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RÉSUMÉ

Les infrastructures civiles, notamment les barrages, les ponts, les bâtiments et les oléoducs,
jouent un rôle essentiel dans la croissance économique. Même lorsqu’elles sont conçues cor-
rectement, ces structures se détériorent au fil du temps, ce qui entraîne une dégradation de
leur état. Elles doivent donc être surveillées et entretenues afin de garantir leur sécurité et
leur fonctionnalité. Les données brutes des capteurs concernant les réponses structurelles
telles que les déplacements, les ouvertures de fissures, les déformations ou les accélérations
sont difficiles à interpréter car elles sont généralement affectées par des erreurs de mesure ainsi
que par les effets de l’environnement. Les modèles linéaires dynamiques bayésiens (BDLM) et
le filtre de Kalman à commutation (SKF), qui sont des types spécifiques de modèles espace-
état (SSM), ont été utilisés comme méthodes d’interprétation des données dans le cadre de
la surveillance de l’état des structures (SHM) afin d’extraire des informations utiles sur leur
état à partir des données brutes des capteurs et de prédire les réponses futures. Toutefois, la
principale limite de ces méthodes est qu’elles nécessitent une ingénierie des caractéristiques
étendue afin de construire des modèles, de sorte que leur application n’est pas adaptée à un
déploiement à grande échelle sur un grand nombre de séries temporelles.

L’objectif de cette thèse est de développer des réseaux neuronaux récurrents bayésiens (RNN)
analytiquement traçables pour automatiser la construction de modèles de séries temporelles.
Cette méthode peut être utilisée dans les cadres SSM et SKF existants afin d’éliminer le besoin
d’ingénierie des caractéristiques, améliorant ainsi leur mise à l’échelle pour les applications
SHM. Les principales contributions de cette thèse consistent en l’élaboration de (1) de réseaux
neuronaux Bayésiens à longue mémoire à court terme (LSTM) et à unité récurrente à relais
(GRU), (2) d’un modèle probabiliste hybride qui associe le RNN Bayésien analytiquement
traitable et le SSM pour fournir des résultats interprétables avec les incertitudes de prédiction,
sans nécessiter d’ingénierie des caractéristiques, et (3) d’une méthodologie pour utiliser le
modèle hybride dans le cadre SKF existant pour la détection d’anomalies semi-supervisée
en ligne dans des conditions non stationnaires dans le domaine SHM. Les méthodologies
proposées sont vérifiées avec des données synthétiques et validées avec des ensembles de
données de référence de séries temporelles ainsi qu’avec des données du SHM. Les résultats
montrent que la méthode de détection d’anomalies proposée est plus performante que d’autres
modèles de référence, car elle permet de détecter les anomalies de manière fiable, tout en
contrôlant étroitement le taux de fausses alarmes.
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ABSTRACT

Civil infrastructures, including dams, bridges, buildings, and pipelines, play a vital role in
the economic growth of every country. Even when properly designed, these structures deteri-
orate over time leading to a decline in their condition so that they have to be monitored and
maintained in order to ensure their safety and serviceability. Raw sensor data about struc-
tural responses such as displacements, crack openings, strains, or accelerations are difficult to
interpret because they are typically affected by measurement noise as well as environmental
effects. The Bayesian Dynamic Linear Models (BDLM) and Switching Kalman Filter (SKF),
which are specific types of state-space models (SSM), have been used as data interpretation
methods in structural health monitoring (SHM) to extract useful insights about the structural
condition from the raw sensor data and to predict future responses. However, the main lim-
itation of these methods is that they require extensive feature engineering in order to build
models so that their application is not suited for large scale deployment on a high number of
time series.

The objective of this thesis is to develop analytically tractable Bayesian recurrent neural
networks (RNN) for automating the construction of time series models. This method can be
used in the existing SSM and SKF frameworks in order to eliminate the need for feature engi-
neering, therefore enhancing their scalability for SHM applications. The main contributions
consist in the development of: (1) analytically tractable Bayesian Long Short-Term Mem-
ory (LSTM) and Gated Recurrent Unit (GRU) neural networks, (2) a hybrid probabilistic
model that couples the analytically tractable Bayesian RNN and SSM for providing inter-
pretable results along with the prediction uncertainties, while not requiring feature engineer-
ing, and (3) a methodology to use the hybrid model in the existing SKF framework for online
semi-supervised anomaly detection under nonstationary conditions in SHM. The proposed
methodologies are verified with synthetic data and validated with time series benchmark
datasets as well as real SHM ones. The results show that the proposed anomaly detection
method outperforms other baseline models as it can reliably detect anomalies, while having
a tight control over the false alarm rate.
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CHAPTER 1 Introduction

1.1 Motivation

Civil infrastructures, including dams, bridges, buildings, and pipelines, play a vital role in
the economic growth of every country [14]. Even when properly designed, these structures
deteriorate over time due to various factors such as material aging, loading, environmental
changes, and poor maintenance, leading to a decline in their condition [15]. Therefore, civil
infrastructures have to be monitored and maintained in order to ensure their safety and
serviceability.

Sensor-based structural health monitoring (SHM) measures various structural responses such
as displacements, crack openings, strains, inclinations or accelerations, and use these time
series data for inferring the structures’ conditions [16]. There are three components to a
SHM system, namely, sensors, data management, and data interpretation [17]. The success
of SHM typically depends on two main factors: the sensing system and data interpretation
methodologies. The advancement of sensing technology has contributed to the widespread
adoption of sensors by making them cost-effective while also enhancing their precision and
reliability [17, 18]. State-space models (SSM) [19, 20] provide a probabilistic framework for
analyzing time series data. The Bayesian Dynamic Linear Models (BDLM) [21] and Switching
Kalman Filter (SKF) [22] which are specific types of SSM have been used for SHM data
interpretation. Specifically, BDLM has been used to make future predictions about structural
responses and to decompose them into interpretable hidden states which give a useful insights
for engineers. For example, Figure 1.1a presents a crack opening dataset from a dam in
Canada which contains reversible periodic environmental effects as well as measurement
noise. BDLM can extract the unobserved level, local trend, and periodic hidden states from
the raw data as presented in Figures 1.1b-1.1d. The level hidden state presents the long-term
irreversible structural behaviour, the local trend one describes its rate of change, whereas the
periodic hidden state models the reversible environmental effects. On the other hand, the
SKF has been used to detect anomalies in dams and bridges. Engineers responsible with
monitoring the behaviour of structures are typically looking for these changepoints which
indicate switches from a regime with known kinematic to a different one. The presence of
a change in the kinematic is an indication of a possible anomaly in the structural condition
which should trigger further investigations in order to identify its cause along with preventive
maintenance actions. The main limitation of the BDLM and SKF methods is that they
require extensive feature engineering in order to build models. For example, one needs to
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Figure 1.1 Crack opening data from a dam in Canada and unobserved hidden states extracted
from the raw data using the BDLM model.

rely on engineering heuristics in order to manually choose appropriate model components as
well as to define the linear or nonlinear dependencies among them. As a result, the application
of these methods is limited to a small number of time series, whereas our ultimate goal is to
be able to process the data from tens of thousands of sensors in real time.

Neural networks (NN) and especially the recurrent neural networks (RNN) [23,24] have been
shown to be effective tools for time series [25]. The main strength of NN is their ability
to automatically identify and model, with minimal manual setups, complex patterns that
involve dependencies within time series and with explanatory variables. Nevertheless, unlike
the BDLM or SKF methods, the results from RNN are typically difficult to interpret [24]. In
addition, existing RNN cannot analyzed trended data so that offline preprocessing is needed
to remove trends, making them not suited for real time SHM. Coupling RNN and SSM
would allow to take advantage of both methods, but it is not a trivial task because their
respective inference procedures rely on different mechanisms. SSM are probabilistic models
which rely on Bayesian inference, whereas RNN typically optimize their parameters using
backpropagation and gradient descent. In the long term, developing neural networks that
use Bayesian inference as the learning mechanism could enable online and continual learning
in nonstationary conditions. In this context, the parameters could be learnt online as the
data become available, and their values can dynamically evolve over time, adapting to new
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data and conditions.

1.2 Research Objectives

This thesis aims at developing analytically tractable Bayesian recurrent neural networks
(RNN) which employ Bayesian inference for learning the model’s parameters. This enables
the probabilistic coupling between Bayesian RNN and state-space models (SSM), while using
Bayesian inference for learning both the RNN’s parameters as well as the posterior for SSM’s
hidden states. Using this novel method in the existing SSM and Switching Kalman Filter
(SKF) frameworks allows to enhance the anomaly detection’s scalability in the context of
structural health monitoring. The core objectives of this thesis are:

− Develop the analytically tractable Bayesian Long Short-Term Memory (LSTM) and
Gated Recurrent Unit (GRU) neural networks using the Tractable Approximate Gaus-
sian Inference (TAGI) method for automatically modeling time series with complex
recurrent patterns.

− Develop a hybrid probabilistic model that couples the analytically tractable Bayesian
RNN and SSM for analyzing trended data and providing interpretable results along with
the prediction uncertainties, while not requiring feature engineering or preprocessing
to remove trends.

− Develop a methodology to use the hybrid model in the existing SKF framework for
online semi-supervised anomaly detection under nonstationary conditions in structural
health monitoring.

1.3 Thesis Outline

The content of this thesis is organized as follows: Chapter 2 presents a literature review on
state-space models, neural networks, hybrid models, along with time series’ anomaly detection
methods. Chapter 3 introduces the mathematical formulations for the analytically tractable
Bayesian TAGI-LSTM and TAGI-GRU neural networks. Chapter 4 presents the method-
ology to create hybrid probabilistic models that couple the analytically tractable Bayesian
recurrent neural networks and state-space models. Chapter 5 presents the methodology to
use the hybrid model in the SKF framework for online anomaly detection under nonstationary
conditions. Finally, Chapter 6 provides the thesis conclusions and its limitations.
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CHAPTER 2 Literature Review

2.1 Introduction

State-space models (SSM) [19,20] and neural networks (NN) [23,24] are effective tools for time
series analysis. The main strength of NN is their ability to automatically identify complex
patterns while requiring minimal manual setups [26]. Nevertheless, without making assump-
tions about the data, the results from NN are typically difficult to interpret [4]. By contrast,
SSM provide a probabilistic framework for decomposing time series into interpretable pat-
terns such as the level, trend and seasonality. Hybrid models that combine NN and SSM allow
to take advantage of both methods. In this chapter, Section 2.2 reviews state-space models
and its applications in structural health monitoring. Section 2.3 reviews popular neural net-
work architectures, as well as algorithms used to trained them. Section 2.4 reviews several
hybrid models that combine SSM and NN. Finally, Section 2.5 reviews anomaly detection
methods used for time series.

2.2 State-Space Models

State-Space Models (SSM) [19,20,27] is a probabilistic method for modeling time series data.
This section introduces the basic principles of SSM, the Kalman filter [28], Bayesian Dynamic
Linear Models (BDLM) [21], along with the Switching Kalman Filter (SKF) [22] which are
specific types of SSM. In the context of SHM, BDLM has been used to make predictions
about structural responses and to decompose them into interpretable components which give
useful insights for engineers about structural conditions, whereas SKF has been used to detect
anomalies in dams and bridges.

SSM have the ability to separate observed system’s responses yt = [y1, y2, · · · , yY]ᵀt ∈ RY

into hidden states xt = [x1, x2, · · · , xX]ᵀt ∈ RX, that are used to model the latent patterns
of a system over time such as the level, trend and periodic ones, where their values can
change from one time step to another, reflecting the system’s evolution. A SSM consists of a
transition and an observation model. The transition model is characterized by a conditional
probability density function (PDF) f(xt|xt−1) describing the relation between the hidden
states at two consecutive timestamps xt and xt−1. Under the Markovian hypothesis, the
hidden states xt at time t depends only on the hidden states xt−1, and are independent
from all the hidden states {x1, · · · ,xt−2} given xt−1 so that f(xt|xt−1) = f(xt|x1:t−1), where
1 : t−1 is the short-hand notation for {1, 2, · · · , t−1}. The observation model is characterized
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by the conditional PDF f(yt|xt) describing how the observations yt are related to the hidden
states xt. These two models are defined in a generic form by

xt = g(xt−1,wt),
yt = h(xt,vt),

(2.1)

where g(·) and h(·) are the transition and observation functions, wt and vt are the process
and observation errors.

The objective of SSM is to estimate the posterior f(xt|y1:t) for the hidden states over time
using the Bayes’ theorem such that

f(xt|y1:t) = f(yt|xt) · f(xt|y1:t−1)
f(yt|y1:t−1) , (2.2)

where f(yt|xt) is the likelihood, f(xt|y1:t−1) is the prior, and f(yt|y1:t−1) is the evidence.
Gaussian filters [27, 29] assume that the likelihood f(yt|xt) and the prior f(xt|y1:t−1) are
Gaussians so that the posterior f(xt|y1:t) is also Gaussian following the properties of con-
jugate priors. Gaussian filters can be linear or nonlinear depending on the transition and
observations used in Equation 2.1. Linear Gaussian filters employ affine transition and obser-
vation models so that the Equation 2.2 can be estimated analytically to obtain the posterior
f(xt|y1:t) using a filtering technique known as the Kalman filter (KF) [28]. Nevertheless, in
many real-world applications, the assumption of linearity may not hold because nonlinear
transition and observation models are required to represent the system. In such cases, the
Equation 2.2 is intractable, and an analytical solution for the posterior f(xt|y1:t) is no longer
available. There are two major approaches to approximate this posterior. The local approach
assumes a known parametric distribution family for the posterior PDF, and approximates
it numerically. For example, the Extended Kalman filter [30] linearizes the nonlinear tran-
sition and observation functions so that the posterior f(xt|y1:t) can be obtained using the
standard KF’s equations, whereas the Unscented Kalman [31] and Cubature Kalman [32] fil-
ters approximate the posterior PDF’s moments using weighted samples. On the other hand,
global approaches such as particle filters [19, 33] do not assume any distribution type for
the posterior but approximate it through sampling. Compared to the local approaches, the
global ones have the limitation of having a high computational costs owing to the sampling
techniques [29]. The next sections review the Kalman filter and its closed-form solutions, the
Bayesian Dynamic Linear Models and the Switching Kalman Filter which are specific types
of SSM.
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2.2.1 Kalman Filter

The Kalman Filter (KF) [28] is a type of Gaussian filters where the transition and observation
models are described by affine functions

xt = Axt−1 +wt, wt : W ∼ N (0,Q) ,
yt = Fxt + vt, vt : V ∼ N (0,R) ,

where the process wt and observation vt errors are additive, zero-mean independent and
identically distributed (i.i.d.) random variables, A and F are the transition and observation
matrices, Q and R are the covariance matrices for the process and observation errors.

The KF procedure, which consists in a prediction and an update step, provides a closed-
form solution for the posterior presented in Equation 2.2. The prediction step computes
the first two moments, E[Xt|y1:t−1] ≡ µt|t−1 and cov(Xt|y1:t−1) ≡ Σt|t−1, for the prior
Xt|y1:t−1 ≡ Xt|t−1 ∼ N (µt|t−1,Σt|t−1), whereas the update step computes the posterior
mean vector and covariance matrix for the hidden states Xt|t ∼ N (µt|t,Σt|t) using

Prediction step:
µt|t−1 = Aµt−1|t−1,

Σt|t−1 = AΣt−1|t−1Aᵀ + Q,
Update step:

µt|t = µt|t−1 + Ktrt,
Σt|t = (I−KtF) Σt|t−1,

rt = yt − FΣt|t−1,

Kt = Σt|t−1FᵀG−1
t ,

Gt = FΣt|t−1Fᵀ,

where µt−1|t−1 and Σt−1|t−1 are the posterior mean vector and covariance matrix at time t−1,
and I is the identity matrix having the same size as Σt−1|t−1, Kt is the Kalman gain matrix,
and Gt is the innovation covariance matrix. The KF’s equations can be summarized by a
filter operator defined as

(µt|t,Σt|t,Lt) = Filter(yt,µt−1|t−1,Σt−1|t−1,A,F,Q,R), (2.3)

where yt is the observation vector and Lt is the likelihood obtained from

Lt = N (yt; Fµt|t−1,FΣt|t−1Fᵀ + R). (2.4)
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The following section reviews the Bayesian Dynamic Linear Model which is a special type of
linear Gaussian filter as well as illustrates its applications in SHM.

2.2.2 Bayesian Dynamic Linear Models

Bayesian Dynamic Linear Models (BDLM) [20, 21] is a type of linear Gaussian filters where
the hidden state vector xt and model matrices {A,F,Q,R} are built from generic subcom-
ponents. Each subcomponent i has its own set of predefined xit and {Ai,Fi,Qi,Ri} from
which the global hidden state vector and matrices are assembled.

The BDLM’s subcomponents can be categorized into three groups including baseline, pe-
riodic and autoregressive ones. For SHM applications, the baseline subcomponents model
the evolution of the irreversible patterns for the quantity of interest without external effects.
There are three typical baseline subcomponents namely the local level (LL), local trend (LT)
and local acceleration (LA) [20]. The local level one is suited for modeling data that has
a zero-value speed (Figure 2.1a), whereas the local trend is used to model data displaying
a locally constant speed (Figure 2.1b), while the local acceleration can capture a locally
constant acceleration (Figure 2.1c). The periodic subcomponents are used to model recur-
rent patterns. A first periodic subcomponent uses the Fourier’s representation for modeling
harmonic patterns, while the Kernel regression (KR) [34] models non-harmonic ones. The
autoregressive (AR) subcomponent models the residuals that cannot be captured by other
subcomponents. For evaluating a model’s performance, it is important to check whether the
autoregressive hidden state has a zero mean and a constant variance. Such a case typically
indicates that the model subcomponents are adequately capturing the underlying patterns
in the data. Otherwise, for non-zero mean or non-constant variances, there are typically
patterns left unexplained in the AR term indicating that the model can be improved.

Typically, the prior knowledge for the initial hidden states x0 is predefined by users, and the
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y

(a) Local level

−1
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Time

y

(b) Local trend

−1
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Time

y

(c) Local acceleration

Figure 2.1 Three synthetic time series having different baselines, but sharing the same periodic
pattern. The red line presents the data, while the blue line presents the baseline.
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set of parameters P involved in the definition of the model matrices can be estimated either
using optimization techniques such as the maximum likelihood (MLE) and the maximum a
posteriori estimation (MAP) [27, 35], or through Bayesian estimation methods [27] such as
Markov chain Monte Carlo (MCMC) [36] or the Laplace approximation [37]. In addition, the
Gaussian Multiplicative Approximation (GMA) [38] method can estimate the autoregression
coefficient for the AR subcomponent by modeling it as a hidden state, and the Approximate
Gaussian Variance Inference (AGVI) method [7] allows the process error’s variances and
covariances to be estimated online as hidden states.

BDLM can take into account linear dependencies between a target variable and multiple
explanatory variables. For example, consider the effects of a reservoir’s water level and the
air temperature on a dam’s displacement. For taking them into account, the explanatory
variables first need to be decomposed into their own hidden states, then the relevant hidden
states are included in the hidden state vector for the target variable. The state-based regres-
sion component [38] allows to model nonlinear dependencies with respect to the explanatory
variables’ values. Detailed descriptions about modeling dependencies in BDLM can be found
in [20] and [38].

Figure 2.2 shows a dataset from the international dam forecasting Benchmark Workshop
organized by the International Commission of Large Dams (ICOLD) [11]; it includes data
from an inverted pendulum measuring a dam’s displacement, the reservoir’s water level, and
the air temperature. The task consists in predicting the pendulum data for the test set
from 2013-2018 using the water level and temperature as explanatory variables. The BDLM
model for this task is provided in [6], here we summarize it to show the capacity as well as the
limitations of the existing method. For considering the dependencies with the pendulum data,
the water level displayed in Figure 2.2b is decomposed into a mean-centered component xWL,1

and an average long-term trend xWL,2 as presented in Figure 2.2c, and the moving-averages
(xT−MA) of temperatures as presented in Figure 2.2d are calculated to represent the lag-effect
in temperature changes.

The explanatory components, i.e., xWL,1, xWL,2 and xT−MA, are then used to build the hidden
state vector of the dam response as

xt = [xL xKR φ1
tx

WL,1︸ ︷︷ ︸
xD1

φ2
tx

WL,2︸ ︷︷ ︸
xD2

φ3x
T−MA xAR]t,

where xL, xKR and xAR are the predefined hidden states for the local level (LL), Kernel regres-
sion (KR) and autoregressive (AR) subcomponents; φ1

t , φ
2
t and φ3 are the regression coefficients

which define the contributions of the explanatory components on the target variable dam’s
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Figure 2.2 Dataset from the international Benchmark Workshop organized by the Interna-
tional Commission of Large Dams (ICOLD) [11], (a) inverted pendulum, (b) raw reservoir’s
water level, (c) components extracted from the raw reservoir’s water level, and (d) moving-
averages for air temperature.

displacement. Note that φ1
t and φ2

t are modelled by the state-based regression component [38],
and their values can change as a function of the explanatory components allowing to model
nonlinear dependencies with respect to the water level, while φ3 is constant so that it only
models a linear dependency with respect to the air temperature.

Figure 2.3 shows the predictions, hidden states as well as their relative importance for the
pendulum dataset. The ability of BDLM to provide interpretable results, i.e., decomposing
time series data into subcomponents gives useful insights for engineers about the underlying
baseline structural condition without external effects. However, the key limitation of BDLM
is that the exploration process in order to find the best set of explanatory components as
presented in the abovementioned example needs to be hand-crafted for each dataset. This
is a time-consuming task that requires expert knowledge which limits the BDLM’s ability to
scale to large datasets. The BDLM presented in this section can only model a single regime;
the next section presents the Switching Kalman Filter (SKF) [22] which can use multiple
BDLM to model nonstationary dynamic systems.



