t−1)

(σW 2

t|t−1)
2

,

=
(σW 2

t−1|t−1)
2

(σW 2

t|t−1)
2

. (51)

Using Equations 48 & 45, Equation 44 is rewritten as

f(w2
t|y1:t) =

∫
N (w2

t;µ
W 2|W 2

t|t−1 , (σ
W 2|W 2

t|t−1 )2) · N (w2
t ;µ

W 2

t|t , (σW 2

t|t )2)dw2
t . (52)

Equation 52 can be solved in closed-form having a Gaussian PDF with a random mean, i.e., µ
W 2|W 2

t|t−1 ,

and a constant variance, i.e., (σ
W 2|W 2

t|t−1 )2, shown by Equations 49 & 50. Hence, the PDF f(w2
t|y1:t)

is also Gaussian such that

f(w2
t|y1:t) = N (w2

t;µ
W 2

t|t , (σW 2

t|t )2),

for which the posterior mean and the variance can be computed using the Kalman gain defined in
Equation 51 as

µW 2

t|t = E
[
µW 2

t|t−1 + kt(W
2
t|t − µW 2

t|t−1)
]
,

= µW 2

t|t−1 + kt(µ
W 2

t|t − µW 2

t|t−1),

(σW 2

t|t )2 = (σW 2

t|t−1)
2 − k2t (σ

W 2

t|t−1)
2 + k2t var(W

2
t|t),

= (σW 2

t|t−1)
2 + k2t ((σ

W 2

t|t )2 − (σW 2

t|t−1)
2). (53)
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C Proofs for Multivariate Process Error

C.1 Proof for Lemma 5

As described by Lemma B.2 for the univariate process error, the expected value E[(W i)2] and the
variance terms var((W i)2), ∀i ∈ {1, 2, · · · , D} for the prior predictive PDF of W p are given by

E[(W i)2] = (µ(W i)2),

var((W i)2) = 3(σ(W i)2)2 + 2(µ(W i)2)2.

Using the GMA equations, the mean and variance term of W iW j are

E[W iW j ] = cov(W i,W j) = wiwj , (54)

var(W iW j) = var(W i)var(W j) + cov(W i,W j)2,

= µ(W i)2µ(W j)2 + (wiwj)2, (55)

where using Equation 41 from Proof B.2, var(W i) = µ(W i)2 . Using Equations 54 and 55, the

Gaussian random variable W iW j ∼ N (wiwj ;wiwj , µ(W i)2µ(W j)2 + (wiwj)2) can be represented in
terms of its standard Gaussian variable ϵ by

wiwj = wiwj +

√
µ(W i)2 · µ(W j)2 + (wiwj)2 · ϵ, ϵ ∼ N (0, 1).

The moments of the prior predictive PDF of W iW j are given by

E[W iW j ] = E[W iW j ] +

�����������������:0

E
[√

µ(W i)2µ(W j)2 + (W iW j)2 · ϵ
]
,

= µW iW j
, (56)

var(W iW j) = var(W iW j) + var(

√
µ(W i)2µ(W j)2 + (W iW j)2 · ϵ),

= var(W iW j) + var(

√
µ(W i)2µ(W j)2 + (W iW j)2),

+ E
[√

µ(W i)2µ(W j)2 + (W iW j)2
]2

, (57)

where using GMA equations the term var(

√
µ(W i)2µ(W j)2 + (W iW j)2 · ϵ) is obtained by

var(

√
µ(W i)2µ(W j)2 + (W iW j)2·ϵ) = var(

√
µ(W i)2µ(W j)2 + (W iW j)2)+E

[√
µ(W i)2µ(W j)2 + (W iW j)2

]2
.

In order to simplify the notation in Equation 57, let us consider u = wiwj and t(u) =

√
µ(W i)2µ(W j)2 + (wiwj)2,

so that using 1st order Taylor series expansion we get

E[t(u)]2 = t(E[U ])2 = µ(W i)2µ(W j)2 + (µW iW j
)2, (58)

var(t(u)) = (t′(E[U ]))2 · var(U),

=
(µW iW j

)2

µ(W i)2µ(W j)2 + (µW iW j )2
· (σW iW j

)2. (59)
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Hence, combining Equations 57, 58, and 59 we get

var(W iW j) = (σW iW j
)2 +

(µW iW j
)2

µ(W i)2µ(W j)2 + (µW iW j )2
· (σW iW j

)2

+ µ(W i)2µ(W j)2 + (µW iW j
)2.