11

2000 2006 2012 2018

−20

0

20

Time

x
L

(a)

2000 2006 2012 2018
-2

1

4

Time

x
D
1

(b)

2000 2006 2012 2018

-10

5

20

Time

x
D
2

(c)

2000 2006 2012 2018

−20

0

20

Time

x
A
R

(d)

2000 2006 2010 2013 2016 2018

-20
-10

0
10

ForecastTraining

Time

C
B
2

[m
m

]

(e) x
D 2

x
KR

x
AR

x
T−

MA
7

x
D 1

x
T−

MA
14

x
T−

MA
10

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
co

nt
rib

ut
io

n

(f)

Figure 2.3 Hidden state estimation from BDLM model for the CB2 pendulum dataset, (a)
level component, (b) contribution of the water level’s average long-term trend xWL,2 of the
water level, (c) contribution of the water level’s mean-centered component xWL,1, (d) autore-
gressive component, (e) predictions on the validation and test sets, (f) relative importance
of each component. The figures are reused from [6].
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2.2.3 Switching Kalman Filter

The Switching Kalman Filter (SKF) [22] is a variant of the Kalman filter used in nonstation-
ary scenarios where the underlying system dynamics can switch between different regimes.
Figure 2.4 shows a time series displaying two distinct regimes, the first one has a zero-value
speed, whereas the second one has a constant speed. The SKF method allows to model
non-stationary data having multiple regimes like in this example. Lets consider a discrete
regime state variable st ∈ {1, 2, · · · , S}, where S is the number of regimes. At a time step t,
the SKF maintains S models where each one has its own hidden state vector. When these
models transit to the next time step t+ 1, they can either stay in their original regime state
or transit to any others. With two regimes as displayed in Figure 2.4, the model transitions
from the time step t to t+ 1 are described as

Model 1: st = 1→ st+1 = 1 or st = 1→ st+1 = 2,
Model 2: st = 2→ st+1 = 2 or st = 2→ st+1 = 1.

(2.5)

-1

0

1

2
Regime #1 Regime #2

Time

y

Figure 2.4 Time series with two regimes where the first one has a constant trend and the
second one has a linear positive trend. The blue line presents the baseline.

Let the subscripts i and j represent the state st−1 = i at time t− 1 and st = j at time t, and
i(j) denotes the current state st = j given the past state st−1 = i. Each model transition
as presented in Equation 2.5 leads to a different hidden state vector X i(j)

t|t ∼ N (µi(j)t|t ,Σ
i(j)
t|t )

where its mean vector and covariance matrix are defined by

(µi(j)t|t ,Σ
i(j)
t|t ,L

i(j)
t ) = SKF-Filter(yt,µit−1|t−1,Σi

t−1|t−1,Ai(j),Fi(j),Qi(j),Ri(j)), (2.6)

where the filter operator and the likelihood Li(j)t are defined in Equations 2.3 and 2.4, and
{Ai(j),Fi(j),Qi(j),Ri(j)} are the model matrices defining the transition. After the transition
at each time step, the number of models increases from S to S2 so that a collapse step is
needed in order to keep the number from growing exponentially.

In order to maintain only S models globally at each time, the collapse step uses the Gaussian
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Mixture reduction [39] to combine S filtering models arriving at a same regime into a single
model. The collapse operator

(µjt|t,Σ
j
t|t, π

j
t|t) = Collapse(µi(j)t|t ,Σ

i(j)
t|t ,M

i(j)
t−1|t), (2.7)

is defined by the following equations

µjt|t = ∑
iµ

i(j)
t|t Wi(j)

t−1|t,

Σj
t|t = ∑

i

[
Wi(j)

t−1|t · (Σ
i(j)
t|t + mmᵀ)

]
,

m = µ
i(j)
t|t − µ

j
t|t,

Wi(j)
t−1|t = Pr(st−1 = i|st = j,y1:t) = Mi(j)

t−1,t|t/π
j
t|t,

πjt|t = ∑
i M

i(j)
t−1,t|t,

Mi(j)
t−1,t|t = Pr(st−1 = i, st = j|y1:t) = Li(j)

t ·Zi(j)·πi
t−1|t−1∑

i

∑
j
Li(j)

t ·Zi(j)·πi
t−1|t−1

,

(2.8)

where µjt|t and Σj
t|t are the mean vector and covariance matrix for the posterior Xj

t|t ∼
N (µjt|t,Σ

j
t|t) which is a mixture PDF describing the state st = j, Wi(j)

t−1|t is the regime switching
probability, Mi(j)

t−1,t|t is the joint probability, πit−1|t−1 and πjt|t are the marginal probabilities of
st−1 = i and st = j, and Zi(j) is the prior probability of transitioning from a regime i at time
t− 1 to a regime j at time t.

Figure 2.5 illustrates the SKF’s filtering and collapse steps for a case involving two regimes.
In the context of SHM, if we consider these two regimes as normal and abnormal, the SKF
allows quantifying the probabilities of regime switches (st = 1 → st+1 = 2 and st = 2 →
st+1 = 1) which can be used as a proxy indicating the presence of anomalies. In a more
advanced decision making framework relying on reinforcement and imitation learning [40,41],
the probabilities are part of the state vector used by virtual agents in order to trigger alarms.

2.3 Neural Networks

Neural networks (NN) are a class of mathematical models loosely inspired by biological
neurons [24]. For a supervised learning problem, the objective of a NN is to approximate a
function y = g(x,θ) given the data D = {xi,yi}D

i=1, where D is the number of observations,
xi ∈ RX are the input features, yi ∈ RY are the observations, and θ are the neural network’s
parameters. During training, these parameters θ are adjusted to minimize the difference
between the model’s predictions ŷ and the actual target values y.

An architecture refers to the structure of a neural network that defines how its nodes and
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Figure 2.5 Switching Kalman Filter filtering and collapse steps for a case involving two
regimes. The number of models increases from 2 to 4 after the filtering step, while the
collapse step reduces and keeps 2 models at each time.

layers are connected to each other. Figure 2.6 presents a representation of a simple NN where
the nodes are represented by circles, and the connections between nodes are represented by
arrows. Each node has an associated bias term b, and a connection is associated with a weight
parameter w for determining its strength. NN’s nodes are typically organized into layers.
The most common layers are the input layer, hidden layers, and output layer. In the simplest
setup, data is fed into the input layer, processed through the hidden layers, and returns the
output. There are various types of NN’s architectures where each is best suited for a specific
type of data. This section first reviews several popular architectures namely the feedforward,
recurrent, convolutional and transformer neural networks, then reviews common algorithms
for training them.

Input layer

Hidden layer

Output layer

Figure 2.6 Representation of a simple neural network where the circle represents a node and
the arrow represents a connection between two nodes.
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2.3.1 Neural Network Architecture

Fully Connected Feedforward Neural Networks

Fully connected feedforward neural networks (FNN) [23,24] is one of the fundamental archi-
tectures. It consists in an input layer x ∈ RX, one or multiple hidden layers z(j), and an
output layer z(O) ∈ RY, where X and Y are the numbers of input and output, and (O) indicates
the output layer. Figure 2.7a presents a FNN where the input and the hidden layer both
have two nodes, and the output layer has a single node. In FNN, all the nodes between two
consecutive layers are connected. The hidden unit zi is the weighted linear combination of
the input units as defined in

z1 = x1w
(0)
1,1 + x2w

(0)
2,1 + b

(0)
1 ,

z2 = x1w
(0)
1,2 + x2w

(0)
2,2 + b

(0)
2 ,

(2.9)

where w is the weight and b is the bias parameter, and (0) represents the input layer.
The hidden unit zi is transformed by a nonlinear activation function φ(·) to obtain the
corresponding activation unit ai as

ai = φ(zi).

There are various kind of activation functions such as the Rectified linear unit (ReLU),
Hyperbolic tangent (tanh) and sigmoid (σ). These activation functions allow NN to model
complex nonlinear relationships. Figure 2.7b presents an equivalent representation of the
FNN presented in Figure 2.7a, where the activation units a are shown explicitly. Note
that there is no weight parameter associated with the connection from the z to a. In this
thesis, when using the representation showing only the hidden states z, it is implied that the
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Figure 2.7 Equivalent representations of a single-hidden-layer fully connected feedforward
neural network where (a) only the hidden states z, and (b) both hidden states z and activa-
tions units a are shown.
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activation functions are also applied.

The output z(O) is calculated as the weighted sum of the previous layer’s hidden units using

z(O) = w
(L)
1 a1 + w

(L)
2 a2 + b(L), (2.10)

where (L) represents the last hidden layer. The relationship between the output hidden states
z(O) and the observations y is described by the observation equation

y = z(O) + v,

where v is an error term representing both observation and prediction errors. Extending
from a one-hidden-layer FNN in Figure 2.7, Figure 2.8 presents a FNN having L hidden
layers where each has A units such that z(i) ∈ RA. For this network, Equations 2.9 and 2.10
can be generalized and written in their matrix forms to define the hidden states of the ith

hidden layer with i = 1 : L, and the output vector z(O) as

z(i) = W(i−1)a(i−1) + b(i−1),

z(O) = W(L)a(L) + b(L),
(2.11)

where W(i−1) ∈ RA2 , W(L) ∈ RA×Y, b(i−1) ∈ RA, and b(L) ∈ RY are the weight matrices and
bias vectors.

Time series data is inherently sequential such that the temporal dependency plays an impor-
tant role. However, FNN treat each instance {xt,yt} independently where each input xt is
passed through the FNN presented in a compact form in Figure 2.8b to obtain the output
yt without considering the connections between the observations yt at different time steps.
The next section reviews the recurrent neural networks which are designed to consider these
temporal dependencies.

Recurrent Neural Networks

Recurrent neural networks (RNN) [23,24] are designed to analyze sequential data while taking
into account the temporal dependencies. Figure 2.9 presents a time-unrolled representation
of a one-hidden-layer RNN consisting in an input layer x ∈ RX, one hidden layer z ∈ RA,
and an output layer z(O) ∈ RY; where X, A and Y are the sizes for the input, hidden states,
and the output, respectively. At each time step t, a RNN is similar to the FNN presented in
Figure 2.8b except for the additional recurrent connections between consecutive time steps.
These connections are defined between the output and the next time step’s hidden states
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Figure 2.8 The (a) full representation of a multi-hidden-layer FNN where each node represents
a unit, and the arrow between any two nodes represents the forward connection, and (b) the
equivalent compact representation of the same network where each node represents a vector,
and θ = {w, b}. The figures are reproduced from [12].

(z(O)
t−1 and zt), and the hidden states at two consecutive time steps (zt−1 and zt) as presented

by the arrows connecting these variables in Figure 2.9.

The role of the recurrent connections is to use the information from the previous time step
t − 1 (z(O)

t−1 and zt−1) to estimate the hidden states zt at the current time t. The RNN
presented in Figure 2.9 is defined by the following recursive equations

zt = W(0)xt + Uat−1 + Hz(O)
t−1 + b(0),

at = φ(zt),
z

(O)
t = W(L)at + b(L),

(2.12)

where W(0) ∈ RA×X, U ∈ RA2 , and H ∈ RY2 are the weight matrices associated with the
input xt, the activation units at−1 and the output z(O)

t−1, φ(·) is an activation function, and
W(L) ∈ RA×Y and b(L) ∈ RY are the weight matrix and bias vector for the last layer (L).

There are two RNN’s variants in which either one of the two recurrent connections is ab-
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Figure 2.9 The time-unrolled representation of a single-hidden-layer RNN. The arrows depict
the casual direction or casual relationship between variables as described in Equation 2.12.

sent [24]. The RNN’s variant having only the output-to-hidden recurrent connection (z(O)
t−1

and zt) has a limited learning capacity because only the information from the output z(O)
t−1

is propagated forward to the following time steps [24]. The reason is that z(O)
t−1 is typically

of low-dimension, e.g., one dimension for univariate time series, so that it cannot store much
information. On the other hand, the RNN’s variant having only the hidden-to-hidden re-
current connection (zt−1 and zt) can store more information because the hidden states z is
a high-dimentional vector. However, this variant still lacks the direct connections with the
past outputs. In practice, a RNN having both the hidden-to-hidden and output-to-hidden
connections is more flexible and powerful than its two variants [24].

Figure 2.10 presents a one-hidden-layer RNN using the teacher forcing setup [24] in which
the output-to-hidden recurrent connection uses the observations yt−1 to estimate the hidden
states zt instead of using the output hidden states z(O)

t−1 as it is the case for the RNN presented
in Figure 2.9. In many cases, teacher forcing allows for a more stable and faster training [42],
and it helps to avoid the accumulation of errors that may occur when the model relies on its
own predictions [43]. However, if a model is trained with teacher forcing and is later used
without it for prediction, there may be issues caused by the mismatch between how it was
trained and used during forecasting.

Figure 2.11 presents a bidirectional RNN [23, 24] employing two separate RNN models, one
moving forward (from t = 1 to t = T), and another moving backward in time (from t = T
to t = 1), where T refers to the last training time step. The hidden state vector zt for
the bidirectional RNN at the time step t is a concatenation of the hidden states from both
the forward zft and backward zbt models. The idea behind the bidirectional RNN is that
the model needs to access both the past and future information in order to produce the
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Figure 2.10 The teacher forcing setup for RNN where the output-to-hidden recurrent con-
nection is defined between the observations yt−1 and the hidden states zt.

prediction at the current time t. This model is useful in cases such as natural language
processing (NLP) where a model needs to understand the context of the whole sentence for
providing predictions. There is a potential concern with bidirectional RNN called future
information leakage, where information from the future indirectly influences the prediction
at the current time step. The typical one-directional RNN only uses past information, i.e.,
the observations y1:t−1 up to the time step t − 1 to predict the current observations yt so
that it is not affected by future information leakage.
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Figure 2.11 Time-unrolled representation of a bidirectional RNN where two separate RNN
models are employed at the same time, one moves forward and the another moves backward
in time.
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The abovementioned RNN models are shallow in the sense that they have only one hidden
layer. Deep RNN which consist in multiple hidden layers can be created in different ways
as presented in [24, 44]. Stacked RNN [24] are a popular type of deep RNN where multiple
recurrent layers are stacked on top of each other. Figure 2.12 presents the representation of
a stacked RNN having L hidden layers.
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Figure 2.12 (a) Time-unrolled, and (b) compact representation of a stacked RNN where the
double line arrow represents recurrent connections. Note that for the first hidden layer, the
double arrow implies the both hidden-to-hidden and output-to-hidden recurrent connections,
where for other hidden layers it implies only the hidden-to-hidden connection.

In practice, the RNN presented in this section experience issues with vanishing and exploding
gradients [23, 24, 45] when learning dependencies over long sequences. The next sections
review two RNN’s architectures namely Long Short-Term Memory and Gated Recurrent
Units neural networks which are designed to overcome this problem.

Long Short-Term Memory

Long Short-Term Memory (LSTM) neural networks [46] use a gating mechanism to automat-
ically select the dependency information and store it in its memory. There are two kinds of
memory in a LSTM cell, the hidden states h encode the short-term dependency information,
whereas the cell states c store the long-term one. A LSTM cell consists in four gates including
the forget, input, output and candidate gates, {f , i,o, c̃} ∈ RA, the cell states c ∈ RA, and
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the hidden states h ∈ RA, where A is the number of hidden units. Figure 2.13a presents a
LSTM cell where all the operations in it can be summarized by the following LSTM recursive
equations

ft = σ(Wfxt + Ufht−1 + bf ), (2.13a)
it = σ(Wixt + Uiht−1 + bi), (2.13b)
ot = σ(Woxt + Uoht−1 + bo), (2.13c)
c̃t = tanh(Wcxt + Ucht−1 + bc), (2.13d)
ct = ft � ct−1 + it � c̃t, (2.13e)
ht = ot � tanh(ct), (2.13f)

where xt ∈ RX is the input vector, {Wf ,Wi,Wo,Wc} ∈ RX×A are the weight matrices for the
input, {Uf ,Ui,Uo,Uc} ∈ RA×A are the weight matrices for the hidden states, {bf , bi, bo, bc} ∈
RA are the bias vectors, σ(·) is the logistic sigmoid function and tanh(·) is the hyperbolic
tangent function, and � denotes the element-wise multiplication operation.

A LSTM cell takes the input xt and the hidden states ht−1 from the previous time step as
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× ×
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Figure 2.13 (a) The representation of a LSTM cell, and (b) the compact form of a stacked
LSTM where single-line arrows present forward connections, and double-line arrows represent
the recurrent connections.
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inputs (Equations 2.13a-2.13d), and outputs the hidden states ht (Equation 2.14d) which are
then used to make the final predictions yt. The cell and the hidden states, ct and ht, are
updated at every time step in order to retain relevant information which is useful for current
and future predictions. The updating process for the cell states ct consists in two steps,
and is done using Equation 2.13e. The first step is to discard irrelevant information from
the previous cell states ct−1, by performing the element-wise product ft � ct−1. The forget
gate ft determines what information from the previous cell state ct−1 should be retained
or forgotten. The second step consists in including the new information into the cell states
ct by adding the element-wise product it � c̃t. The input gate it decides what information
from the candidate c̃t should be added to the cell state ct. The output gate ot controls what
information from the current cell state ct should be used to estimate the hidden states ht.
After updating the cell states ct, the hidden states ht are updated using Equation 2.14d.

Figure 2.13b presents a stacked LSTM having L hidden layers, each denoted by a rectangular
node. In each LSTM layer, all the operations presented in Equation 2.13 are carried. The
LSTM’s hidden state vector ht is equivalent to the traditional RNN one zt presented in
Figure 2.9 and Equation 2.12, but the process to estimate it is more complex. In addition,
LSTM maintains an internal memory, i.e, the cell state ct, and both ht and ct are propagated
to the next time step t + 1, whereas only the hidden state zt is propagated to t + 1 in the
traditional RNN.

Gated Recurrent Units

Gated Recurrent Units (GRU) neural network [47] is a simpler variant of LSTM. Compared
to LSTM, GRU uses fewer gates and discard the internal memory ct. Figure 2.14a presents
the GRU’s cell where all operations within it are defined by the following equations

zt = σ(Wzxt + Uzht−1), (2.14a)
rt = σ(Wrxt + Urht−1), (2.14b)
h̃t = tanh

[
Whxt + Uh(rt � ht−1)

]
, (2.14c)

ht = (1− zt)� ht−1 + zt � h̃t, (2.14d)

where xt is the input vector, {W,U} are the weight matrices.

GRU employs the update zt and reset rt gates to control the information from the current
input and the hidden states at the previous time steps. The reset gate decides what infor-
mation from the hidden state ht−1 at the previous time step should be carried to the current
time step. The GRU architecture combines the forget and input gates into a single update
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Figure 2.14 (a) GRU cell, and (b) compact representation of a stacked GRU where the double
line arrow represents recurrent connections.

gate zt that decides about the relative contribution of the candidate hidden states h̃t and
the hidden state ht−1 at the previous time step. Figure 2.14b presents a stacked GRU having
L hidden layers, each denoted by a rectangular node. A comprehensive comparison between
LSTM and GRU can be found in [47]. In practice, LSTM and GRU models have been shown
to offer a similar performance [23]. Note that the teacher forcing and bidirectional setups for
a RNN presented in this section can also be applied to LSTM and GRU.

Other architectures

Convolutional neural networks (CNN) [48] is an architecture designed to process grid-
structured data such as images or time series. An image can be regarded as a 2D grid
of pixels, while a time series can be considered a 1D sequence of data with each data point
corresponding to a specific time step on a grid [23, 24]. For images, CNN uses 2D convolu-
tions [24] that slide over the input data to learn and recognize features such as edges, corners,
and textures, while for univariate time series, 1D convolutions are used to learn temporal
patterns. Similarly to RNN, the original CNN architectures also had difficulties in learning
long sequences in time series [49]. To address this problem, modifications to CNN have been
proposed such as the WaveNet [49] which uses dilated convolutions for increasing the model’s
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receptive field, while reducing computational and memory requirements, and the Temporal
Convolutional Network [50] which uses both dilated convolutions and residual connections.
CNN is also combined with RNN-based models in various ways to take advantage of both
methods as presented in [51–53].

Transformers [54] is an architecture originally developed for natural language processing
(NLP) where its applications have been found in large language models such as ChatGPT.
The key component of Transformers is the self-attention mechanism [54] which weighs the
relative importance of input data to the current prediction, allowing to capture dependencies
within data. Various studies have been proposed to adapt the original architecture for time
series applications. To this end, modifications can be made in either one or all of the following
steps: (1) data preprocessing, (2) positional embedding, (3) Encoder, and (4) Decoder [55].
Autoformer [56] has proposed using a trend-seasonality decomposition for processing the in-
put sequence. The self-attention mechanism of Transformers ignores the sequential nature
of data which is important in time series so that adding positional encoding to the input
data is needed to give the model a sense the temporal order. For this reason, Informer [1]
proposed using the timestamp embeddings, whereas Autoformer [56] introduced the learned
positional embeddings. With the objective to reduce the O(L2) time and memory complexity
of the original Transformer’s encoder layer, LogTrans [57], Pyraformer [58], Informer [1] have
proposed different variants to the original self-attention mechanism to reduce the complexity,
where L is the input sequence’s length. Table 2.1 compares the complexity among several
Transformer-based models as well as with the LSTM architecture. For the decoder layer, In-
former [1] and Pyraformer [58] have proposed using the direct multi-step forecasting strategy
in order to generate the forecast’s sequence, instead of recursively generating one-step-ahead
forecasts as in the original architecture, for improving the speed. Temporal Fusion Trans-
formers (TFT) [59] have proposed modifications to all of these four steps, specifically, it
combined sequence-to-sequence and attention-based temporal processing, variables selection,
gating mechanisms, interpretable multi-head attention, and temporal self-attention decoder
to achieve state-of-the-art performances on several time series forecasting tasks. Transformers
have been shown to outperform RNN-based models for time series applications [1,57,59–61].
Similarly to the idea of bidirectional RNN, Devlin et al. [62] proposed a bidirectional approach
to Transformer for solving a language understanding problem.

Although the CNN and Transformer-based methods presented in this section have been shown
to achieve a good performance, the overwhelming predominance of RNN for time series mod-
eling makes it the best suited choice as a first architecture to be developed for the Tractable
Approximate Gaussian Inference method that will be presented in Section 2.3.3. Moreover,
note that advanced architectures such as TFT themselves build upon a the LSTM architec-
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ture. The following section reviews methods for training the neural network’s architectures
that have been presented in this section.

Table 2.1 Comparison of the complexity among Transformer-based models and the LSTM
architecture. Reproduced from [1].

Training Testing
Method Time Memory Steps
Informer O(L logL) O(L logL)) 1
Transformer (original) O(L2) O(L2) L
LogTrans O(L logL) O(L2) 1
LSTM O(L) O(L) L

2.3.2 Training Neural Networks

In supervised learning problems, the objective of neural networks is to approximate a function
y = g(x;θ), where x is the input vector, y is the observation vector, and θ = {w, b} are
the parameters which contain both the weights and biases. In a broad context, training a
NN consists in adjusting θ to minimize the difference between its predictions and the actual
observations. For all the architectures presented in Section 2.3.1, the parameters θ can
be either modelled as deterministic values, or with distributions leading to Bayesian neural
networks (BNN). This section reviews common algorithms used to train both deterministic
and Bayesian NN.

Deterministic NN estimate a single value for each parameter θi, then use them to make point
predictions ŷ so that the epistemic uncertainties associated with θ are not taken into account.
Note that deterministic NN can also be used to estimate predictive uncertainties, this will
be covered later in this section. Gradient descent using backpropagation [63] is the most
common method for training NN. The first step consists in defining an objective function as
an average over a batch of B observations as

J(θ) = 1
B

B∑
i=1

` (g(xi;θ),yi) ,

where ` (g(xi;θ),yi) is the loss function evaluated for each observation yi. With point fore-
casts, the loss function takes a single value, and popular choices for regression problems are
the Mean Squared Error (MSE) and Mean Absolute Error (MAE). NN are prone to over-
fitting where they perform well on a training data, but poorly on unseen test sets [24]. To
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address this issue, a regularization term Ω(θ) is typically added to the objective function
such that

J(θ) = 1
B

B∑
i=1

` (g(xi;θ),yi) + αΩ(θ),

where α ∈ [0,∞] is a hyperparameter that controls the contribution of Ω(θ). L2- and L1-
regularizations are the most common choices where Ω(θ) is defined by Ω(θ) = 1

2w
ᵀw and

Ω(θ) = ∑
i |wi|, respectively, with w are the NN’s weights. Beside this, other techniques

such as early-stopping, dropout, and data augmentation are also used to prevent overfitting
in NN [23,64]. The second step consists in using the gradient backpropagation to estimates the
partial derivatiave ∇θJ(θ) of the objective function J(θ) with respect to the parameters θ.
The last step involves using gradient-based optimization algorithms to learn the parameters
θ.

Stochastic gradient descent (SGD) and its variants are the most common optimization al-
gorithms used for training NN [24]. Consider a batch of B independent and identically
distributed training data {xi,yi}B

i=1 ⊂ D. The parameters θ are adjusted for each batch by
moving in the direction of the gradient so that

θ := θ − ε∇θJ(θ),

where ε is the learning rate. When B = 1, we have the online optimization, while using B
equal to the total number of training instances results in the complete data batch optimization
where both of these extreme cases are typically computationally expensive [24]. In order to
take advantage of parallel computing, one typically chooses B between these two values to
maximize the usage of computing resources available [65]. Momentum [66] and Nesterov
momentum [67] are SGD’s variants which use a momentum term that accumulates past
gradients in order to modify the current parameter updates for accelerating the convergence.
Adaptive learning rate methods such as Adaptive Gradient Algorithm [68] and Adam [69]
allow to change the learning rate ε throughout training.

Unlike deterministic NN, BNN place a prior distribution over the parameters f(θ) so that
they take into account the epistemic uncertainties. The goal of BNN is to estimate the
parameter’s posterior PDF f(θ|D) using the Bayes’ theorem as

f(θ|D) = f(D|θ) · f(θ)
f(D) ,

where f(D|θ) is the likelihood, and f(D) =
∫
f(D|θ) · f(θ)dθ is the evidence. This posterior
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can be factored in the predictions’ uncertainties through the posterior predictive PDF where

f(y|D) =
∫
f(y|θ) · f(θ|D)dθ, (2.15)

so that the output of BNN are distributions rather than just point estimates as it is the case
for deterministic NN. However, solving the integrals in Equation 2.15 and when calculating
the evidence f(D) is typically intractable for NN given the large number of parameters
[24]. Therefore, methods such as Laplace approximation [70] and Variational inference (VI)
[71–73] have been proposed to approximate the posterior f(θ|D). The Laplace approximation
assumes that the posterior f(θ|D) can be represented as a multivariate Gaussian distribution
θ ∼ N (θ∗,H−1) where θ∗ are the MAP estimates optimized using gradient descent, and H
is the Hessian of the negative loglikelihood −log(f(D|θ∗)) evaluated at θ∗. As the inverse of
the full Hessian matrix is infeasible for large NN, diagonal covariance structures are typically
used [74]. Variational inference (VI) approximates the intractable posterior f(θ|D) by a
known type of distribution qη(θ) with hyperparameters η, f(θ|D) ≈ qη(θ). The task consists
in learning η such that qη(θ) best approximate f(θ|D). This can be done by minimizing
the KL-divergence dKL(qη(θ)||f(θ|D)) which measures the dissimilarity between the two
distributions. In practice, this quantity cannot be optimized directly because the posterior
f(θ|D) is unknown. Instead, we can maximize the evidence lower bound (ELBO) which can
be obtained using a Monte Carlo approximation. VI then obtains the partial derivatives
of the ELBO with respect to each parameter through backpropagation, and uses gradient
descent to optimize η. Training NN using VI is typically more computationally expensive
than deterministic ones because for each batch of data, multiple passes are required in order
to calculate the ELBO using Monte Carlo approximation. As the data becomes larger, only
a limited number of passes are allowed leading to a limited performance [74].

Methods such as Monte Carlo dropout (MC-dropout) [75] and deep ensemble [76] use al-
ternative approaches to BNN. These methods enable deterministic NN to provide predictive
uncertainties with simple adjustments. Note that the parameters θ are still considered as
having deterministic values so that their epistemic uncertainties are not taken into account.
Performing dropout in NN means randomly dropping a percentage of hidden units, i.e., set-
ting their associated weights to zero, according to a Bernoulli distribution. When using
dropout as a regularization technique, it is only used during training. MC-dropout [75] in-
stead uses dropout during test time in order to provide a set of N point forecasts for each
time step, where N is the number of test runs. The predictive distribution is estimated as the
empirical one from these point forecasts. MC-dropout has been applied to RNN-based neural
networks where dropout can either be only applied to the non-recurrent connections [77,78],
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to the LSTM cell states [79], or to all of the input, output and recurrent connections [75].
Deep ensemble [76] consists in combining the predictions from N independent deterministic
NN with different initial parameters θi where i = 1 : N, along with a random shuffling of the
training data. The predictions from these individual models are then used to make the final
predictions and to generate the predictive uncertainties. While MC-dropout trains only a
single NN, deep ensembles require training multiple ones so that it is more computationally
demanding. Both of these methods are straightforward and practical because one can use the
readily available deterministic NN without any significant modification, while still being able
to obtain the predictive uncertainties. However, their limitation is that they do not account
for the epistemic uncertainties associated the models’s parameters.

Deka [13] has compared the performance between the BNN models reviewed above on small
and large regression benchmarks [80]. As shown in Figure 2.15, most backpropagation-
based methods were outperformed by the Tractable Approximate Gaussian Inference (TAGI)
method that will be presented in the next section. Note that the PBP-MV method that was
able able to reach a higher accuracy is over three order of magnitudes more computationally
demanding.
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Figure 2.15 Comparison for the test log-likelihood and test RMSE for the Boston dataset
among various Bayesian neural network methods. The figures are reused from [13].

2.3.3 Tractable Approximate Gaussian Inference

Tractable Approximate Gaussian Inference (TAGI) [12] is an analytically tractable framework
for Bayesian neural networks (BNN). This section summarizes the principles behind TAGI
through a fully connected feedforward neural network (FNN) architecture. Training a BNN
using TAGI consists in two main steps: forward and backward. The forward step propagates
the uncertainties from the input layer and network parameters up to the output layer. The
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backward step employs a layer-wise recursive procedure to analytically infer the parameters
θ and the hidden states Z from the observations y.

Recall the full representation of a multi-hidden-layer FNN presented in Figure 2.8a, Fig-
ure 2.16 displays its compact representation where x is the input vector; z(j) and θ(j) =
{W (j),B(j)}, ∀j = 1 : L, are the hidden states and parameters of the jth hidden layer;
z(O) is the output vector; y is the observation vector; and L is the number of hidden layers.
TAGI considers the network’s input, output, hidden states as well as parameters as Gaussian
random variables such that X ∼ N (µX ,ΣX), Z ∼ N (µZ ,ΣZ), and θ ∼ N (µθ,Σθ).

x z(1) z(2) · · · z(L) z(O) yθ(0) θ(1) θ(2) θ(L-1) θ(L)

Figure 2.16 Graphical representation of a fully connected feedforward neural network. Black
arrows represent the network forward connections; red arrows represent the inference direc-
tions for the hidden states and for the parameters.

The jth hidden layer contains the hidden units z(j) and their activation units a(j) such that
a(j) = φ(z(j)), where φ(·) is an activation function. The forward step starts by passing
information from the input layer to the first hidden layer using

Z(1) = W (0)X +B(0), (2.16)

A(1) = φ(Z(1)), (2.17)

where θ(0) = {W (0),B(0)} are the parameters for the input layer. Equation 2.16 involves
two types of operations including additions and multiplications of Gaussian random vari-
ables. TAGI approximates the hidden states Z(1) as Gaussians whose moments are calcu-
lated exactly. In order to achieve that, it relies on the Gaussian multiplication approximation
(GMA) [12] to model the product of two Gaussian random variables by a Gaussian distribu-
tion whose exact mean and variance are calculated analytically as

E [X1X2] = µ1µ2 + cov(X1, X2),

cov(X3, X1X2) = cov(X1, X3)µ2 + cov(X2, X3)µ1,

cov(X1X2, X3X4) = cov(X1, X3) cov(X2, X4) + cov(X1, X4) cov(X2, X3)

+ cov(X1, X3)µ2µ4 + cov(X1, X4)µ2µ3

+ cov(X2, X3)µ1µ4 + cov(X2, X4)µ1µ3,

var(X1X2) = σ2
1σ

2
2 + cov(X1, X2)2 + 2 cov(X1, X2)µ1µ2 + σ2

1µ
2
2 + σ2

2µ
2
1.
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In addition, the output moments for the nonlinear activation function φ(·) in Equation 2.17
cannot be evaluated analytically. TAGI uses the local linearization of activation function
φ̃(·) [12] to obtain the output moments following

A(j) = φ(Z(j)) ≈ φ̃(Z(j)),

A(j) = J(j)(Z(j) − µ(j)
Z ) + φ(µ(j)

Z ),

µ
(j)
A ≡ E[A(j)] = φ̃(µ(j)

Z ),

Σ(j)
A ≡ cov(A(j)) = J(j)Σ(j)

Z J(j)ᵀ,

where Z(j) and A(j) are the hidden and activation units of the jth hidden layer, and J(j) =
diag(∇Zφ(µ(j)

Z )) is the diagonal Jacobian matrix of the transformation evaluated at µ(j)
Z .

Using these approximations allows calculating analytically the mean vector and covariance
matrix defining the PDFs for the hidden Z(1) ∼ N (µ(1)

Z ,Σ(1)
Z ) and activation units A(1) ∼

N (µ(1)
A ,Σ(1)

A ). Similarly, going from a jth layer to the subsequent j + 1th is done using
the same Equations 2.16 and 2.17, while replacing the input X by the activation units
A(j) ∼ N (µ(j)

A ,Σ
(j)
A ), and θ(0) by the parameters θ(j) ∼ N (µ(j)

θ ,Σ
(j)
θ ) of the jth layer. This

allows propagating the uncertainties from the input X and the parameters θ through the
network up to the output layer Z(O).

The relation between the output layer z(O) and the observations y is defined by the observation
equation

y = z(O) + v, v : V ∼ N (0,ΣV ), (2.18)

where v denotes the error term. The moments of the predictive distribution Y ∼ N (µY ,ΣY )
can be obtained following µY = µ

(O)
Z , ΣY = Σ(O)

Z + ΣV .

In the context of TAGI, inferring the hidden states and parameters means estimating the
conditional probability distributions f(z|y) = N (µZ|y,ΣZ|y) and f(θ|y) = N (µθ|y,Σθ|y).
The backward step first computes the posterior for the output Z(O) using the Gaussian
conditional equations

f(z(O) | y) = N (µZ(O)|y,ΣZ(O)|y),
µZ(O)|y = µZ(O) + Σᵀ

YZ(O)Σ−1
Y (y − µY ),

ΣZ(O)|y = ΣZ(O) −Σᵀ
YZ(O)Σ−1

Y ΣYZ(O) ,

(2.19)

where ΣYZ(O) = ΣZ(O) . This is depicted by the red arrow from y to z(O) in Figure 2.16.
The layer-wise recursive inference procedure is then applied to infer the hidden states and
parameters of each layer from the last to the first layer as presented by the red arrows in
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Figure 2.16. For maintaining the linear complexity with respect to the number of parameters
in the network, TAGI assumes diagonal covariance matrices for the hidden states and the
parameters, and relies on the conditional independence assumptions of hidden units between
layers, i.e., Z(j−1) |= Z(j+1) | z(j). The posterior distribution for the hidden states of each
layer Z(j) is estimated analytically using

f(z(j)|y) = N (µ(j)
Z|y,Σ

(j)
Z|y),

µ
(j)
Z|y = µ

(j)
Z + JZ(µ(j+1)

Z|y − µ
(j+1)
Z ),

Σ(j)
Z|y = Σ(j)

Z + JZ(Σ(j+1)
Z|y −Σ(j+1)

Z )Jᵀ
Z ,

JZ = cov(Z(j),Z(j+1))(Σ(j+1)
Z )−1,

(2.20)

where cov(Z(j),Z(j+1)) is the covariance between the hidden states of the jth and j+1th layers.
In parallel, the parameters θ(j) can be inferred using the same Equation 2.20 where the vari-
able Z(j) is replaced by θ(j). The calculations for obtaining the covariances cov(Z(j),Z(j+1))
and cov(θ(j),Z(j+1)), as well as other quantities in Equation 2.20 have been detailed in [12].

Notice that the use of diagonal covariance structures in TAGI for the parameters and hidden
states leads to underestimating the predictive uncertainties compared to the actual ones ob-
tained using Hamiltonian Monte-Carlo (HMC) [81] as presented in Figure 2.17. A weakly in-
formative prior is employed when initializing the hyperparameters for the first epoch {µ0

θ,Σ0
θ}

based on either He [82] or Xavier [83] approaches. In order to learn the parameters effi-
ciently, TAGI repeats the inference over multiple epochs, analogously to the empirical Bayes
approach [84], so that the posterior hyperparameters {µeθ|y,Σe

θ|y} at the eth epoch are used
as the prior hyperparameters for the next e+ 1th epoch.
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Figure 2.17 Comparison between TAGI with diagonal covariance structures and Hamiltonian
Monte-Carlo (HMC) for a 1D regression problem y = x3 + v. Re-used from [12].
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The performance of TAGI has been benchmarked on feedforward neural networks (FNN) [12],
convolutional neural networks (CNN), generative adversarial networks (GAN) [85], and rein-
forcement learning (RL) [86]. TAGI can theoretically be used with any existing NN architec-
ture to create the corresponding analytically tractable Bayesian one. However, this requires
developing the specific mathematical formulations for each new architecture. The next sec-
tion reviews several hybrid models that couple state-space models and neural networks.

2.4 Hybrid Models

This section reviews hybrid models that combine the state-space models (SSM) presented
in Section 2.2 and recurrent neural networks (RNN) presented in Section 2.3.1. Coupling
SSM and RNN allows to take advantage of both methods, but it is not a trivial task because
their respective inference procedure relies on different mechanisms. SSM are probabilistic
models which rely on Bayesian inference, whereas RNN typically optimizes their parameters
using backpropagation [63] and gradient descent (GD). Existing hybrid models rely on a mix
of these inference methods, i.e., the backpropagation for estimating the RNN’s parameters
and Bayesian inference for updating the SSM’s hidden states. Some studies have established
hybrid models by using RNN to either model nonlinear SSM’s transition and/or observation
equations, or define the SSM’s parameters. In [87–89], RNN are used to model the nonlinear
hidden states’ transitions, allowing their models to be non-Markovian. However, the common
limitation among methods using NN to parametrize the SSM’s nonlinear dynamic models is
that the marginal log-likelihood function is intractable so that they either rely on Monte Carlo
(MC) methods [88] or variational inference [87, 90] to approximate this function in order to
update their neural network parameters. In [90] and [4], the SSM transition and observation
models are kept to be linear which allows performing exact inference for the SSM’s latent
variables. The DeepState method [4] uses a global LSTM to learn from the whole dataset
and a local linear SSM for each time series. The global LSTM outputs the SSM’s time-
varying parameters defining the model matrices for each local SSM. In a different approach,
the deterministic exponential smoothing equations are used as a data processing tool for a
global LSTM [91]. The level and seasonality components are estimated for each time series,
and are used to normalize and deseasonalize data on-the-fly [91]. However, the use of the
deterministic form of exponential smoothing leads to point estimates for the baseline level
and trend components.
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2.5 Anomaly Detection

This section reviews anomaly detection methods for time series with the purpose to identify
suitable methods for structural health monitoring (SHM) applications. Although extensive
reviews have been conducted [92–96], the types of anomalies as well as the detection meth-
ods used in other fields are not always well suited for SHM. For example, SHM focuses
on monitoring the deterioration of structures over extended periods, spanning over years or
decades, while the computer science and signal processing fields are primarily concerned with
anomalies due to specific events typically occurring over a short time frame, but over large
databases.

Detecting anomalies in the context of SHM presents multiple challenges. The time series data
is typically affected by sensor noise, and contains repeated patterns caused by external effects
such as ambient temperature, water level or loading. Therefore, anomaly detection should
be conducted on the irreversible structural responses extracted from the raw data on which
the noise and reversible external effects have been removed. In addition, data commonly
contains a large number of missing values arising from sensor failures so that the methods
employed must be capable of handling such a practical reality. Furthermore, SHM needs
a tight control on the false alarm rate as evaluating structures after an alarm is expensive.
For example, if one wants to process the data from 1000 sensors with a daily acquisition
rate, even a single false alarm per sensor each year would lead to three false alarms a day.
This aspect is currently limiting the widespread application of SHM where too frequent false
alarms undermine its economic viability.

Anomaly detection methods can be categorized into supervised, semi-supervised, and un-
supervised ones based on the type of data used [95]. Supervised methods use labeled data
where the anomalies are known for training models to classify between normal and abnor-
mal events. By contrast, unsupervised methods can operate directly on unlabeled data, while
semi-supervised approaches only require labelled normal data for training, whereas the model
trained can be used to distinguish between normal and abnormal for unseen test data. In
SHM, labelled data with known anomalies is rarely available so that semi-supervised and
unsupervised methods are best suited.

Anomaly detection methods can also be grouped into the forecasting/reconstruction and
distanced-based categories [95]. The principle behind using forecasting methods for anomaly
detection is that if an observation yt ∈ R1 differs greatly from a model’s prediction ŷt,
|yt − ŷt| > τ , it should be categorized as an anomaly, where τ is a pre-defined threshold.
Prophet [97] is a regression method which belongs to this forecasting family. It can decompose
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a raw time series into three components including trend g(t), seasonality s(t) and holidays
h(t) using

yt = g(t) + s(t) + h(t) + εt, (2.21)

where εt is an error term. The trend model g(t) is used to describe the long-term non-periodic
components of data. There are two choices for this functions for modeling a saturating
growth and a growth that has a piece-wise constant rate. The seasonality component s(t)
uses the standard Fourier series to model periodic effects, whereas the holiday component
h(t) models the impact of holidays and special events. These components are defined by the
model’s parameters θ. The hyperparameters η that define the probability distributions for θ
are obtained as maximum a posteriori (MAP) estimates using optimization. Different sets of
the parameters {θi}N

i=1 are sampled from the obtained parameters distributions to generate
a set of forecasts {yit}N

i=1, where N is the number of samples. The predictive mean E[yt] and
standard deviation σyt are the empirical values obtained from the forecasts. For Prophet, the
threshold τ is set based on the confidence intervals’ probability context. We can note from
Equation 2.21 that Prophet is only suited for univariate cases.

Similarly to the forecasting approaches, reconstruction methods build models for observed
inputs xt ∈ RX, and anomalies are identified by comparing the model’s reconstruction x̂t and
xt, where X is the input dimension. Note that these methods have no forecasting capacity.
Autoencoders [98,99] belongs to the reconstruction family. The model consists of an encoder
and a decoder

zt = Encoder(wt,η), ŵt = Decoder(zt,θ), (2.22)

where zt is the latent variable vector, η and θ are the parameters for the encoder and decoder,
wt = {yt−h+1, · · · , yt} is the lookback window with a horizon W, and ŵt = {ŷt−W+1, · · · , ŷt}
contains the predictions forwt. The encoder compresses the inputwt into a lower dimensional
latent space zt, whereas the decoder uses this latent vector to reconstruct the input ŵt. An
autoencoder model is trained using labeled normal data, then is tested on unlabeled data
containing both normal and abnormal events so that this methods is a semi-supervised one.
An input window wt is considered as an anomaly if

et = ||wt − ŵt||2 > τ,

where || · ||2 represents the Euclidean distance, τ is a pre-defined threshold, and et is the
reconstruction error. In this case, we present the standard Euclidean distance but any types
of distance can be used. Note that Autoencoders are deterministic neural networks where
the parameters η and θ take deterministic values. Variational Autoencoders (VAE) [100] is
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another neural network architecture from the reconstruction method’s family. VAE is similar
to Autoencoders in terms of the encoder-decoder architecture as presented in Equation 2.22,
but VAE instead consider the latent variables zt as random variables. The encoder estimates
the distribution qη(zt|wt), whereas the decoder computes the conditional likelihood pθ(wt|zt).
A window wt is considered as abnormal if

pθ(xt|zt) < τ,

where τ is a pre-defined threshold. Both Autoencoder and VAE are suited for multivariate
cases as X ≥ 1.