Using the GMA equations, and Equation 56, the covariance between the product terms W iW j and
W lWm, i, j, l,m ∀ ∈ {1, 2, · · · D}, is given by

cov(W iW j ,W lWm) = cov(W i,W l)cov(W j ,Wm) + cov(W i,Wm)cov(W j ,W l),

= E[W iW l]E[W jWm] + E[W iWm]E[W jW l],

= µW iW l
µW jWm

+ µW iWm
µW jW l

.

C.2 Proof for Lemma 6

Proof. The covariance matrix ΣW in Equation 13 can be reformulated in terms of the random
variables in W p given by

ΣW =




(W 1)2 W 1W 2 · · · W 1W D

... (W 2)2 · · · W 2W D

... · · · . . .
...

sym. · · · · · · (W D)2



t|t−1

, (60)

where using Equation 54, E[W iW j ] = W iW j ,∀i, j ∈ {1, 2, · · · , D}. Let us consider LW is an upper
triangular random matrix such that

LW =




L11 L12 · · · L1D

0 L22 · · · L2D
... · · · . . .

...
0 · · · 0 LDD


 , (61)

where each of the term is assumed to be a Gaussian random variable given by Lij ∼ N (µLij , σ
2
Lij

).

The elements of LW can be arranged in a random vector,

−−→
LW = [L11 L22 LDD L12 · · ·Lij · · ·LD-1 D]

⊺,

such that
−−→
LW is a Gaussian random vector given by

−−→
LW ∼ N (µ

−−→
LW

,Σ
−−→
LW

), (62)

where µ
−−→
LW

and Σ
−−→
LW

are the mean vector and the covariance matrix of
−−→
LW . Let us reproduce

ΣW using Equation 61 such that
ΣW = (LW )⊺LW ,

where each element W iW j of ΣW defined in Equation 60 is obtained using matrix multiplication
so that

W iW j =

D∑

k=1

LjkLki, ∀i, j ∈ {1, · · · , D},
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where using Equation 62 and the GMA equations we can determine the expected value, the variance,
and the covariance terms of any element W iW j as follows,

E[W iW j ] = E

[
D∑

k=1

LjkLki

]
, var(W iW j) = var(

D∑

k=1

LjkLki). (63)

Using Equation 63, the elements of the prior predictive PDF of W defined in Proposition 3 can be
computed as

µW iW j
= E

[
D∑

k=1

LjkLki

]
.

Similarly, the covariance between the random matrices, ΣW and LW , is equivalent to finding the

covariance between the random vectors
−−→
LW and W p given by Σ

−−→
LWW p

t|t−1 , where any covariance term
is obtained by

cov(Lij ,W iW j) = cov(Lij ,

D∑

k=1

LjkLki).

C.3 Proof for Lemma 7

Proof. The prior knowledge of W p is updated by employing the prior predictive W p
t|t−1 and the

posterior PDF W p
t|t such that

f(wp
t|y1:t) = N (wp

t;µ
W p

t|t ,ΣW p

t|t ),

where using Equations 51-53, the posterior mean, variance and covariance terms of W p are

µW p

t|t = µW p

t|t−1 +Kt(µ
W p

t|t − µW p

t|t−1),

ΣW p

t|t = ΣW p

t|t−1 +Kt(Σ
W p

t|t −ΣW p

t|t−1)K
⊺
t ,

Kt = ΣW pW p

t|t−1 (ΣW p

t|t−1)
−1,

ΣW pW p

t|t−1 = ΣW p

t|t−1.