Distanced-based anomaly detection methods identify abnormal events in data by measuring
dissimilarities or distances between a single or a window of data points. k-nearest neighbours
(kNN) [101,102] is a method that is originally developed for classification, but can also be used
for unsupervised anomaly detection. Given a current lookback windowwt = {yt−W+1, · · · , yt},
the Euclidean distances between all other windows can be calculated using dti = ||wt−wi||2.
The k-nearest neighbours to wt are the k windows that have k smallest distances dti. A
window wt is considered as an anomaly if

1
k

k∑
i=1

d2
ti > τ,

where τ is a predefined threshold. Matrix profile (MP) [103, 104] is another distance-based
method originally used in data mining which is capable of detecting regime switches as well
as patterned anomalies. For each window wt, MP calculates the distances dti between it and
all other windows, but only stores the smallest distance with the nearest neighbour in order
to form the MP vector. The locations of abnormal patterns are associated with the maxima
in the MP vector, whereas the locations of regime switches are linked with the minima of the
corrected arc curve constructed from from the MP vector.

Among the abovementioned methods, the Prophet, kNN, and MP are intended to be used
in an offline setup, employing the entire time series either for training (Prophet) or for
calculating the distances (kNN and MP). Theoretically, they can also be adapted for online
analysis where these models would need to be re-fitted each time after new data point becomes
available. This entails both a reduction in the performance and significantly increases the
computational cost. By contrast, the Autoencoder and VAE can operate online after having
learnt their parameters using the anomaly-free training set, making them more suited for
SHM applications.
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2.6 Conclusion

Bayesian Dynamic Linear Models (BDLM) and Switching Kalman Filter (SKF) are SSM-
based models that have been used in structural health monitoring to decompose raw data
about structural responses into interpretable components, as well as to detect anomalies,
giving useful insights for engineers. However, their limitation is that they require intensive
manual feature engineering for defining the models as presented in Section 2.2.2.

Recurrent neural networks (RNN), especially the Long Short-Term Memory (LSTM) and
Gated Recurrent Units (GRU), are the dominant neural network architectures used for time
series analysis. Their advantages is that they can automatically identify complex patterns
from data with a minimal setup. The Tractable Approximate Gaussian Inference (TAGI)
method has been shown to outperform other gradient-based methods in regression tasks.
However, TAGI has not been tested with the RNN architectures on time series data due to
the lack of a mathematical framework to do so.

Coupling SSM and RNN for taking advantage of both methods is not a trivial task because
SSM relies on Bayesian inference, whereas RNN parameters are typically optimized using
backpropagation and gradient descent. The development of Bayesian RNN models using the
TAGI framework will in turn allow the probabilistic coupling between RNN and SSM by
using Bayesian inference as the single inference mechanism.

In terms of anomaly detection, the resulting hybrid model will then enhance the scalability of
the SKF method presented in Section 2.2.3 while offering an online alternative to the existing
methods reviewed.
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CHAPTER 3 Analytically Tractable Bayesian Recurrent Neural Networks

3.1 Introduction

Recurrent neural networks (RNN) are predominant in time series analyses. Vanilla RNN
experience exploding and vanishing gradient which limits their ability for modeling long se-
quences [24]. Long Short-Term Memory (LSTM) [46] and Gated Recurrent Unit (GRU) [47]
neural networks are two advanced RNN-based architectures designed to overcome this lim-
itation, and able to model both long and short term dependencies enabling to model long
sequences. In their original forms, both LSTM and GRU are deterministic where they con-
sidering the model parameters as having fixed values and failing to take into account the
epistemic uncertainties. Various probabilisitic LSTM and GRU models have been proposed
by using methods such as MC-dropout [75] and Variational inference [71–73]. However, all
of these models use gradient descent and backpropagation for inferring the neural network’s
parameters. This chapter proposes using Bayesian inference, specifically the Tractable Ap-
proximate Gaussian Inference (TAGI) method, with the LSTM and GRU architectures in
order to infer their parameters analytically, without relying on gradient descent and backprop-
agation. Overall, we employ the same architecture formulations, but we model all quantities
in the network as Gaussian random variables including the inputs, outputs, hidden units
and parameters. Our method can take into account and quantify the epistemic uncertainties
associated with the parameters, and propagate them through the network up to the output
layer in order to provide not only predictions but also their associated uncertainties. The
contributions of this chapter include

• Develop mathematical formulations for the analytically tractable Bayesian TAGI-
LSTM, TAGI-GRU neural networks.

• Validate the models by comparing them with the deterministic and variational LSTM,
GRU models trained with backpropagation on two time series benchmarks and one
structural health monitoring dataset.

3.2 TAGI Long Short-Term Memory

This section introduces the mathematical formulations for the TAGI Long Short-Term Mem-
ory (TAGI-LSTM) neural network, a Bayesian approach to the LSTM architecture presented
in Section 2.3.1, where the network parameters and hidden states are inferred analytically
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using the TAGI method presented in Section 2.3.3. In order to apply the TAGI method to
LSTM, we employ the same architecture formulations presented in Equation 2.13 to calculate
the gates {f, i, c̃, o}, the cell states c, and the hidden states h, and we consider them, along
with the network parameters θ, as Gaussian random variables. In order to maintain the
linear computational complexity of the TAGI method, we need to rely on the same indepen-
dence assumption employed in [12], that is considering a diagonal covariance structure for
all LSTM’s gates, hidden states, cell states, and parameters. Figure 3.4a shows a graphical
representation of a LSTM cell, whereas Figure 3.4b presents the graph for an example of
stacked TAGI-LSTM network having an input layer containing the covariates x, L LSTM
layers, and a fully connected output layer. The observation y is related to the output z(O)

through Equation 2.18.
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Figure 3.1 (a) Graphical representation of a LSTM cell. Red arrows represent the inference
procedure to update the j−1th LSTM layer from the subsequent jth LSTM layer. (b) Graph-
ical representation of a stacked TAGI-LSTM network. Black arrows represent the network’s
forward connections, red arrows represent the layer-wise inference paths, and double arrows
represent the recurrent connections.

3.2.1 Forward step

At a time step t, we denote the marginal prior knowledge for the hidden states of a LSTM
layer given the past data y1:t−1 by the Gaussian PDF Ht|t−1 ∼ N (µHt|t−1,ΣH

t|t−1), where
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µHt|t−1 ≡ E[Ht|y1:t−1], and ΣH
t|t−1 ≡ cov(Ht|y1:t−1). In the forward step, we want to pass

information from the input covariates Xt through the LSTM layers, up to the output layer.
This corresponds to estimating the prior knowledge for the hidden and cell states of each
LSTM layer, H(j)

t|t−1 and C(j)
t|t−1, as well as the prior Z(O)

t|t−1 ∼ N (µZ(O)

t|t−1,ΣZ(O)

t|t−1) for the hidden
states of the output layer. For the first epoch, the prior variances for the parameters Σ0

θ

are initialized based on He’s approach [82], and the prior mean vector is randomly sampled
from µ0

θ ∼ N (0,Σ0
θ), while both prior means and variances for the hidden and cell states are

initialized with zero-values.

In order to pass information through a LSTM layer, we first need to obtain the prior knowl-
edge for the four LSTM gates. In the probabilistic context where all quantities are modelled
by Gaussian random variables, we define the hidden states for the forget gate as

Zf
t = W f

t Xt +U f
t Ht−1 +Bf

t .

Each hidden state Zf
i,t (at time step t, and cell i) for the forget gate can be obtained as

Zf
i,t = W f

i,tXt +U f
i,tHt−1 +Bf

i,t, (3.1)

where i = 1 : N, W f
i,t ∈ R1×M, U f

i,t ∈ R1×N are row weight matrices, N being the LSTM cell’s
size, and M being the number of input covariates. We employ diagonal covariance structures
for the PDFs of the input covariates Xt and the hidden statesHt−1. Under this assumption,
Zf
i,t is the sum of M + N independent products and a bias term as shown in Equation 3.1.

When adding a large number of independent product terms, the correlation between the
resulting pairs of output hidden states tends to zero such that assuming Zf

i,t |= Z
f
j,t is valid [12].

Therefore, the hidden states for the forget gate Zf
t are modelled by a Gaussian PDF having

a diagonal covariance matrix, and the first two moments for its units are computed from

E[Zf
i,t|t−1] = E[W f

i,t|t−1Xt|t−1] + E[U f
i,t|t−1Ht−1|t−1] + E[Bf

i,t|t−1],

var(Zf
i,t|t−1) = var(W f

i,t|t−1Xt|t−1) + var(U f
i,t|t−1Ht−1|t−1) + var(Bf

i,t|t−1),

where the mean and variance of the product terms W f
i,t|t−1Xt|t−1 and U f

i,t|t−1Ht−1|t−1 are
calculated exactly using the GMA equations given in Section 2.3.3.

From Equation 2.13a, we apply the locally linearized sigmoid activation function σ̃(·) to the
hidden states of the forget gate to estimate its output values Ft = σ̃(Zf

t ). As a result, the
forget gate Ft also has a diagonal covariance matrix such that Fi,t |= Fj,t. The equations for
obtaining its mean vector and covariance matrix are presented in Section 2.3.3. Similarly,
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the prior knowledge for the other LSTM gates can be estimated using the same procedure.
Because the equations used to calculate other gates {I, C̃,O} involve the same operations,
i.e., the sum of several independent product terms, we can extend the independence assump-
tion not only to these gates but also between all LSTM gates such that Ii,t |= Ij,t, C̃i,t |= C̃j,t,
Oi,t |= Oj,t, and Ft |= It |= C̃t |= Ot. As presented in Equation 2.13e, the calculations of the
cell states only involve element-wise operations from independent components. Therefore,
all the cell states Ci,t can be considered as independent and are obtained by

Ci,t = Fi,tCi,t−1 + Ii,tC̃i,t.

Because Equations 2.13a-2.13d which are used to estimate the LSTM gates {Ft, It, C̃t,Ot} do
not involve the cell states Ct−1, there is no direct information path between these gates and
the cell statesCt−1 other than through the hidden statesHt−1. Therefore, the LSTM gates at
time step t and the cell states at time step t−1 are conditionally independent given the hidden
states ht−1, that is, Ft |= It |= C̃t |= Ot |= Ct−1|ht−1. Under this conditional independence
assumption, we can apply the GMA equations to obtain the mean and variance for each cell
state following

E[Ci,t|t−1] = E[Fi,t|t−1] · E[Ci,t−1|t−1] + E[Ii,t|t−1] · E[C̃i,t|t−1],

var(Ci,t|t−1) = var(Fi,t|t−1) · var(Ci,t−1|t−1) + var(Fi,t|t−1) · E[Ci,t−1|t−1]2

+ var(Ci,t−1|t−1) · E[Fi,t|t−1]2 + var(Ii,t|t−1) · var(C̃i,t|t−1)

+ var(Ii,t|t−1) · E[C̃i,t|t−1]2 + var(C̃i,t|t−1) · E[Ii,t|t−1]2.

From Equation 2.14d, the LSTM hidden states are obtained fromHi,t = Oi,t· ˜tanh(Ci,t), where
˜tanh(·) is the locally linearized hyperbolic tangent activation function. Following the same

reasoning used for the cell states, the hidden states Hi,t are also considered as independent.
Their mean and variance are estimated by

E[Hi,t|t−1] = E[Oi,t|t−1] · E[ ˜tanh(Ci,t|t−1)],

var(Hi,t|t−1) = var(Oi,t|t−1) · var( ˜tanh(Ci,t|t−1)) + var(Oi,t|t−1) · E[ ˜tanh(Ci,t|t−1)]2

+ var( ˜tanh(Ci,t|t−1)) · E[Oi,t|t−1]2.

The hidden states for the fully-connected output layer are obtained from the hidden states
of the last (L) LSTM layer using

Z
(O)
i,t = W

(L)
i,t H

(L)
t +B

(L)
i,t . (3.2)
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Under the independence assumption, the mean and variance of each hidden state are given
by

E[Z(O)
i,t|t−1] = E[W (L)

i,t|t−1H
(L)
t|t−1] + E[B(L)

i,t|t−1],

var(Z(O)
i,t|t−1) = var(W (L)

i,t|t−1H
(L)
t|t−1) + var(B(L)

i,t|t−1).

3.2.2 Backward step

The forward step presented in Section 3.2.1 can be regarded as sending information from
the input layer to the output layer. In the backward step, we want to send the information
in the opposite direction, from the output layer back to the input layer, in order to update
the prior knowledge that has been obtained during the forward pass. The objective of this
step is to estimate the posterior PDFs for the hidden states and parameters of each layer
in the network. For that, we rely on the conditional independence assumption between the
hidden states of different layers in order to apply the layer-wise inference procedure, allowing
to update the hidden states and parameters simultaneously within a same layer. This is
essential for maintaining the computational tractability of the TAGI method. The different
steps of the inference are depicted by the red arrows in Figure 3.4b.

For the output layer, we compute the posterior Z(O)
t|t ∼ N (µZ(O)

t|t ,ΣZ(O)

t|t ) using the Gaussian
conditional equations given in Equation 2.19. This is analogous to updating the output
Z(O) of a TAGI-FNN as presented in Section 2.3.3. For the jth LSTM layer, the posterior
H

(j)
t|t ∼ N (µH(j)

t|t ,ΣH(j)

t|t ) for its hidden states is estimated following

f(h(j)
t|t ) = N (µH(j)

t|t ,ΣH(j)

t|t ),

µH
(j)

t|t = µH
(j)

t|t−1 + JH(µH(j+1)

t|t − µH(j+1)

t|t−1 ),
ΣH(j)

t|t = ΣH(j)

t|t−1 + JH(ΣH(j+1)

t|t −ΣH(j+1)

t|t−1 )Jᵀ
H ,

JH = cov(H(j)
t|t−1,H

(j+1)
t|t−1 )(ΣH(j+1)

t|t−1 )−1,

(3.3)

where cov(H(j)
t|t−1,H

(j+1)
t|t−1 ) is the covariance between the hidden states of the jth layer and

the j + 1th. Note that H(j)
t is indirectly related to H(j+1)

t through the LSTM gates
{F (j+1)

t , I
(j+1)
t , C̃

(j+1)
t ,O

(j+1)
t } as presented in Figure 3.4a and Equations 2.13a-2.13d. For

obtainingH(j)
t|t , we directly calculate the covariance cov(H(j)

t|t−1,H
(j+1)
t|t−1 ), bypassing the LSTM

gates as shown by the red arrow from h
(j)
t to h(j−1)

t shown in Figure 3.2b. This is because
inferring H(j)

t|t directly through gates or indirectly from H
(j+1)
t|t−1 while bypassing gates leads

to the same result, with the latter being simpler. This bypassing procedure during inference
is further investigated in Section 3.4. The posterior θ(j)

t|t ∼ N (µθ(j)

t|t ,Σθ(j)

t|t ) for the parameters
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Figure 3.2 Infer TAGI-LSTM’s hidden states and parameters of a layer jth from hidden states
of layer j + 1th (a) without bypassing LSTM’s gates , and (b) bypassing LSTM’s gates.

can be estimated using

f(θ(j)
t|t ) = N (µθ(j)

t|t ,Σθ(j)

t|t ),

µθ
(j)

t|t = µθ
(j)

t|t−1 + Jθ(µH
(j+1)

t|t − µH(j+1)

t|t−1 ),
Σθ(j)

t|t = Σθ(j)

t|t−1 + Jθ(ΣH(j+1)

t|t −ΣH(j+1)

t|t−1 )Jᵀ
θ,

Jθ = cov(θ(j)
t|t−1,H

(j+1)
t|t−1 )(ΣH(j+1)

t|t−1 )−1.

(3.4)

The detailed formulations for the covariances cov(H(j)
t|t−1,H

(j+1)
t|t−1 ) and cov(θ(j)

t|t−1,H
(j+1)
t|t−1 )

which are required to apply Equations 3.3 and 3.4 are given in the Appendix A.1. Note
that the last LSTM layer (L) is connected with the output layer so that we need to calcu-
late the covariances cov(H(L)

t|t−1,Z
(O)
t|t−1) and cov(θ(L)

t|t−1,Z
(O)
t|t−1) between its hidden states and

parameters with the output layer instead of with the next LSTM layer. These covariances
have already been detailed in [12].

When performing inference for a LSTM layer, we need to update the cell states in addition
to updating the hidden states and parameters. To this end, we estimate the posterior C(j)

t|t ∼
N (µC(j)

t|t ,ΣC(j)

t|t ) for the cell states based on the knowledge from the hidden states of a same
LSTM layer using the Rauch-Tung-Striebel (RTS) procedure [105] so that

f(c(j)
t|t ) = N (µC(j)

t|t ,ΣC(j)

t|t ),

µC
(j)

t|t = µC
(j)

t|t−1 + JCH(µH(j)

t|t − µH
(j)

t|t−1),
ΣC(j)

t|t = ΣC(j)

t|t−1 + JCH(ΣH(j)

t|t −ΣH(j)

t|t−1)Jᵀ
H ,

JCH = cov(C(j)
t|t−1,H

(j)
t|t−1)(ΣH(j)

t|t−1)−1.

(3.5)

This step is depicted by the red arrow from h
(j)
t to c(j)

t as shown in Figure 3.4a. The
diagonal cross-covariance matrix cov(C(j)

t|t−1,H
(j)
t|t−1) between the cell and hidden states of the

same LSTM layer that is required for estimating C(j)
t|t is obtained following

cov(C(j)
i,t|t−1, H

(j)
i,t|t−1) = var(C(j)

i,t|t−1) · ∇C
˜tanh(E[C(j)

i,t|t−1]) · E[O(j)
i,t|t−1],
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where ∇C
˜tanh(E[C(j)

i,t|t−1]) is the gradient of the ˜tanh(C) function with respect to C evaluated
at the expected value E[C(j)

i,t|t−1] for the jth layer, cell i, at time t. Note that when data is
missing at a time step, one simply proceeds with the forward step presented in Section 3.2.1
without performing the backward step described above.

3.2.3 Smoothing for TAGI-LSTM

In SSMs, the transition model, zt = g(zt−1) + wt, describes the relationship between the
hidden variables z at two consecutive time steps where g(·) is the transition function and wt

is a realization from the independent error process Wt ∼ N (0,Q). In other words, there is
a flow of information through time from the first time step t = 0 to the last time step t = T.
The Kalman smoother [105] leverages this connection in order to send information backward,
and update the knowledge for past hidden variables from future information. Analogously,
LSTM also has through-time connections as shown in Equations 2.13a-2.13e where the hidden
and cell states at time step t− 1 are connected to those at t such that

ct = k(ht−1, ct−1,xt,θ),
ht = q(ht−1, ct−1,xt,θ),

where the functions k(·) and q(·) are defined by Equations 2.13a-2.13e. Therefore, we can
leverage these connections in order to perform smoothing for TAGI-LSTM. The backward
step in Section 3.2.2 uses the smoothing equations at a single time step in order to update
the parameters and hidden states through the architecture; we now use the same approach
to update backward through time following the inference path depicted by the red arrows in
Figure 3.3.

The posterior knowledge H(j)
t|t for the hidden states of the jth LSTM layer obtained from the

backward step only contains the past and present information, i.e., y1:t. With the smoothing
procedure, we want to estimate H(j)

t|T ∼ N (µH(j)

t|T ,ΣH(j)

t|T ) containing both past and future
information, i.e., the whole sequence of observations y1:T. For each LSTM layer, we go back-
ward from the last to the first time step, and apply the RTS smoother procedure recursively
following

µH
(j)

t|T = µH
(j)

t|t + JH(µH(j)

t+1|T − µH
(j)

t+1|t)
ΣH(j)

t|T = ΣH(j)

t|t + JH(ΣH(j)

t+1|T −ΣH(j)

t+1|t)J
ᵀ
H

JH = cov(H(j)
t|t ,H

(j)
t+1|t)(ΣH(j)

t+1|t)−1,

(3.6)

where cov(H(j)
t|t ,H

(j)
t+1|t) is the covariance between the hidden states of the jth LSTM layer

at time t and t + 1. We can also use Equation 3.6 to obtain the smoothed estimates C(j)
t|T
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Figure 3.3 Time-unfolded representation of a TAGI-LSTM network with explicit connections
between times steps. Black arrows represent the network forward connections, red arrows
represent the smoothing procedure. The observed data includes training data, whereas the
unobserved one is data K time steps before the first training time step. This smoothing
procedure allows to infer not only the smoothed estimates for hidden and cell states, and
output during training time steps, but also the past ones before the training history.

for the cell states, and Z(O)
t|T for the hidden states of the output layer, by replacing the

hidden states H by the relevant variable. Appendix A.2 presents the derivations of the
covariances cov(H(j)

t|t ,H
(j)
t+1|t), cov(C(j)

t|t ,C
(j)
t+1|t), and cov(Z(O)

t|t ,Z
(O)
t+1|t) which are required to

estimate H(j)
t|T ,C

(j)
t|T and Z(O)

t|T . Note that because the network parameters θ are assumed to
be constant through time, the smoother has no effect on them.

With the smoothing procedure, we start from the last time step T and either stop the pro-
cedure at t = 0 to infer the initial hidden and cell states, H0|T and C0|T, or we can even go
back K time steps before the first training time step for obtaining the smoothed estimates
for the hidden and cell states as presented in Figure 3.3. We can then use them to estimate
the unobserved past observations y0−K:0. This means that we can use a single TAGI-LSTM
model to estimate both future observations after the last training time and past observations
before the first training time.

3.3 TAGI Gated Recurrent Units

This section introduces the mathematical formulations for the TAGI Gated Recurrent Units
(TAGI-GRU) neural network, a Bayesian approach to the GRU architecture presented in
Section 2.3.1. We consider the parameters θ, GRU’s gates and hidden states as Gaussian
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random variables having a diagonal covariance structure. Figure 3.4 presents the graph for
an example of stacked TAGI-GRU network having an input layer containing the covariates
x, L GRU layers, and a fully connected output layer.

σ σ tanh

×

× +

×
1-

h
(j)
t-1

Hidden states

h
(j-1)
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h
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t
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(j)
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t h̃
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· · ·
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z(O)
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θ(0)

θ(1)

θ(L-1)

θ(L)

(b)

Figure 3.4 (a) Graphical representation of a GRU cell. Red arrows represent the inference
procedure to update the j − 1th GRU layer from the subsequent jth GRU layer. (b) Graph-
ical representation of a stacked TAGI-GRU network. Black arrows represent the network’s
forward connections, red arrows represent the layer-wise inference paths, and double arrows
represent the recurrent connections.

Analogously to TAGI-LSTM, the TAGI-GRU’s forward step aim at estimating the prior
knowledge for the gates and hidden states of each GRU layer as well as the hidden state for
the output layer. Because the equations used to calculate the GRU’s gates {Z,R, H̃} are
similar to those of LSTM, we can make the same independence assumption for these gates
such that Zi,t |= Zj,t, H̃i,t |= H̃j,t, Ri,t |= Rj,t, and Zt |= H̃t |= Rt. We define the hidden states
for the reset gate by

Zr
t = W r

t Xt +U r
tHt−1.

The first two moments for its units are computed from

E[Zr
i,t|t−1] = E[W r

i,t|t−1Xt|t−1] + E[U r
i,t|t−1Ht−1|t−1],

var(Zr
i,t|t−1) = var(W r

i,t|t−1Xt|t−1) + var(U r
i,t|t−1Ht−1|t−1),

where the mean and variance of the product terms W r
i,t|t−1Xt|t−1 and U r

i,t|t−1Ht−1|t−1 are
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calculated exactly using the GMA equations given in Section 2.3.3.

The reset gate is then estimated by Rt = σ̃(Zr
t ), where σ̃(·) is the locally linearized sigmoid

activation function, and the equations for obtaining the output’s mean vector and covariance
matrix are presented in Section 2.3.3.

Let Ct = Rt �Ht−1 so that the candidate gate becomes

H̃t = tanh(WhXt + UhCt).

The mean vectors and covariance matrices for the update Zt and candidate gates H̃ can be
estimated using the same procedure.

The equation to calculate the hidden states Ht can be rewritten as

Ht = (1−Zt)�Ht−1 +Zt � H̃t

= Ht−1 −Zt �Ht−1 +Zt � H̃t,

where the mean and variance for its unit are obtained from

E[Hi,t|t−1] = E[Hi,t−1|t−1]− E[Zi,t|t−1 ·Ht−1|t−1] + E[Zi,t|t−1 · H̃i,t|t−1],

var(Hi,t|t−1) = var(Hi,t−1|t−1) + var(Zi,t|t−1 ·Ht−1|t−1) + var(Zi,t|t−1 · H̃i,t|t−1)

− 2cov(Hi,t−1|t−1, Zi,t|t−1 ·Hi,t−1|t−1) + 2cov(Hi,t−1|t−1, Zi,t|t−1 · H̃i,t|t−1)

− 2cov(Zi,t|t−1 ·Hi,t−1|t−1, Zi,t|t−1 · H̃i,t|t−1).
(3.7)

The detailed derivation of Equation 3.7 is provided in Appendix B.1.

In the backward step, we follow the same procedure as presented in Section 3.2.2 for the
TAGI-LSTM. That is, using Equation 2.19 to estimate the posterior knowledge for the hid-
den states of the output layer, and Equations 3.3 and 3.4 to obtain the posterior PDF for
the hidden states and parameters of each GRU layer. The difference is that the covari-
ance cov(H(j)

t|t−1,H
(j+1)
t|t−1 ) and cov(θ(j)

t|t−1,H
(j+1)
t|t−1 ) need to be estimated for the GRU, and are

provided in Appendix B.2.

3.4 Bypassing Inference in TAGI

In Section 3.2.2 for TAGI-LSTM and Section 3.3 for TAGI-GRU, the backward pass infers
directly the posterior knowledge for the hidden states H(j)

t|t and parameters θ(j)
t|t of the jth

layer from the hidden states H(j+1)
t of the subsequent layer, bypassing the LSTM or GRU’s

gates. Through an example with a feedforward neural network (FNN), this section shows
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that the inference with and without bypassing hidden layers leads to the same results.

Figure 3.5a presents a FNN analogous to the one presented in Section 2.3.3 where the red
arrows represent the layer-wise inference procedure. Note that this procedure infers the
posterior knowledge f(z(j)|y) for the hidden states Z(j) of a layer jth from the hidden states
Z(j+1) of the subsequent j + 1th layer which bypasses the activation units A(j) as explicitly
shown in Figure 3.5b.

x z(1) z(2) · · · z(L) z(O) yθ(0) θ(1) θ(2) θ(L-1) θ(L)

(a)

x z(1) a(1) z(2) a(2) · · · z(L) a(L) z(O) yθ(0) θ(1) θ(2) θ(L-1) θ(L)

(b)

Figure 3.5 Layer-wise inference procedure to update the hidden states for a feedforward neural
network (a) without, and (b) with activation units shown explicitly. Black arrows represent
the network forward connections, red arrows represent the layer-wise inference paths.

The activation and hidden units Z(j+1) and A(j) can be estimated as

A(j) = φ̃(Z(j)),

Z(j+1) = W (j)A(j) +B(j),
(3.8)

where θ(j) = {W (j),B(j)} are the parameters of the jth layer. Figure 3.6 presents two
procedures for inferring Z(j) with and without bypassing the activation units A(j). Following
the former one as presented in Figure 3.6a, we estimate the posterior f(z(j)|y) from Z(j+1)

z(j) a(j) z(j+1)θ(j)

(a)

z(j) a(j) z(j+1)θ(j)

(b)

Figure 3.6 Infer the hidden states of a layer jth from the hidden states of layer j + 1th (a)
with, and (b) without bypassing activation units a(j).
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directly using
µ

(j)
Z|y = µ

(j)
Z + JZ1Z2

(
µ

(j+1)
Z|y − µ

(j+1)
Z

)
,

Σ(j)
Z|y = Σ(j)

Z + JZ1Z2

(
Σ(j+1)
Z|y −Σ(j+1)

Z

)
Jᵀ
Z1Z2 ,

JZ1Z2 = cov
(
Z(j),Z(j+1)

)
(Σ(j+1)

Z )−1.

(3.9)

On the other hand, following the procedure without bypassing presented in Figure 3.6b, we
first estimate the posterior f(a(j)|y) from Z(j+1) as

µ
(j)
A|y = µ

(j)
A + JA1Z2(µ(j+1)

Z|y − µ
(j+1)
Z ),

Σ(j)
A|y = Σ(j)

A + JA1Z2(Σ(j+1)
Z|y −Σ(j+1)

Z )Jᵀ
A1Z2 ,

JA1Z2 = cov(A(j),Z(j+1))(Σ(j+1)
Z )−1.

(3.10)

We then estimate f(z(j)|y) from A(j) following

µ
(j)
Z|y = µ

(j)
Z + JZ1A1(µ(j)

A|y − µ
(j)
A ),

Σ(j)
Z|y = Σ(j)

Z + JZ1A1(Σ(j)
A|y −Σ(j)

A )Jᵀ
Z1A1 ,

JZ1A1 = cov(Z(j),A(j))(Σ(j)
A )−1.

(3.11)

Replacing µ(j)
A|y and Σ(j)

A|y in Equation 3.11 by Equation 3.10 leads to

µ
(j)
Z|y = µ

(j)
Z + JZ1A1

[
�
��µ
(j)
A + JA1Z2(µ(j+1)

Z|y − µ
(j+1)
Z )−��

�µ
(j)
A

]
= µ

(j)
Z + JZ1A1JA1Z2(µ(j+1)

Z|y − µ
(j+1)
Z ),

Σ(j)
Z|y = Σ(j)

Z + JZ1A1JA1Z2(Σ(j+1)
Z|y −Σ(j+1)

Z )Jᵀ
Z1A1J

ᵀ
A1Z2 .

(3.12)

Equation 3.12 is thus equivalent to Equation 3.9 because

JZ1Z2 = JZ1A1JA1Z2 = cov(Z(j),A(j))E[W (j)](Σ(j+1)
Z )−1.

This means that both procedures presented in Figure 3.6 lead to an identical result so that
the posterior f(z(j)|y) can be inferred directly from Z(j+1) while bypassing the activation
A(j).

We further investigate if inferring the posterior f(z(j)|y) for the hidden states Z(j) from
Z(j+2) directly, bypassing the j + 1th layer, leads to the same result as going through it.
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Following the procedure presented in Figure 3.7a, we bypass the hidden states Z(j+1), the
activation units A(j) and A(j+1), and estimate the posterior f(z(j)|y) from Z(j+2) so that

µ
(j)
Z|y = µ

(j)
Z + JZ1Z3

(
µ

(j+2)
Z|y − µ

(j+2)
Z

)
,

Σ(j)
Z|y = Σ(j)

Z + JZ1Z3

(
Σ(j+2)
Z|y −Σ(j+2)

Z

)
Jᵀ
Z1Z2 ,

JZ1Z3 = cov
(
Z(j),Z(j+2)

)
(Σ(j+2)

Z )−1.

(3.13)

z(j) a(j) z(j+1) a(j+1) z(j+2)θ(j) θ(j+1)

(a)

z(j) a(j) z(j+1) a(j+1) z(j+2)θ(j) θ(j+1)

(b)

Figure 3.7 Infer the hidden states of a layer jth from the hidden states of layer j + 2th (a)
with, and (b) without bypassing the layer j + 1th.

On the other hand, without bypassing the layer j+1th, we sequentially estimate the posterior
f(a(j+1)|y) from Z(j+1), f(z(j+1)|y) from A(j+2), f(a(j)|y) from Z(j+1) and f(z(j)|y) from
A(j) as presented in Figure 3.7b. Doing this leads to the same result shown in Equation 3.13
which confirms that the posterior f(z(j)|y) can be inferred either with or without bypassing
the j+1thlayer. It shows that we can bypass one or multiple hidden layers or variables during
inference in order to estimate the posterior for the hidden states at a layer of interest.

3.5 Experiments

In this section, we first conduct a qualitative experiment using synthetic time series to verify
the TAGI-LSTM’s capability to accurately retrieve the ground truth. Next, we compare the
predictive performance of the TAGI-LSTM and TAGI-GRU methods with their correspond-
ing deterministic and variational LSTM and GRU models [106] trained with a gradient-based
approach on the Electricity and Traffic benchmark datasets [5]. These datasets are chosen
for comparison because they are stationary, i.e., each time series displays a constant base-
line, so that the LSTM and GRU models can analyze them directly without requiring data
preprocessing to remove trends. Finally, we evaluate the performance of TAGI-LSTM on a
real SHM dataset of crack opening obtained from a dam in Canada.
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3.5.1 Verification on Synthetic Data

For this verification experiment, we generate ten years of weekly data (520 data points) from
the following functions

yat = sin( 2πt
365.22) + 0.5sin( 2πt

365.22/4) + vt, (3.14a)

ybt = exp
[
sin( 2πt

365.22)
]

+
[
0.5sin( 2πt

365.22/4)
]2

+ vt, (3.14b)

where vt : V ∼ N (0, 0.22) and t is the timestamp. We train TAGI-LSTM models using the
first 9 years of data, and make mutli-step ahead predictions for the last year. Figure 3.8
presents the ground truth which does not contain the error term vt, the training data, as well
as the test predictions, and their ±σ uncertainties from our models. The test-set predictions
show that the TAGI-LSTM can accurately retrieve the ground truth for these synthetic data.

01-12 01-14 01-16 01-18 01-20
-2

0

2

[MM-YY]

y
a

ground truth µ µ± σ training data

(a)

01-12 01-14 01-16 01-18 01-20
0

2

4

[MM-YY]

y
b

ground truth µ µ± σ training data

(b)

Figure 3.8 Test predictions from TAGI-LSTM models for synthetic data generated using
(a) Equation 3.14a, and (b) Equation 3.14b. The grey shaded area presents the forecast
period, red line presents the ground truth, blue line presents test predictions along with ±σ
confidence intervals (shade), black dots present training data. The ±σ regions contain both
the epistemic (parameter’s) uncertainties obtained from the prior predictive distribution of
z(O) as well as the aleatory uncertainties associated with the error term’s variance σ2

V .

3.5.2 Experiment – Stationary Time Series Benchmark Dataset

In this experiment, we compare the predictive performance of the TAGI-LSTM and TAGI-
GRU methods with their corresponding deterministic and variational LSTM and GRU mod-
els [106] trained with a gradient-based approach on the Electricity and Traffic benchmark
datasets [5]. The Electricity dataset contains 370 hourly time series of electricity consump-
tion, whereas the Traffic dataset includes 963 hourly time series of occupancy rate of different
car lanes in the San Francisco bay area. Following previous studies [3,5,9], the task for these
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datasets consists in providing predictions for seven consecutive days using the rolling window
operation described in [5]. Using this operation, the model makes multi-step-ahead predic-
tions for a 24-hour-window. Then, the observations for this window are made available so
that they can be used to predict the next window. There are seven windows required to cover
the test period. In order to make multi-step ahead predictions, we apply the single-output
forecasting procedure and recursively make one-step-ahead predictions.

The data is divided into training and test sets using three different splits which are detailed
in Table 3.1 [9]. We standardize the training data so that it has a zero mean and a unit
standard deviation. Both datasets experience hourly and daily recurrent patterns. Therefore,
we include the hour-of-the-day and day-of-the-week as time features in the covariate vector
xt. We apply the moving window approach proposed by [107] so that the input covariate
vector includes a lookback window of posterior values for z(O)

t−W:t−1 where W is the window’s
length.

Table 3.1 Train and test splits for Electricity and Traffic datasets. Subscript 1 indicates the
splits used in DeepFactor [2], 2 splits used in DeepAR [3] and DeepState [4], 3 splits used in
MatFact [5].

Electricity Traffic
Split 2014-03-311 2014-09-012 last 7 days3 2008-01-141 2008-06-152 last 7 days3

Train starting time 2014-03-24 2014-01-01 2012-01-01 2008-01-07 2008-01-01 2008-01-01
Test starting time 2014-03-31 2014-09-01 2014-12-25 2008-01-14 2008-06-15 2009-03-09

A window of data points at the end of the training data is reserved for validation, and it is not
used for training. We train our models with 50 epochs, then identify the optimal one which
maximizes the log-likelihood for the validation set, and obtain the network parameters at this
optimal epoch. We build a separate model for each time series where all models use the same
network architecture as used by [3]. The standard deviation for the observation error σV is a
hyperparameter in our TAGI-LSTM and TAGI-GRU models. Note that σV is common to all
time series in the same dataset, and its values are standardized. For variational LSTM and
GRU models, we perform 50 dropout passes and calculate the predictive mean and variance.
The architecture and hyperparameters used in this experiment are given in Table 3.2.

The quantile loss metric [4] measures the accuracy of the predictive distribution at a specific
quantile. The ρ-quantile loss with ρ ∈ (0, 1) is defined by

QLρ(y, ŷρ) = 2
∑
i,t[ρ ·max(yi,t − ŷρi,t, 0) + (1− ρ) ·max(ŷρi,t − yi,t, 0)]∑

i,t |yi,t|
,
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Table 3.2 Architecture and hyperparameters for models used in our experiments. The Elec-
tricity and Traffic datasets have three train/test splits as presented in Table 3.1; the value
for each split is separated by a forward slash. d, w, m, q, and y are the abbreviations for
day, week, month, quarter, and year respectively.

Dataset Synthetic Electricity Traffic Crack opening
# layer 1 3 3 2
# nodes 50 40 40 50
Batch size 1 4/16/16 4/16/16 1
Lookback window’s length W 52 24/168/168 24/168/168 52
σV 0.2 0.5 0.5 0.1
Validation set 1y 1d/2w/2w 1d/2w/2w 6m
Test set 1y 1w/1w/1w 1w/1w/1w 2y

where yi,t is the observation at time t of the ith time series and ŷρi,t is the corresponding
predicted ρ-quantile. Note that the p50-loss is equal to the Normalized deviation (ND)
metric reported in [3,5,9], and the ND metric was originally used to compare these datasets
by [5]. Table 3.3 presents the test p50 and p90-losses, whereas Table 3.4 reports the test root
mean square error (RMSE) and mean absolute scaled error (MASE) metrics for all methods.
These results are obtained by averaging the predictions from five independent runs with
different initial seeds. The deterministic LSTM and GRU models provide point estimates
so that we only report the p50-loss, whereas both the p50 and p90-losses are provided for
other methods. The results from Tables 3.3 and 3.4 show that TAGI-LSTM and TAGI-
GRU models match the performance of the their corresponding deterministic and variational
LSTM and GRU models trained with gradient-based optimization. The deterministic LSTM
provides the best p50-loss for the Traffic dataset on all splits which means that it provides the
most accurate point forecasts. However, the deterministic LSTM and GRU cannot provide
predictive uncertainties. The variational LSTM provides slightly better p90-losses compared
to TAGI-LSTM in four out of six scenarios. However, the result of this method varies with
respect to the number of dropout passes during test time. By contrast, TAGI-LSTM can
analytically estimate both the predictions and the associated uncertainties without repeatedly
performing dropout.

We assess the robustness of the TAGI-LSTM method by comparing the predictive perfor-
mance of four different TAGI-LSTM models where each has a different number of hidden
layers, ranging from one to four, and each layer has 40 units. Table 3.5 shows that the
models with three hidden layers provide better predictive accuracies, but overall all mod-
els provide a comparable performance. Figures 3.9 compare the test predictions from the
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Table 3.3 Comparison between TAGI-LSTM, TAGI-GRU, and their corresponding determin-
istic and variational LSTM and GRU models trained with backpropagation on Electricity and
Traffic datasets. p50/p90-loss for test sets are calculated using the rolling window operation.
Results are obtained by averaging the forecasts over five independent runs. Deterministic
LSTM and GRU models provide only point forecasts so that we report only the p50-loss.
Three train/test splits are presented in Table 3.1. Bold fonts indicate the best results.

Electricity Traffic
Split 2014-03-31 2014-09-01 last 7 days 2008-01-14 2008-06-15 last 7 days

p50 p90 p50 p90 p50 p90 p50 p90 p50 p90 p50 p90
TAGI-LSTM 0.080 0.058 0.066 0.053 0.152 0.095 0.337 0.276 0.169 0.158 0.102 0.130
LSTM 0.086 - 0.077 - 0.159 - 0.319 - 0.158 - 0.098 -
Variational LSTM 0.080 0.056 0.064 0.052 0.160 0.100 0.323 0.261 0.162 0.154 0.123 0.133
TAGI-GRU 0.081 0.054 0.070 0.053 0.164 0.094 0.355 0.335 0.191 0.163 0.123 0.137
GRU 0.085 - 0.077 - 0.167 - 0.321 - 0.168 - 0.108 -
Variational GRU 0.081 0.057 0.066 0.052 0.157 0.099 0.329 0.262 0.168 0.155 0.132 0.137

Table 3.4 RMSE and MASE metrics for the Electricity and Traffic datasets. Results are
obtained by averaging the forecasts over five independent runs. Bold fonts indicate the best
results.

Electricity Traffic
Split 2014-03-31 2014-09-01 last 7 days 2008-01-14 2008-06-15 last 7 days

RMSE MASE RMSE MASE RMSE MASE RMSE MASE RMSE MASE RMSE MASE

TAGI-LSTM 1183 1.187 1431 1.028 1837 2.067 0.036 1.624 0.022 0.652 0.016 0.406
LSTM 1198 1.239 1826 1.021 1865 2.210 0.035 1.535 0.022 0.613 0.013 0.400
Variational LSTM 1197 1.160 1365 1.006 1985 2.312 0.036 1.544 0.022 0.628 0.017 0.485
TAGI-GRU 1142 1.233 1536 0.983 1932 2.085 0.038 1.700 0.023 0.745 0.017 0.485
GRU 1210 1.222 1873 1.031 1982 2.208 0.035 1.535 0.022 0.646 0.014 0.438
Variational GRU 1211 1.167 1455 1.013 1885 2.296 0.036 1.565 0.022 0.652 0.018 0.520

Table 3.5 Comparison between four different TAGI-LSTM models having different architec-
ture on Electricity and Traffic datasets. p50/p90-loss for test sets are calculated using the
rolling window operation. Results are obtained by averaging the forecasts over five indepen-
dent runs. Bold fonts indicate the best results.

Electricity Traffic
Split 2014-03-31 2014-09-01 last 7 days 2008-01-14 2008-06-15 last 7 days

p50 p90 p50 p90 p50 p90 p50 p90 p50 p90 p50 p90
TAGI-LSTM-1-layer 0.082 0.057 0.069 0.055 0.180 0.100 0.340 0.268 0.185 0.158 0.146 0.144
TAGI-LSTM-2-layer 0.079 0.056 0.068 0.056 0.157 0.098 0.328 0.292 0.172 0.159 0.105 0.131
TAGI-LSTM-3-layer 0.080 0.058 0.066 0.053 0.152 0.095 0.337 0.276 0.169 0.158 0.102 0.130
TAGI-LSTM-4-layer 0.084 0.060 0.067 0.052 0.153 0.094 0.341 0.310 0.170 0.158 0.111 0.133

TAGI-LSTM and deterministic LSTM models for two time series as examples. The figures
show that both models offer accurate forecasts. Note that for a fair comparison with other
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Figure 3.9 Comparison of test predictions between the TAGI-LSTM and deterministic LSTM
models for a time series in (a) Electricity, and (b) Traffic datasets. The ±σ regions contain
both the epistemic (parameter’s) uncertainties obtained from the prior predictive distribution
of z(O) as well as the aleatory uncertainties associated with the error term’s variance σ2

V . Only
a part of the training set is presented.

methods, this experiment considers a constant value for the standard deviation σV of the
observation error where its value is chosen using grid-search. However, the AGVI method
presented in [8] allows to estimate the time-varying σV as presented in Figure 3.10. This
method will be used in Section 4.3.2.