D Algorithms for Univariate and Multivariate Process Errors
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Algorithm 1 One-time step of the proposed AGVI method for univariate process error

Input: µt−1|t−1, Σt−1|t−1, µ
W 2

t−1|t−1, (σ
W 2

t−1|t−1)
2, yt, A, C, Q, and σ2

V

Prior knowledge for the error variance parameter:

1: σ2
W = µW 2

t−1|t−1

Prediction Step:

2: µH
t|t−1 =


Aµt−1|t−1

0



t|t−1

, ΣH
t|t−1 =


AΣt−1|t−1A

⊺ +Q ΣXW

(ΣXW )⊺ µW 2



t|t−1

,

µY = Cµt|t−1, σ2
Y = CΣt|t−1C

⊺ + σ2
V , ΣHY = ΣH

t|t−1F
⊺
t

1st Update Step:

3: µH
t|t = µH

t|t−1 +
ΣHY

σ2
Y

(yt − µY ), ΣH
t|t = ΣH

t|t−1 −
ΣHY ·Σ⊺

HY

σ2
Y

Posterior Moments for W 2:

4: µW 2

t|t = (µW
t|t)

2 + (σW
t|t )

2,

(σW 2

t|t )2 = 2(σW
t|t )

4 + 4(σW
t|t )

2(µW
t|t)

2

2nd Update Step:

5: µW 2

t|t = µW 2

t|t−1 + kt(µ
W 2

t|t − µW 2

t|t−1), (σW 2

t|t )2 = (σW 2

t|t−1)
2 + k2t ((σ

W 2

t|t )2 − (σW 2

t|t−1)
2),

kt =
(σW2

t−1|t−1
)2

(σW2

t|t−1
)2

6: return µt|t, Σt|t, µ
W 2

t|t , and (σW 2

t|t )2
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Algorithm 2 One-time step of the AGVI method for multivariate process errors

Input: µt−1|t−1, Σt−1|t−1, µ
−−→
LW

t−1|t−1, Σ
−−→
LW

t−1|t−1, yt, A, C, Q, and R

Prior Predictive PDF of Wt|t−1 ∼ N (wt;0t|t−1,Σ
W
t|t−1):

1: Any ijth element of ΣW
t|t−1 is obtained using µW iW j

= E
[∑D

k=1 LjkLki

]

Prediction Step:

2: µH
t|t−1 =


Aµt−1|t−1

0



t|t−1

, ΣH
t|t−1 =


AΣt−1|t−1A

⊺ +Q ΣXW

(ΣXW )⊺ ΣW



t|t−1

,

µY = Cµt|t−1, ΣY = CΣt|t−1C
⊺ +R, ΣHY = ΣH

t|t−1F
⊺
t , where F = [C 0]

1st Update Step:

3: µH
t|t = µH

t|t−1 +ΣHY Σ−1
Y (yt − µY ), ΣH

t|t = ΣH
t|t−1 −ΣHY Σ−1

Y Σ⊺
HY

4: Obtain the posterior PDF, f(wp
t |y1:t) = N (wp

t ;µ
W p

t|t ,ΣW p

t|t )

2nd Update Step:

5: µW p

t|t = µW p

t|t−1 +Kt(µ
W p

t|t − µW p

t|t−1), ΣW p

t|t = ΣW p

t|t−1 +Kt(Σ
W p

t|t −ΣW p

t|t−1)K
⊺
t ,

Kt = ΣW pW p

t|t−1 (ΣW p

t|t−1)
−1, ΣW pW p

t|t−1 = ΣW p

t|t−1

Posterior moments of
−−→
LW :

6: µ
−−→
LW

t|t = µ
−−→
LW

t|t−1 +KL
t (µ

W p

t|t − µW p

t|t−1), Σ
−−→
LW

t|t = Σ
−−→
LW

t|t−1 +KL
t (Σ

W p

t|t −ΣW p

t|t−1)(K
L
t )

⊺,

KL
t = Σ

−−→
LWW p

t|t−1 (ΣW p

t|t−1)
−1

7: return µt|t, Σt|t, µ
−−→
LW

t|t , and Σ
−−→
LW

t|t
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E Additional Results for Case Study 2

E.1 Online inference of the variance and covariance terms in the full Q matrix
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Figure 7: Online estimation of the error variance term and the covariance terms from the full Q
matrix compared to their true values marked by the dashed red line. The estimated values are
shown by the black solid line and their ±1σ uncertainty bound is shown using the green shaded
region.
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