Time

y

y E[y] Epistemic & Aleatory (±σ) Epistemic

Figure 3.10 Example of learning the time-varying aleatory uncertainty (σV ) estimated using
the AGVI method [8] for a time series in the traffic dataset. The grey shaded area presents
the test set, and only a part of the training set is presented.
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3.5.3 Experiment – Structural Health Monitoring Dataset

All of the time series used in the experiment presented in Section 3.5.2 are typically stationary
such that they have a constant trend over time. In this experiment, we evaluate the predictive
performance of the TAGI-LSTMmodel on a trended structural health monitoring (SHM) time
series. Figure 3.11 presents a weekly crack opening data obtained from a dam in Canada
from Feb-1998 to Jan-2006. This data displays a positive linear trend over time. The data is
divided into training and test sets where the test period includes two years of measurements
after 11-Jan-2004. A part of data at the end of the training set from 13-Jul-2003 to 10-Jan-
2004 is reserved for validation.

We conduct two analyses using the trended and detrended data extracted from the original
one in order to evaluate the predictive performance of the TAGI-LSTM in both cases. The
architecture and hyperparameters used in this experiment are given in Table 3.2, and the
data processing only includes standardization. In the first analysis, we train a TAGI-LSTM
using the original trended data. Figure 3.11 presents the test predictions and predictive
uncertainties for this analysis. The result shows that the TAGI-LSTM model provides poor
forecasts such that the predictions cannot capture the positive trend displayed in the data.

For the second analysis, we detrend the original data into a linear trend and a zero-mean
recurrent pattern as presented Figures 3.12. The trend is described by the linear function
y = 2.76·10−4+0.284t, where t is the number of days from the starting date of the time series.
This trend is obtained by fitting an affine function to the original trended data, the zero-
mean recurrent pattern (Figure 3.12b) is then obtained by the subtracting the trend from
the original data. We use this zero-mean data to train a TAGI-LSTM model. Figure 3.13a
presents the test predictions for the zero-mean data, whereas Figure 3.13b displays the final
predictions in the original space which are obtained by summing up the zero-mean predictions
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Figure 3.11 Test predictions from the TAGI-LSTM trained using the original trended data.
The ±σ regions contain both the epistemic (parameter’s) uncertainties obtained from the
prior predictive distribution of z(O) as well as the aleatory uncertainties associated with the
error term’s variance σ2

V .



56

01-99 01-01 01-03 01-05
0.2

0.6

1

Time [MM-YY]

Tr
en

d

(a)

01-99 01-01 01-03 01-05
−0.1

0

0.1

Time [MM-YY]

D
et

re
nd

ed
cr

ac
k

(b)

Figure 3.12 (a) Trend and (b) zero-mean recurrent pattern components obtained by detrend-
ing the original crack opening time series. The grey shaded area presents the forecast period.

and the trend component. From Figures 3.11 and 3.13b, it is observed that the predictions
obtained from the second analysis using the detrended data are way more accurate than
those obtained from the first analysis using the original trended data, such that now, both the
recurrent pattern and linear trend are well captured. This comparative analysis demonstrates
the necessity to detrend data before training a RNN-based model. In the next chapter, we will
see how we can leverage the coupling between the TAGI-RNN and SSM to analyze directly
trended data with either simple linear or complex nonlinear trends, without requiring offline
data preprocessing to remove the trend as it was done in this experiment.
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Figure 3.13 (a) The test predictions for the zero-mean recurrent pattern, and (b) the final test
predictions obtained by summing up the zero-mean predictions and the trend component.
The ±σ regions contain both the epistemic (parameter’s) uncertainties obtained from the
prior predictive distribution of z(O) as well as the aleatory uncertainties associated with the
error term’s variance σ2

V .
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3.6 Conclusion

The new mathematical formulations proposed in this chapter enable using the Tractable
Approximate Gaussian Inference (TAGI) method with the LSTM and GRU neural network
architectures. The approach allows estimating analytically the posterior mean vectors and
diagonal covariance matrices for the hidden states and model’s parameters using analyti-
cal approximate Bayesian inference. The proposes method employs the assumption that all
quantities in the LSTM and GRU neural networks are modelled as Gaussian random variables
having a diagonal covariance structure, along with the conditional independence assumption
between the hidden states of two layers that are not connected. These assumptions are neces-
sary to maintain the computational tractability of the TAGI method. The experiments on the
Electricity and Traffic benchmarks showed that for a same network architecture, our TAGI-
LSTM and TAGI-GRU models provide on-par performance compared to the deterministic
and variational LSTM and GRU models trained with gradient descent and backpropaga-
tion. The experiments on the trended SHM time series outlined that RNN-based methods
including TAGI-LSTM and TAGI-GRU must be applied on stationary data.
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CHAPTER 4 Coupling Analytically Tractable Bayesian Recurrent Neural
Networks and State-space Models

4.1 Introduction

The results obtained from recurrent neural networks (RNN) are typically difficult to inter-
pret [24]. As a result, RNN have been coupled with state-space models (SSM) in order
to create hybrid models that allows to provide interpretable results, while keeping the ad-
vantages of RNN. However, existing hybrid methods have only explored using deterministic
approaches which fails to take into account the epistemic uncertainties associated with the
neural network parameters. In this chapter, we propose a novel probabilistic coupling between
the analytically tractable Bayesian RNN and SSM. The resulting hybrid model considers the
epistemic uncertainties and provides interpretable results along with prediction uncertainties,
while not requiring feature engineering nor parameter optimization which are key for scala-
bility. Moreover, it is able to analyze both stationary and trended data, without requiring
offline preprocessing to remove trends. The contributions of this chapter include

• Develop the mathematical formulations to probabilistically couple the analytically
tractable Bayesian TAGI-LSTM and TAGI-GRU and SSM, while Bayesian inference is
used as the single mechanism for learning both the network’s parameters and SSM’s
hidden states.

• Develop a novel exponential component for SSM to capture nonlinear complex trends
in data.

• Validate the proposed method by comparing them with other models on three time
series benchmark datasets and three structural health monitoring ones.

4.2 Methodology

In this section, we present a methodology to probabilistically couple the TAGI-LSTM model
presented in Section 3.2 with states-space models (SSM) to create the TAGI-LSTM/SSM
hybrid model. Note that the coupling between TAGI-GRU and SSM can be done analogously.

We consider a structured state-space model with additive errors where the hidden state
vector z consists in two sets of hidden states zB and z(O), z = [zB z(O)]ᵀ. The baseline hidden
state vector zB models the time series’ baseline patterns, and is associated with the linear
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dynamical system
zB
t = AzB

t−1 +wt, (4.1)

where A is the transition matrix for the baseline hidden states, wt is a realization from the
independent error process W ∼ N (0,Q), and Q is the process error’s covariance matrix.
The baseline hidden state vector zB can include one or all hidden states including the level (L)
for modeling long-term pattern, the local trend (LT) for capturing the level’s rate of change,
and the local acceleration (LA) for modeling the local trend’s rate of change.

The pattern hidden state z(O) is employed to model the recurrent patterns present in the
data. Contrarily to the baseline hidden states which follow the transition model described in
Equation 4.1, the pattern hidden state is predicted using the output node of a TAGI-LSTM
network as illustrated in Figure 4.1 so that

z
(O)
t = TAGI-LSTM(xt,ht−1, ct−1,θt−1), (4.2)

where xt is a vector of input covariates, ht−1, ct−1 and θt−1 are the TAGI-LSTM hidden and
cell states and the neural network parameters at the previous time step, respectively. Note
that similarly to the baseline hidden states ZB

t , the output Z(O)
t is also Gaussian.

xt

TAGI-LSTM

z
(O)
t

θ(0)

θ(L)

Figure 4.1 The nonlinear transition function for the pattern hidden states is modelled by
a TAGI-LSTM network. Red arrows represent the layer-wise inference paths for inferring
the posterior knowledge for the TAGI-LSTM’s hidden states and parameters from the pos-
terior PDF of the pattern hidden state Z(O). Black arrows represent the network forward
connections, and double arrows represent the recurrent connections.

At a time t, the joint prior knowledge for the baseline hidden states given all the past data
y1:t−1 is described by a Gaussian random vector ZB

t|t−1 ∼ N (µB
t|t−1,ΣB

t|t−1) which is obtained
by propagating the uncertainty associated with the posterior at t−1, i.e., ZB

t−1|t−1 through the
transition model described in Equation 4.1. The marginal prior at t for the pattern hidden
state is a Gaussian random variable Z(O)

t|t−1 ∼ N (µZ(O)

t|t−1, σ
Z(O)

t|t−1) obtained using the TAGI-
LSTM one-step-ahead prediction presented in Section 3.2.1. In order to obtain the joint
prior knowledge at t for both the baseline and the pattern hidden states, we need their cross-
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covariance cov(ZB
t|t−1, Z

(O)
t|t−1) for which no exact closed-form analytical expression is available.

In practice, these cross-covariance terms are non-zero, yet they are typically small such that
the correlation coefficients between hidden states |ρ| < 0.01. Therefore, we rely on the
simplifying hypothesis that ZB

t|t−1 and Z(O)
t|t−1 are independent so that cov(ZB

t|t−1, Z
(O)
t|t−1) = 0.

Section 4.3.1 further explores the empirical validity of that hypothesis through experiments.

We can form the joint prior knowledge between the hidden states Zt|t−1 = [ZB
t|t−1 Z

(O)
t|t−1]ᵀ

and the observation Yt using the linear observation model

yt = Fzt + vt, (4.3)

where vt is a realization from the independent and identically distributed (i.i.d.) error
V ∼ N (0, σ2

V ). In the observation model presented in Equation 4.3, the observation vec-
tor indicates which hidden state is observable such that F = [FB F(O)], where F(O) = 1 and
the composition of FB depends on the dynamic system chosen for the baseline. With that
joint prior information, we can use the Gaussian conditional equations in order to obtain
the joint posterior Zt|t which can be broken down into the posteriors ZB

t|t and Z
(O)
t|t . The

later is then used by the TAGI-LSTM method in order to infer both the Gaussian posterior
for their model parameters θ ∼ N (µθt|t,σθt|t) and their hidden states Ht ∼ N (µHt|t,σHt|t) as
presented by the red arrows in Figure 4.1. Algorithm 1 summarizes the procedure to apply
the TAGI-LSTM/SSM model at one time step.

The covariance cov(Zt|t,Zt+1|t) between the hidden states at two consecutive time steps is
calculated by

cov(Zt|t,Zt+1|t) = blkdiag
(
ΣB
t|tAᵀ, cov(Z(O)

t|t , Z
(O)
t+1|t)

)
,

where cov(Z(O)
t|t , Z

(O)
t+1|t) is calculated using the smoothing procedure presented in Section 3.2.3.

Given this covariance, the Kalman smoother can be performed analytically for the TAGI-
LSTM/SSM model. As it is the case for the TAGI model presented in Section 2.3.3, we train
the model and learn the network parameters θ over multiple epochs, where for each of them,
we perform a forward pass over time and then a backward one using the Kalman smoother.

4.2.1 Exponential Smoothing Component

Using the local level or local trend components [20] for the baseline hidden states zB, the
TAGI-LSTM/SSM can only model data which contains either a constant or linear long-
term trend. Although it is not explicitly shown in this study, using the local acceleration
component [20] would allow to capture quadratic trends. Beside these trends, SHM data
could contain complex long-term patterns involving a succession of constant, linear and
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Algorithm 1: One-time step of the proposed TAGI-LSTM/SSM method
Input: yt, µt−1|t−1, Σt−1|t−1, A, F, Q, R = σ2

V , xt, θt−1|t−1, Ht−1|t−1, Ct−1|t−1
Output: µt|t, Σt|t, θt|t, Ht|t, Ct|t

Prediction Step:
1: Baseline hidden states:
µB
t|t−1 = AµB

t−1|t−1, ΣB
t|t−1 = AΣB

t−1|t−1Aᵀ + Q.
2: Pattern hidden state:

[µZ(O)

t|t−1, σ
Z(O)

t|t−1] = TAGI-LSTM
(
xt,Ht−1|t−1,Ct−1|t−1,θt−1|t−1

)
.

3: Joint prior knowledge:

µt|t−1 =
 µB

µZ
(O)


t|t−1

, Σt|t−1 =
ΣB 0

0
(
σZ

(O)
)2


t|t−1

.

4: rt = yt − Fµt|t−1.

5: Kt = Σt|t−1Fᵀ
(
FΣt|t−1Fᵀ + R

)−1
.

Update Step:
6: Hidden states:

µt|t =
 µB

µZ
(O)


t|t

= µt|t−1 + Ktrt,

Σt|t =
 ΣB cov(ZB, Z(O))
cov(ZB, Z(O))

(
σZ

(O)
)2


t|t

= (I−KtF)Σt|t−1

7: TAGI-LSTM’s parameters:
Infer θt|t, Ht|t, Ct|t using µZ

(O)

t|t and σZ(O)

t|t following Figure 4.1.
8: Return µt|t, Σt|t, θt|t, Ht|t, Ct|t

quadratic trends. For modeling such complex data, one can either use the Switching Kalman
Filter (SKF) [22] or exponential smoothing [108] methods. In this section, we formulate
a parameter-free exponential smoothing component which can be coupled with the TAGI-
LSTM/SSM to automatically detrend data containing complex long-term patterns. Section 5
will demonstrate how to use the SKF for a similar task.

Consider the state-space form of a simple exponential smoothing model [108], but now we
consider the smoothing parameter zα and the error term zV as hidden states. The model is
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then defined by the following equations

Observation equation: yt = zE
t + zV

t , (4.4)

Transition equations: zE
t = zE

t−1 + z̄αt−1z
V
t−1,

zαt = zαt−1,

zV
t = vt,

(4.5)

where zE
t is the exponential smoothing hidden state, vt is a realization from the i.i.d. error

vt : V ∼ N (0, σ2
V ), and yt is the observation. Because the smoothing parameter takes a

value between zero and one, we apply the locally linearized sigmoid function that is already
used for TAGI in Section 2.3.3 to the hidden state zαt . The transformed variable z̄αt = σ̃(zαt )
is assumed to follow a Gaussian PDF where its moments are obtained by applying the
equations for the linearized activation function presented in Section 2.3.3. The product
z̄αt−1z

V
t−1 uses the previous step’s error zV

t−1 to adjust the predicted exponential smoothing
hidden state zE

t because we rely on the covariance cov(Z̄α
t−1|t−1Z

V
t−1|t−1, Z

α
t|t−1) in order to

update the hidden state zαt . Note that if instead we would use the product z̄αt−1z
V
t , the

covariance cov(Z̄α
t−1|t−1Z

V
t|t−1, Z

α
t|t−1) would be zero, and thus, we would not be able to update

zαt|t.

The transition model as given in Equation 4.5 is nonlinear, however, it can be reformulated
as a linear dynamic model [109] by creating a new hidden state zN

t = z̄αt−1z
V
t−1 which is

assumed to follow a Gaussian PDF where its moments, E[ZN] ≡ µN and var(ZN), are calculated
exactly using the GMA equations given in Section 2.3.3. The baseline hidden state vector
zB = [zE zα zV]ᵀ at time t − 1 is thus assumed to be Gaussian. The augmented baseline
hidden state vector z̃B = [zB zN]ᵀ is defined by

Z̃B
t−1|t−1 ∼ N (µ̃B

t−1|t−1, Σ̃B
t−1|t−1),

where the components of µ̃B
t−1|t−1 and Σ̃B

t−1|t−1 are given as

µ̃B
t−1|t−1 =

µB

µN


t−1|t−1

,

Σ̃B
t−1|t−1 =

 ΣB cov(ZB, ZN)
cov(ZN,ZB) var(ZN)


t−1|t−1

,

cov(ZB, ZN) = cov(ZB, Z̄αZV)

= cov(ZB, ZV)E[Z̄α] + cov(ZB, Z̄α)E[ZV].
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The nonlinear Equation 4.5 now can be written in a linear form as

z̃B
t = Az̃B

t−1 +wt, wt : W ∼ N (0,Q), (4.6)

where A is the transition matrix and Q is the covariance matrix for the errors are

A =


1 0 0 1
0 1 0 0
0 0 0 0
0 0 0 0

 , Q = diag([0 0 σ2
V 0]).

The prior for the augmented baseline hidden state vector is given by

Z̃B
t|t−1 ∼ N (µ̃B

t|t−1, Σ̃B
t|t−1), (4.7)

where µ̃B
t|t−1 = Aµ̃B

t−1|t−1 and Σ̃B
t|t−1 = AΣ̃B

t−1|t−1Aᵀ + Q. The observation model given in
Equation 4.4 is written in a matrix form as

yt = Fz̃B
t , (4.8)

where F = [1 0 1 0] is the observation matrix. Using Equations 4.6-4.8, we can now apply
the Kalman filter to obtain a parameter-free component that can capture complex long-term
patterns in data. When we couple this new exponential smoothing component with TAGI-
LSTM, it enables to automatically detrend the data as shown by the experiments in the next
section, without requiring offline data preprocessing.

4.3 Experiments

In this section, we first validate empirically the zero cross-covariances assumption between
the baseline and pattern hidden states that is used in Section 4.2. We then compare the
performance of the TAGI-LSTM/SSM hybrid model with other benchmark methods on the
non-stationary Tourism (monthly and quarterly) and M4 (hourly) datasets, displaying either
linear or complex nonlinear trends. These datasets are intended to demonstrate that the
hybrid TAGI-LSTM/SSM model is well-suited to handle trended data without the need for
preprocessing. Note that one cannot use plain LSTM and GRU models on these benchmarks
without preprocessing the data beforehand to remove trends. Finally, we use the TAGI-
LSTM/SSM to analyze three structural heath monitoring datasets.
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4.3.1 Validation of the Zero Cross-covariance Assumption

In this experiment, we validate the zero cross-covariance assumption between the baseline and
pattern hidden states cov(ZB, Z(O)) = 0 that is introduced in Section 4.2 through experiments.
We use six time series from the Tourism (monthly, quarterly) [110], and M4 (hourly) [111]
datasets such that they all contain a linear trend. The data preprocessing only includes
standardization. The baseline hidden state vector zB = [zL zLT]ᵀ includes a level (L) and
a local trend (LT) hidden states [19], whereas the hidden state z(O) models the recurrent
patterns. The model matrices are given as

A =
1 1

0 1

 ,Q = σ2
W

1/3 1/2
1/2 1

 ,F =
[
1 0 1

]
, (4.9)

where σ2
W is the error’s variance.

In order to test the hypothesis of zero cross-covariances between the baseline and pat-
tern hidden states presented in Section 4.2, we compare the hypothesis which assumes zero
cross-covariances (no-cov), cov(ZB

t|t−1, Z
(O)
t|t−1) = 0, and the one which estimates these cross-

covariances through Monte-Carlo (MC) sampling (MC-cov). Table 4.1 shows that assuming
zero cross-covariances provides nearly identical performance compared to the models which
consider non-zero cross-covariance terms. Moreover, the average absolute correlations over
all time steps presented in Table 4.1, |ρ(ZL, Z(O))| and |ρ(ZLT, Z(O))|, are close to zero which
confirms the validity of our hypothesis. Note that although it is possible to estimate these
cross-covariance terms using MC sampling for a handful of time series, this approach is com-
putationally prohibitive when modeling a large number of time series, and thus it is not
suited for practical applications.

Table 4.1 Testing the zero cross-covariances hypothesis used in TAGI-LSTM/SSM by compar-
ing the test log-likelihood performance between the models considering zero cross-covariances
(no-cov) and the ones considering non-zero cross-covariances (MC-cov) on six time series from
the Tourism and M4 datasets. The average absolute correlations are calculated over all train-
ing time steps. The µ± σ represents the mean and standard deviation over five runs.

Dataset TS Log-likelihood Average absolute correlation
no-cov MC-cov |ρ(ZL, Z(O))| |ρ(ZLT, Z(O))|

Tourism TS #1 −177.94± 0.62 −177.89± 0.60 9.7E-3± 1.5E-3 7.8E-3± 1.4E-3
(Monthly) TS #32 −248.31± 1.45 −248.34± 1.50 7.9E-3± 2.7E-3 7.3E-3± 2.5E-3
Tourism TS #33 −55.53± 0.14 −55.51± 0.14 9.9E-3± 1.1E-3 8.8E-3± 8.6E-4
(Quarterly) TS #81 −83.51± 0.17 −83.46± 0.05 1.7E-2± 2.8E-3 1.5E-2± 1.9E-3
M4 TS #173 −61.35± 0.72 −61.35± 0.72 3.0E-3± 3.6E-4 2.7E-3± 3.0E-4
(Hourly) TS #375 −208.8± 6.02 −208.7± 5.99 1.8E-3± 5.4E-4 1.6E-3± 4.5E-4
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Figure 4.2 presents the test predictions as well as the model components for three time series
from the monthly, quarterly Tourism, and hourly M4 datasets. These results show that the
model can provide not only forecasts and their associated predictive uncertainties, but also
successfully decomposes the data into interpretable components, i.e., the level hidden state zL

models the linear pattern, the local trend hidden state zLT models the level’s rate of change,
and the hidden state z(O) models the recurrent pattern.
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Figure 4.2 An example of interpretable results for several time series. Values are presented
in standardized space. Red lines present observations, blue lines present test predictions,
black lines present components along with ±σ confidence intervals (shade). The grey shaded
areas present the forecast period. (a) predictions on test set, (b) level, (c) trend, and (d)
seasonality modelled by TAGI-LSTM for time series #32 of the Tourism (monthly) dataset.
(e) predictions on test set, (f) level, (g) trend, and (h) seasonality modelled by TAGI-LSTM
for time series #33 of the Tourism (quarterly) dataset. (i) predictions on test set, (j) level,
(k) trend, and (l) seasonality modelled by TAGI-LSTM for time series #375 of the M4
(hourly) dataset. In (a), (e) and (i), the ±σ regions contain both the epistemic (parameter’s)
uncertainties obtained from the prior predictive distributions of the hidden states as well as
the aleatory uncertainties associated with the error term’s variance σ2

V . Zoom-in figures for
(a), (e) and (i) are provided in Appendix D.
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4.3.2 Experiments – Nonstationary Time Series Benchmark Dataset

This experiment validates the capacity of the hybrid TAGI-LSTM/SSM model to match
the performance of state-of-the-art methods on the non-stationary Tourism (monthly and
quarterly) [110] and M4 (hourly) [111] datasets, containing either linear or complex nonlinear
trends. These datasets are intended to demonstrate that the hybrid TAGI-LSTM/SSM model
is well-suited to handle trended data without the need for preprocessing. We excluded the
plain LSTM models from this experiment because they would have required further ad-
hoc preprocessing in order to remove the trends from data before analyzing. The monthly
Tourism dataset contains 366 time series, the quarterly Tourism dataset contains 427 time
series, and the hourly M4 dataset has 414 time series.

The baseline hidden state vector contains a level (L), a local trend (LT), and an exponential
smoothing component, zB = [zL zLT zE zα zV]ᵀ, and the pattern hidden state z(O) models
recurrent patterns. The model matrices are given as

A =



1 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0


,Q = diag([0 0 0 0 σ2

V 0]),F = [1 0 1 0 0 0 1].

For the time features included in the covariate vector xt, we include hour-of-the-day and day-
of-the-week for the hourly dataset, month-of-the-year for the monthly dataset, and quarter-
of-the-year for the quarterly dataset. We build a separate model for each time series where
all models share the same network architecture as detailed in Table 4.2.

Table 4.2 Architecture and hyperparameters for TAGI-LSTMmodels used in our experiments.
d, m, and q are the abbreviations for day, month, and quarter, respectively. The AGVI
method is presented in [6–8].

Dataset Tourism Tourism M4
(monthly) (quarterly) (hourly)

# LSTM layer 1 1 1
# LSTM nodes 50 50 50
Batch size 1 1 1
Lookback window’s length W 12 4 168
σV by AGVI by AGVI by AGVI
Validation set 12m 4q 1d
Test set 24m 8q 2d
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The standard deviation for the process noise σV is learnt using the AGVI method [7, 8, 13].
We train our models on multiple epochs where the initial hidden states µe+10 and Σe+10 at
the e+ 1th epoch are the smoothed estimates µe0|T and Σe0|T at the eth epoch with T being the
last training time.

Figures 4.3 and 4.4 show two examples of predictions on the test set, the hidden states,
as well as their associated uncertainties for the time series #30 and #36 from the Tourism
(monthly) dataset. These results confirm that our model can separate the linear long-term
pattern which is captured by the level hidden state zL, the nonlinear long-term pattern
which is captured by the exponential smoothing hidden state zE, and the recurrent patterns
modelled by the TAGI-LSTM.
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Figure 4.3 An example of interpretable results provided by TAGI-LSTM/SSM using the pro-
posed exponential smoothing component for the time series #30 of the Tourism (monthly)
dataset. Values are presented in standardized space. Red line presents observations, blue
line presents test predictions, black lines present components along with ±σ confidence in-
tervals (shade). The grey shaded areas present the forecast period. The ±σ regions in (a)
contain both the epistemic (parameter’s) uncertainties obtained from the prior predictive
distributions of the hidden states as well as the aleatory uncertainties associated with the
error term’s variance σ2

V .
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Figure 4.4 An example of interpretable results for the time series #36 of the Tourism
(monthly) dataset. Values are presented in standardized space. Red line presents obser-
vations, blue line presents test predictions, black lines present components along with ±σ
confidence intervals (shade). The grey shaded areas present the forecast period. The ±σ
regions in (a) contain both the epistemic (parameter’s) uncertainties obtained from the prior
predictive distributions of the hidden states as well as the aleatory uncertainties associated
with the error term’s variance σ2

V .

We compare our method with the statistical methods ARIMA [112] and ETS [113]; the
hybrid methods DeepState [4] and ES-RNN [91]; and the pure neural networks DeepAR [3]
and N-Beats [9]. The two hybrid methods are similar to our model since all of them combine
SSMs or exponential smoothing and LSTMs, and ES-RNN is the state-of-the-art hybrid
method for the M4 dataset [114]. DeepAR is a pure LSTM-based method, whereas N-Beats
is the state-of-the-art neural network method for these datasets. Among them, ARIMA,
ETS and our method adopt a local setup such that a separate model is built for each time
series, and there is no information shared between models; DeepAR and N-Beats adopt a
global setup, fitting a single model for multiple time series; whereas DeepState and ES-RNN
use a mixed setup, using a global LSTM to learn across multiple time series and a local
SSM or exponential smoothing model for each time series. Table 4.3 shows that our method
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exceeds the performance of the ARIMA, ETS, DeepAR, and DeepState in both p50 and p90
metrics for all datasets except for the p50 loss of the monthly Tourism one. This shows the
data-efficiency of our method, such that, we can adopt a local setup that builds a separate
model for each time series and provide better results than other models using local, global
and mixed setups. N-Beats provides point forecasts so that we report only the p50-loss.
The ES-RNN and N-Beats methods provide superior point forecasts compared to that of
our method. Note that these methods use more advanced neural network architecture such
as dilated LSTMs with attention mechanism and residual connections. In addition, ES-
RNN and N-Beats can provide interpretable components, but they are unable to provide the
associated uncertainties.

Table 4.3 p50 and p90-loss performances on the Tourism (monthly and quarterly) and M4
(hourly) test sets. The results for N-Beats are obtained from [9], the one for ES-RNN is cal-
culated by us from the submission downloaded from the M4 GitHub repository [10], and the
results for other baseline methods are obtained from [4]. The results for TAGI-LSTM/SSM
are obtained by averaging the forecasts over three independent runs with different initial
seeds. N-Beats provides point forecasts so that only the p50-loss is reported. Bold fonts
indicate the best results.

Tourism (Monthly) Tourism (Quaterly) M4 (Hourly)
p50 p90 p50 p90 p50 p90

ARIMA 0.100 0.058 0.124 0.062 0.052 0.035
ETS 0.093 0.054 0.105 0.055 0.054 0.027
DeepState 0.138 0.067 0.098 0.047 0.044 0.027
ES-RNN − − − − 0.039 −
DeepAR 0.107 0.059 0.110 0.062 0.090 0.030
N-Beats 0.097 − 0.077 − 0.023 −
TAGI-LSTM/SSM 0.102 0.053 0.073 0.041 0.042 0.021

In order to extend the comparisons, we re-obtained the results from the benchmark methods
open-source packages. For the M4 hourly dataset, we do not need to rerun the ARIMA, ETS
and ES-RNN models because the original predictions by the authors are already available
in the M4 repository [10]. The results for ARIMA and ETS models are obtained using the
R’s forecast package [115], the results for DeepState, DeepAR and N-Beats are obtained
using the gluonTS library [116], and the results for ES-RNN are obtained from the ESRNN
library [117]. For the DeepAR and DeepState models, we use the same LSTM’s architecture
as presented in the original DeepAR paper [3]. For the N-Beats models, the results presented
in the original paper [9] are averaged from 180 models. Here, given the prohibitive computa-
tional cost, we instead obtained results from 18 models (6 lookback lengths (2H, · · · , 7H) ×
1 loss function (MASE) × 3 random seeds). Having obtained the predictions for all methods,
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we provide further comparisons on the RMSE and MASE metrics as presented in Table 4.4.

Figures 4.5 and 4.6 shows the result for the multiple comparisons with the best (MCB) test
[118] using the p50 and p90 metrics. This test computes the average ranks of the forecasting
methods, where the absence of overlap in the intervals for two methods indicates a statistically
significant difference in performance. These additional results further confirm that the TAGI-
LSTM/SSM method proposed has a performance that is competitive with other state-of-the-
art methods, while providing interpretable results along with quantifying the epistemic and
aleatory uncertainties.
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Figure 4.5 Average ranks and 95% confidence intervals for all methods over all time series
in each dataset based on the multiple comparisons with the best (MCB) test using the p50
metric. Dashed lines present 95% confidence intervals for the best method.

2 3 4

TAGI-LSTM/SSM

ARIMA

ETS

DeepAR

DeepState

Average Rank

(a) Tourism (monthly)

2 3 4

TAGI-LSTM/SSM

ARIMA

ETS

DeepAR

DeepState

Average Rank

(b) Tourism (quarterly)

2 3 4

TAGI-LSTM/SSM

ARIMA

ETS

DeepAR

DeepState

Average Rank

(c) M4 (hourly)

Figure 4.6 Average ranks and 95% confidence intervals for all methods over all time series in
each dataset based on the multiple comparisons with the best (MCB) test using p90 metric.
Dashed lines present 95% confidence intervals for the best method.
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Table 4.4 p50, p90, RMSE, and MASE performances on the Tourism (monthly and quar-
terly) and M4 (hourly) test sets using our re-run results. Re-run results are obtained from
three independent runs except for the ARIMA and ETS. Bold fonts indicate the best re-
sults. ∗ indicates that results are obtained by using the predictions provided by the authors
downloaded from the M4 repository [10].

Tourism (Monthly) Tourism (Quaterly) M4 (Hourly)
p50 p90 RMSE MASE p50 p90 RMSE MASE p50 p90 RMSE MASE

ARIMA 0.101 0.058 8806 1.487 0.125 0.062 104362 1.586 0.050∗ 0.024∗ 2208∗ 0.943∗
ETS 0.105 0.063 9448 1.526 0.093 0.050 72954 1.592 0.054∗ 0.031∗ 2047∗ 1.824∗
DeepState 0.106 0.066 8406 1.531 0.146 0.098 102108 2.060 0.054 0.022 2039 1.455
ES-RNN 0.118 − 8262 1.649 0.084 − 66911 1.506 0.039∗ − 1407∗ 0.893∗
DeepAR 0.097 0.051 6837 1.450 0.076 0.044 53379 1.550 0.053 0.023 2296 2.758
N-Beats 0.095 − 6924 1.427 0.083 − 59215 1.507 0.042 − 1475 1.687
TAGI-LSTM/SSM 0.102 0.053 8234 1.619 0.073 0.041 43095 1.583 0.042 0.021 1651 0.925

4.3.3 Experiment – Structural Health Monitoring Dataset

In this section, we evaluate the capacity of the proposed TAGI-LSTM/SSM model on three
structural health monitoring (SHM) time series including (1) the water infiltration rate from
a concrete dam in Canada, (2) the traffic load on a bridge in the UK, and (3) the radial
displacement of a double curvature arch dam in France. The data is chosen such that each
case study shows the ability of the TAGI-LSTM to model different types of recurrent patterns
and dependencies. The summary characteristics for these datasets are presented in Table 4.5.
For all case-studies, the baseline hidden state vector is chosen according to the data’s trend
pattern, and a single TAGI-LSTM component is used to model the recurrent patterns. We
refer to recurrent patterns as a general term for a behavior that repeats over time, including
both periodic patterns which occur at a fixed interval as well as non-periodic patterns which
repeat at irregular intervals. The ability to model the recurrent patterns caused by envi-
ronmental effects is crucial for accurate time series prediction in the context of SHM. The
models’ definition only requires choosing the neural network hyperparameters such as the
number of hidden units and layers, and the lookback length, which is a common task when
using RNN-based models. The network architecture as well as the hyperparameters used for
all case-studies are presented in Table 4.6. Unlike SSMs where the raw data is used, our
method uses standardized data with zero mean and unit standard deviation. After obtaining
the predictions in the transformed space, they are de-standardized to the original space to
obtain the final interpretable forecasts.
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Table 4.5 Descriptions of datasets used in case studies using SHM dataset.

Dataset Water infiltration rate Traffic load Dam’s displacement
Data acquisition interval Daily 30-minute 1.5-week average
Missing data No No Yes
# total data point 2289 2409 687
# training 1253 1361 585
# validation 365 288 43
# test 671 760 102

Table 4.6 Architecture and hyperparameters for the models used in our experiments.

Dataset Water infiltration rate Traffic load Dam’s displacement
# LSTM layer 2 2 2
# LSTM nodes 30 30 30
σV 0.6 0.2 0.2
Grid for searching σV {0.2, 0.4, 0.6, 0.8} {0.2, 0.4, 0.6, 0.8} {0.2, 0.4, 0.6, 0.8}
σW 0 0 0
Lookback window W 365 336 35
Grid for searching W n/a n/a {14, 35, 56, 70}
Lookback window M (covariates) n/a n/a 21
Grid for searching M n/a n/a {7, 21, 35, 49, 70}

SHM dataset #1 – Water infiltration

In this first case study, we use TAGI-LSTM to model an annual non-harmonic periodic
pattern whose amplitude increases over time. The data represents the daily water infiltration
rate from a concrete dam in Canada. The water leakage flow rate is typically used by dam
engineers as an indicator for structural anomalies because water from the reservoir penetrates
the dam body through joints and cracks [119]. The data is available from September 26 2006
to December 31 2012 as presented in Figure 4.7. Following [38], we use the data before March
2011 for training and we evaluate the predictive performance on the test set from March 2011
to December 2012 which is presented by the grey shaded region in Figure 4.7.

We employ a local trend component which consists of a level (L) and a local trend (LT) hidden
state to model the linear trend displayed in the data, whereas the TAGI-LSTM presented in
Section 3.2 is used to model the increasing amplitude of the periodic pattern. The hidden
state vector at time t is defined as zt = [zB z(O)] = [zL zLT z(O)]ᵀt , and the model matrices
are given in Equation 4.9. This case study considers a univariate time series problem so
that making a prediction at a time t only relies on the dependencies within the time series.
For modeling these dependencies, the TAGI-LSTM’s inputs include a lookback window of W
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previous TAGI-LSTM’s outputs, xt = [z(O)
t−W, · · · , z

(O)
t−1], so that the neural network identifies

the input-output dependencies without a manual setup. A previous study [25] suggests using
a lookback window that covers 1-1.25 times the period, hence, we use W = 365 (days) in this
case study. In addition, we also include the day-of-the-year covariate in the TAGI-LSTM’s
input vector as the data displays an annual periodic pattern.

It is possible to model the amplitude-increasing periodic pattern using the existing BDLM’s
periodic components, but extensive manual setups are required as shown by [38] who have
used a trend multiplicative model which consists of a linear trend and a periodic component
having a constant amplitude. The periodic pattern’s increasing amplitude can be modelled
by multiplying these two components. The limitation of this approach is that one needs to
identify whether the amplitude increases linearly or nonlinearly over time in order to choose
the correct trend component for the multiplicative model. Furthermore, the parameters
defining the periodic component must be obtained using an optimization technique which is
more computational demanding than estimating the TAGI-LSTM’s parameters analytically.

Figure 4.8 presents the results from our model including the test predictions, the level, trend
hidden states, as well as the recurrent pattern modelled by the TAGI-LSTM. It shows that it
can decompose data into interpretable components, i.e., the level hidden state captures the
long-term pattern, the local trend hidden state models the rate of change of the level, and the
TAGI-LSTM models the recurrent pattern whose amplitude varies over time, while requiring
a minimal manual setup. We compare the test MSE and log-likelihood performances of our
model with the BDLM model by [38] along with deterministic LSTM and GRU models.
Table 4.7 shows that our model provides a better MSE value, whereas the BDLM model
provides a better log-likelihood. The deterministic LSTM and GRU models provide point
forecasts so that we only report the MSE metric.
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Figure 4.7 Water infiltration rate from a concrete dam in Canada. The grey shaded area
presents the forecast period.
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Figure 4.8 Results from our model for the water infiltration rate dataset including the test
predictions, the level and local trend hidden states, and the recurrent pattern. The grey
shaded area presents the forecast period. The ±σ regions in (a) contain both the epistemic
(parameter’s) uncertainties obtained from the prior predictive distributions of the hidden
states as well as the aleatory uncertainties associated with the error term’s variance σ2

V .

Table 4.7 Comparison of test performance between TAGI-LSTM/SSM with other models on
the water infiltration rate dataset. Results for TAGI-LSTM/SSM, LSTM and GRU models
are obtained by averaging the forecasts over ten independent runs. Only the MSE metric is
reported for deterministic LSTM and GRU models. Bold fonts indicate the best results.

Model BDLM LSTM GRU TAGI-LSTM/SSM
MSE 0.28 0.30 0.25 0.19
Log-likelihood -541.5 - - -625.7

SHM dataset #2 – Traffic load

This case study uses the traffic-load data for the Tamar bridge in southwest England [120,121].
The data is available from September 01 to October 21 2007 as presented in Figure 4.9, and
has an acquisition interval of 30 minutes. The training data consists of the observations
before October 06, whereas the test data includes measurements from October 06 to 21.
The data experiences both daily and weekly periodic patterns. Through this case study, we
showcase how TAGI-LSTM can model this dual periodic pattern without requiring feature
engineering.
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Figure 4.9 Traffic load data on the Tamar bridge in the UK. The grey shaded area presents
the forecast period.

We employ a local level (LL) component to model the constant baseline, and a single TAGI-
LSTM to capture both the daily and weekly periodic patterns. The vector of hidden states
at time t is defined as zt = [zL z(O)]ᵀt , and the model matrices are given as

A = 1,Q = σ2
W ,F = [1 1]. (4.10)

The TAGI-LSTM’s inputs include a lookback window of W = 336 previous TAGI-LSTM’s
outputs, which covers a one week period, for modeling the dependencies within the time
series. By contrast, complex feature engineering is required when using the existing BDLM
periodic components to capture this dual periodic pattern. To this end, [38] have used two
separate Kernel regression KR components [34] where the first component has a periodicity
of one week, and the second one has a periodicity of one day. Moreover, [38] have also hand-
tuned a first KR component such that non-uniform control points are employed as the first
two days of the week have more complex patterns compared to the rest of the week, whereas
a second KR component uses uniformly-spaced control points. Taking the product of these
two KR components allows modeling the dual periodic pattern present in the data.

We compare our model with the BDLM-KR and BDLM-DKR models [38] which use a single
and a double KR component, along with the deterministic LSTM and GRU models. Table 4.8
shows that all models exhibit a similar performance. In terms of the MSE metric, the
deterministic LSTM model demonstrates the best performance, while the BDLM-DKR model
performs best in terms of the log-likelihood, whereas our model outperforms the BDLM-KR
model. Figure 4.10 illustrates the test predictions, along with the level hidden state and the
recurrent pattern obtained from our model. It demonstrates the model’s ability to separate
the long-term mean represented by the level hidden state and the dual periodic pattern
captured by the TAGI-LSTM.
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Table 4.8 Comparison of test performance between TAGI-LSTM/SSM and other models on
the traffic load dataset. Results for TAGI-LSTM/SSM, LSTM and GRU models are obtained
by averaging the forecasts over ten independent runs. Only the MSE metric is reported for
deterministic LSTM and GRU models. Bold fonts indicate best results.

Model BDLM-DKR BDLM-KR LSTM GRU TAGI-LSTM/SSM
MSE 0.30 0.34 0.28 0.29 0.32
Log-likelihood -616.96 -656.30 - - -649.00
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Figure 4.10 Results from our model for the traffic load dataset including the test predictions,
the level hidden state, and the recurrent pattern. The grey shaded area presents the forecast
period. The±σ regions in (a) contain both the epistemic (parameter’s) uncertainties obtained
from the prior predictive distributions of the hidden states as well as the aleatory uncertainties
associated with the error term’s variance σ2

V .

SHM dataset #3 – Dam’s displacement

This case study uses the CB2 inverted pendulum dataset in a double curvature arch dam
located in southern France. This dataset is a part of the 2022 international Benchmark
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Workshop organized by the International Commission of Large Dams (ICOLD) [11]. The
CB2 pendulum data measures the radial displacement of a dam between its toe and crest,
and is available from 2000 to 2012, with an average data acquisition interval of 1.5 week. In
addition, two environmental variables including the daily reservoir water level (WL) and the
daily air temperature (AT) are also available for this period as presented in Figure 4.11. The
task is to predict the dam’s displacement on the test set from 2010 to 2012 as presented by
the grey shaded region in Figure 4.11a using the environmental data as explanatory variables.
Note that the water level and temperature data from 2010 to 2012 are used when making
displacement predictions on the test set. Through this case study, we want to show the ability
of the TAGI-LSTM to model the recurrent pattern of the dam’s displacement considering
its dependencies with the reservoir’s water level and the air temperature, while requiring a
minimal manual setup.

The nonlinear dependencies between the dam’s displacement, the water level and the air
temperature are complex, and cannot be seen explicitly from Figure 4.12. Defining these
dependencies for building a BDLM model requires expert’s knowledge and advanced feature
engineering. For this purpose, the water level data is decomposed into a mean-centered com-
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Figure 4.11 Data from a dam in southern France
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(b) Relationships between the dam’s displacement
and the air temperature

Figure 4.12 Relationships between the dam’s
displacement and environmental variables.
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ponent showing the WL’s short-term yearly periodic pattern and the WL’s average long-term
trend [6]. Moreover, the air temperature data was first preprocessed to remove the stationary
periodic pattern, then several moving averages of the residuals for {1, 7, 14, 28, 54} days are
considered for taking into account the dam’s thermal inertia. Finally in the BLDMmodel, the
dam’s displacement was feature-engineered to have nonlinear dependencies with 1) the mean-
centered water level, 2) the long-term trend water level, and a linear dependency with the
moving averages of the air temperature’s residuals. For our model, we only use a local level
(LL) component to model the displacement’s constant baseline and TAGI-LSTM to capture
the displacement’s recurrent pattern which depends on the water level and air temperature.
The vector of hidden states at time t is defined as zt = [zL z(O)]ᵀt , and the model matrices are
given in Equation 4.10. This case study considers a multivariate time series problem so that
making a future prediction relies on both the dependencies within and across time series.
For modeling these dependencies, we include in the TAGI-LSTM’s input vector a window
of W = 35 previous TAGI-LSTM’s outputs as well as windows of M = 21 water level and air
temperature observations, xt = [z(O)

t−W, · · · , z
(O)
t−1, y

WL
t−M+1, · · · , yWL

t , y
AT
t−M+1, · · · , yAT

t ]. These values
for W and M have been obtained by a grid-search procedure as presented in Table 4.6. The
result is that TAGI-LSTM automatically identifies the output-input dependencies without
the need for extensive feature engineering.

Figure 4.13 presents the results from our model including the test predictions, the level
hidden state, and the recurrent patterns modelled by the TAGI-LSTM. It shows that our
model provides accurate forecasts, whereas the TAGI-LSTM successfully models the recur-
rent patterns considering the dependencies within and across time series. We compare the
test performance of our model with two BDLM models considering nonlinear and linear
dependencies with respect to the environmental variables [38]. Table 4.9 shows that our
model provides an equivalent performance on the log-likelihood metric, whereas the BDLM
model considering nonlinear dependencies provides a better MSE performance. Moreover,
the BDLM model considering linear dependencies provides far worse results compared to
other models.

These experimental results confirm that the TAGI-LSTM/SSM method can match the per-
formance of the BDLM model without the need to perform the complex hand-crafted feature
engineering required by the latter.
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Figure 4.13 Results from our model for the displacement dataset including the test predic-
tions, the level hidden state, and the recurrent pattern. The grey shaded area presents the
forecast period. The ±σ regions in (a) contain both the epistemic (parameter’s) uncertainties
obtained from the prior predictive distributions of the hidden states as well as the aleatory
uncertainties associated with the error term’s variance σ2

V .

Table 4.9 Comparison of test performance between TAGI-LSTM/SSM and other models on
the CB2 displacement dataset. Results for TAGI-LSTM/SSM are obtained by averaging the
forecasts over ten independent runs. Bold fonts indicate best results.

Model BDLM BDLM TAGI-LSTM/SSM
(Nonlinear dependencies) (Linear dependencies)

MSE 3.34 44.7 3.48
Log-likelihood -216.8 -470.8 -216.7
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4.4 Conclusion

In this chapter, we proposed the probabilistic coupling between the TAGI-LSTM neural net-
work and states-space models (SSMs), whereas the coupling between TAGI-GRU and SSM
can be done analogously. We have demonstrated how we can couple TAGI-LSTM with the
existing SSM’s level and trend components, as well as a parameter-free exponential smoothing
one in order to analyze time series containing either a constant, linear or complex long-term
trend patterns. The experimental results on the quarterly and monthly Tourism, and hourly
M4 datasets have shown that our hybrid models match or exceed the performance of other
models such as ARIMA, ETS, DeepAR and DeepState. The results on three SHM datasets
showed that the proposed method can provide interpretable results, which are intuitive for
engineers, by extracting the long-term irreversible pattern, its rate of change, and the re-
current patterns from the raw data. In addition, our models provide on-par performance
compared to the existing BDLM and deterministic LSTM and GRU models while not requir-
ing labour-intensive and time-consuming feature engineering nor optimization, which allow
for analyzing SHM data at a larger scale than was previously possible using BDLM. By
removing feature engineering, we simplify the procedure for defining models in the sense
that they always consist in a baseline component and a generic component modelled by the
TAGI-LSTM for automatically capturing various recurrent patterns.
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CHAPTER 5 Switching Kalman Filter and Anomaly Detection

5.1 Introduction

As presented in Sections 2.2.3 and 2.5, there exists many types of anomalies and detection
methods for time series. However, they are not all suited for the context of structural
health monitoring (SHM) as the characteristics of SHM’s anomalies differ from those typically
addressed by methods in the fields of computer science and signal processing. Up to now, the
usage of the Switching Kalman Filter (SKF) for detecting anomalies in SHM as presented in
Section 2.2.3 required extensive feature engineering in order to build BDLM models so that
the method is limited to analyzing a small number of time series. This chapter presents a new
methodology that uses the hybrid TAGI-LSTM/SSM model presented in Section 4 with the
SKF method from Section 2.2.3 for detecting anomalies in SHM time series, while operating
in non-stationary environments. The objective consists in developing a probabilistic model
being able to quantify the probabilities of regime switches online, without having to wait
until after years or decades of data are collected, while being able to provide interpretable
results for engineers. The proposed model allows overcoming the limitations of the existing
SKF because the TAGI-LSTM component can automatically model, with a minimal setup,
the dependencies within time series and with explanatory variables. As a result, it eliminates
the need for manual feature engineering which enables it to analyze data at a large scale.
The contributions of this chapter are to

• Develop a methodology to use the TAGI-LSTM/SSM model in the SKF framework for
semi-supervised anomaly detection.

• Validate the proposed anomaly detection method by comparing it with other baseline
models on both synthetic and real SHM datasets.

5.2 Methodology

This section introduces a methodology to use the TAGI-LSTM/SSM model presented in
Section 4 with the Switching Kalman Filter (SKF) method from Section 2.2.3 for detecting
anomalies in SHM data. Consider a discrete switching variable st ∈ {1, 2, · · · , S}, where S is
the number of regimes. At any time, we maintain S different TAGI-LSTM/SSM models to
describe these regimes. Each model associated with the regime st−1 ≡ i ∈ {1, 2, · · · , S} at
time t − 1 has its own hidden state vector Zi

t−1|t−1 ∼ N (µit−1|t−1,Σi
t−1|t−1) which is defined
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as
zit−1 = [zB,i, z(O)]ᵀt−1,

where zB,i
t−1 is the baseline hidden states for the model i, and z(O)

t−1 is the shared pattern hidden
state. Note that each TAGI-LSTM/SSM model has a different baseline hidden state vector
zB,i
t−1, while z

(O)
t−1 is common among all models. This means that the differences between these

TAGI-LSTM/SSM models only lie in their irreversible baseline behavior. Each transition
from the model associated with the regime st−1 ≡ i at time t− 1 to a new model associated
with the regime st ≡ j at time t leads to a different hidden state vector Z(i)j

t|t ∼ N (µ(i)j
t|t ,Σ

(i)j
t|t ),

where the subscript (i)j denotes the current regime st ≡ j given the past one st−1 ≡ i.

Following the SKF procedure presented in Section 2.2.3, we need to define the filter and col-
lapse steps. The filter operator that estimates the posterior mean vector µ(i)j

t|t and covariance
matrix Σ(i)j

t|t is given as

(µi(j)t|t ,Σ
i(j)
t|t ,θt|t) = SKF-filter(yt,xt,µit−1|t−1,Σi

t−1|t−1,θt−1|t−1, · · ·
Ht−1|t−1,Ct−1|t−1,Ai(j),Fi(j),Qi(j),Ri(j)),

(5.1)

where yt is the observation; xt is the input covariate vector; Ht−1|t−1, Ct−1|t−1 and θt−1|t−1

are the posteriors for the TAGI-LSTM’s hidden, cell states, and parameters at time t −
1; {Ai(j),Fi(j),Qi(j),Ri(j)} are the model’s matrices associated with each transition. This
SKF filter operator is defined by following the prediction and update steps of the TAGI-
LSTM/SSM model as presented in Algorithm 1. We use the same standard SKF collapse
operator from Equation 2.7 as

(µjt|t,Σ
j
t|t, π

j
t|t) = Collapse(µi(j)t|t ,Σ

i(j)
t|t ,M

i(j)
t−1|t), (5.2)

where πjt|t is now the probability of the model associated with the regime st ≡ j at time t.

The model matrices {Ai(j),Fi(j)} are defined according to the baseline hidden state vectors
zB,i, whereas Ri(j) = σ2

V with σV being the error term’s standard deviation. P is the set
of parameters that defines the model matrices {Qi(j),Z}, where Z is the matrix containing
the prior probabilities of transitioning from a regime i at time t − 1 to a regime j at time
t as presented in Equation 2.8. Our model has three types of parameters, i.e., the neural
network parameters θ for the TAGI-LSTM, P , and σV . Each of them has a different role,
i.e., θ controls the TAGI-LSTM component’s ability to model recurrent patterns, P governs
the capacity at identifying regime switches, and σV describes the standard deviation of the
error that cannot be captured by the model.
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Our method can be summarized by

π = TAGI-SKF(x,y,θ,P , σV ),

where the TAGI-SKF(·) operator is defined by applying recursively the SKF filter and collapse
operators presented in Equations 5.1 and 5.2, and π is the probability of regime switch for
the entire time series. The next section elaborates on how to estimate the parameters θ, P
and σV .

5.2.1 Parameter Estimation

In Equation 5.1, the TAGI-LSTM’s parameters θ can be updated at each time step, analo-
gously to updating the hidden states in SSM. The problem with learning θ with this setup
is that the capacity at modeling recurrent patterns and at identifying regime switches are
inter-connected such that poor estimates for θ leads to poor regime switch identification and
vice versa. If the regime switching detection does not work properly while anomalies occur,
the TAGI-LSTM will learn these anomalies instead of letting them being captured by the
irreversible baseline hidden states. As a result, the TAGI-SKF model would then not be able
to detect regime switches. Instead, we propose a two-step procedure where the first step aims
at estimating the parameters θ and σV , and the second one for estimating the parameters P
associated with the regime switching.

Estimating the standard deviation σV and the neural network parameters θ

From the entire time series {x ∈ RL×X,y ∈ RL×1}, we choose subsets of stationary or trend-
stationary data for training {xtrain ∈ RT×X,ytrain ∈ RT×1} and validation {xval ∈ RV×X,yval ∈
RV×1}, where L is the time series’ length, T and V are the training and validation sets’
sizes, and X is the size of the input covariate vector. The training data is used to learn the
parameters θ, whereas the validation data is used to evaluate the out-of-training forecasting
performance. Note that the validation data is not used to update θ. Because the training
data is chosen such that it is either stationary or trend-stationary and has only one regime,
we use a single TAGI-LSTM/SSM for modeling it. We define a set of values {σV,m}M

m=1 to
be searched over for the error term’s standard deviation. For each σV,m, we train the TAGI-
LSTM/SSM model with E epochs, and identify the optimal parameters θ∗ and σ∗V associated
with the epoch em leading to the maximal validation likelihood. This process is detailed in
Algorithm 2. Once estimated, θ∗ and σ∗V are fixed when applying the SKF filter operator
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from Equation 5.1 as

(µi(j)t|t ,Σ
i(j)
t|t ) = SKF-filter(yt,xt,µit−1|t−1,Σi

t−1|t−1,θ
∗, · · ·

Ht−1|t−1,Ct−1|t−1,Ai(j),Fi(j),Qi(j),Ri(j)∗).

Algorithm 2: Estimate the optimal values for the TAGI-LSTM’s parameters θ and
the error’s standard deviation σV
Input: Training data {xtrain,ytrain}, a pre-defined set of {σV,m}M

m=1, and a maximum
number of epoch E

Output: Optimal parameters θ∗ and σ∗V
Initialize θ∗ and L∗val
for m = 1 : M do

Initialize θ(0),µ
(0)0 ,Σ(0)0 and obtain {A,F,Q}

R = σ2
V,m

for e = 1 : E do
(θ(e),L(e)

val) = TAGI-LSTM/SSM(ytrain,xtrain,θ
(e−1),µ

(e−1)
0|T ,Σ(e−1)

0|T ,A,F,Q,R)
if L(e)

val > L∗val then
L∗val ← L

(e)
val

θ∗ ← θ(e)

σ∗V ← σV,m

return Optimal parameters θ∗ and σ∗V

Estimating regime switching parameters P

Datasets with labelled anomalies are rarely available in SHM so that we do not know precisely
what magnitude of anomaly we want to detect in order to choose the best values for P . In
practice, we would like to detect anomalies that are as small as possible. For this purpose,
we rely on simulated anomalies with various magnitudes that are added, one at a time, on
top of the anomaly-free training data ytrain. The objective is to find the optimal values P∗

which allow detecting the smallest anomaly with the highest detection probability for these
simulated time series. The assumption is that if the model is capable of detecting small
synthetic anomalies, it will also be able to detect anomalies of the same or larger magnitudes
for unseen real test data.

The synthetic anomalies used here are defined by two characteristics, i.e., a change in the
slope β of the time series’s baseline and the anomaly’s start time. Figure 5.1a presents
an anomaly-free time series ytrain having a constant baseline, while Figure 5.1b displays an
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abnormal synthetic time series yβ where its baseline changes. This time series is created by
adding an anomaly characterized by a slope β and a start time on top of the anomaly-free
time series ytrain.
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Figure 5.1 Introduction of synthetic anomaly. (a) anomaly-free training time series and (b)
time series with synthetic anomaly. The blue line represents the baseline of the data.

We generate multiple abnormal time series with various anomaly’s magnitudes by changing
the slope β and the anomaly start’s time such that

yβ1
1 , · · · ,y

β1
i , · · · ,y

β1
N︸ ︷︷ ︸

N time series with slope β1

, · · · ,yβb
1 , · · · ,y

βb
i , · · · ,y

βb
N︸ ︷︷ ︸

N time series with slope βb

, · · · ,yβB
1 , · · · ,y

βB
i , · · · ,y

βB
N︸ ︷︷ ︸

N time series with slope βB

,

where two time series yβb
i and yβb

j have the same slope βb, but different anomaly’s start times
drawn from a uniform distribution. In total, the number of abnormal series generated is B×N
corresponding to B values of the anomaly’s slopes and N time series for each slope.

In order to estimate the detection probability pβb that our model can detect the anomaly
with the slope βb, we use the TAGI-SKF model to analyze all abnormal time series
{yβb

1 , · · · ,y
βb
i , · · · ,y

βb
N } with the same slope βb

π = TAGI-SKF(xtrain,y
βb
i ,θ

∗,P , σ∗V ).

An anomaly is considered as detected if the probability of regime switch πt|t ≥ τ after the
anomaly’s start time, where τ is a predefined threshold. The detection probability pβb is then
approximated by

pβb ≈ #anomaly detected
N

. (5.3)

We define a grid of values for each parameter in P , and search for the optimal set of values
P∗ that allow to detect the smallest slope βb with the highest detection probability pβb . The
procedure for grid-searching P is detailed in Algorithm 3. Algorithm 4 summarizes all the
steps of the proposed TAGI-SKF anomaly detection method.
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Algorithm 3: Grid-search to obtain optimal parameters P∗

Input: Abnormal time series yβb
i and a pre-defined set {Pk}K

k=1
Output: Optimal parameters P∗
for b = 1 : B do

for k = 1 : K do
count = 0
for i = 1 : N do
π = TAGI-SKF(xtrain,y

βb
i ,θ

∗,Pk, σ
∗
V )

if πt|t ≥ τ after anomaly start time then
count = count + 1

pβb
k = count/N

return P∗ ← Pk associated with the highest pβb
k and the smallest βb such that

pβb
k ≥ τ

Algorithm 4: Procedure for the TAGI-SKF anomaly detection method

Input: Covariates x, observations y
Output: probability of regime switches π
Estimate θ and σV :

1: Choose stationary or trend-stationary training {xtrain,ytrain} and validation {xval,yval}
sets from the entire time series {x,y}

2: Define TAGI-LSTM/SSM model
3: Obtain the optimal parameters θ∗ and σ∗V using Algorithm 2

Estimate P:
4: Define two competing TAGI-LSTM/SSM models where one describes a normal regime,

and the other models the abnormal one
5: Generate multiple abnormal time series with various anomaly’s slopes.
6: Grid-search to obtain the optimal parameters P∗ using Algorithm 3.

Anomaly detection:
7: Return the probability of regime switches
π = TAGI-SKF(x,y,θ∗,P∗, σ∗V ).

5.3 Experiments

This section compares the anomaly detection performance between the TAGI-SKF and other
baseline methods on synthetic and real SHM time series.
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5.3.1 Verification with Synthetic Data

This section first uses synthetic time series with known anomalies in order to verify the ability
of the TAGI-SKF anomaly detection method presented in Section 5.2. Figure 5.2a presents an
anomaly-free time series generated using the function yt = sin(2πt/365)+0.5sin(πt/365)+vt,
where vt : V ∼ N (0, 0.22), and t is the timestamp. The time series cover a 10-year period
from Jan-2010 to Jan-2020 in which the first three years of data from 2010-2013 are used as
training set, the subsequent year from 2013-2014 is used as validation set, and the rest of
data from 2014 is used as test set. We introduce known synthetic anomalies on top of the
anomaly-free test set in order to create multiple abnormal time series with various anomaly’s
slope βb, this process will be further detailed later on. Figure 5.2b displays an example of
a time series containing a synthetic anomaly during the test period. The task consists in
quantifying the detection probability, the false alarm rate as well as the average time required
to detect synthetic anomalies for each slope βb.
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Figure 5.2 (a) Anomaly-free time series generated from yt = sin(2πt/365)+0.5sin(πt/365)+vt,
and (b) an example of time series containing a synthetic anomaly during the test period. The
shaded grey area presents the period where anomaly is randomly introduced.

Following the procedure presented in Algorithm 4, we first need to estimate the TAGI-LSTM’s
parameters θ. We employ a local trend component which consists of a level and trend hidden
states to model the baseline so that the hidden state vector is given by z = [zL, zLT, z(O)]ᵀ.
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The model matrices associated with z are given by

A =
1 1

0 1

 ,Q = σ2
W

1/3 1/2
1/2 1

 ,F =
[
1 0 1

]
,R = σ2

V ,

where σW = 0. The input covariate vector includes a lookback window of W previous TAGI-
LSTM’s outputs, xt = [z(O)

t−W, · · · , z
(O)
t−1]. The neural network architecture and hyperparameters

are presented in Appendix C.

In order to estimate the error variance for this dataset, we grid-search the optimal value
σ∗V from the set σV ∈ {0.1, 0.2, 0.3}. Figure 5.3a shows that the using σ∗V = 0.2 gives the
largest validation’s log-likelihood at the epoch e = 47. The parameters θ∗ associated to it
will be used for the anomaly detection analyses. Figure 5.3b presents the multi-step-ahead
predictions for the validation set using the optimal parameters θ∗.
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Figure 5.3 Experiment with synthetic data. Log-likelihood and multi-step-ahead predictions
for the validation set.

Following the Step 4 from Algorithm 4, we employ two competing TAGI-LSTM/SSM models
consisting in a local trend to represent the normal regime and a local acceleration [20] to
represent the abnormal regime. Their hidden states are given by

Model 1: z1
t = [zL,1, zLT,1,, 0︸ ︷︷ ︸

zB,1

, z(O)]ᵀt

Model 2: z2
t = [zL,2, zLT,2, zLA,2︸ ︷︷ ︸

zB,2

, z(O)]ᵀt .

Note that in order to keep the same number of hidden states for both models, the acceleration
hidden state for the model 1 is forced to be 0 [122]. The model matrices that define the
transition from st−1 = i to st = j are presented in Figure 5.4.

The switching parameters that define the matrices {Qi(j),Z} consists in two values, P =
{σ12, z12}. Following the Step 5 from Algorithm 4, we define three anomaly’s slopes βb ∈
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Figure 5.4 Experiment with synthetic data. The TAGI-LSTM/SSM’s model matrices for the
transitions from st−1 = i to st = j.

{0.5, 0.25, 0.15} [mm/year], and generate 3× 50 = 150 simulated abnormal time series from
the anomaly-free training set. Figure 5.5a presents three time series where each contains
a single anomaly with different slopes introduced at the same time step, while Figure 5.5b
shows 50 time series where each has an anomaly with a same slope of βb = 0.25 [mm/year],
introduced randomly at different time steps between Jan-2011 and Jan-2012. Figure 5.5c
presents an example of the probability of regime switch π along with the definition of the
detection time for a time series.

Following the Step 6 from Algorithm 4, we define the grid points for each parameter in P , i.e.,
σ12 ∈ {10−4, 10−5, 10−6} and z12 ∈ {10−4, 10−5, 10−6}, and obtain the sets to be evaluated
Pk,∀k ∈ {1 : 9} as

P1 = {σ12 = 10−4, z12 = 10−4},
P2 = {σ12 = 10−4, z12 = 10−5},
· · ·
P9 = {σ12 = 10−6, z12 = 10−6}.

For each Pk, we quantify the detection probability pβb associated with anomalies having
different slopes βb. Figure 5.6 presents pβb for each anomaly’s slope where we find that the
smallest slope can be detected is βb = 0.25 [mm/year] with pβb = 0.62, and the corresponding
optimal parameters are P∗ ≡ P3 = {σ12 = 10−4, z12 = 10−6}. With these parameters, the
model is also capable of detecting larger anomalies, i.e., the slope βb = 0.5 [mm/year] with
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Figure 5.5 (a) Three time series with anomalies of different slopes introduced at the same
time step, (b) 50 time series with anomalies of the same slope βb = 0.25 [mm/year] but
introduced at different time steps, and (c) the probability of anomaly πt|t and detection time
for one synthetic time series. The dashed line presents the anomaly’s start time, the shaded
grey area presents the period where anomalies are randomly introduced with different start
times.

pβb = 0.96, but it cannot detect the anomalies associated with a smaller slope βb = 0.15
[mm/year] as indicated by pβb = 0.
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Figure 5.6 Detection probability pβb for detecting anomalies with different slope βb in the
simulated time series for models with different sets Pk.

Having obtained the optimal parameters θ∗, σ∗V and P∗, we evaluate the model’s ability to
detect synthetic anomalies for the unseen test set. For that purpose, anomalies with different
slopes βb ranging from 0.1 to 0.5 [mm/year] are added on top of the anomaly-free time series
during the test period in order to create multiple abnormal time series. For each slope βb, we
generate N = 50 time series where each contains a single anomaly with a start time following
a uniform distribution over 2014 to 2017. Figure 5.2b presents an example of time series
displaying a synthetic anomaly during the test period.

We compare the performance of our model with five anomaly detection methods presented in
Section 2.5, i.e., kNN, Matrix Profile (MP), Prophet, Autoencoder, and Variational Autoen-
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coder (VAE). Specifically, we compare these methods in terms of the detection probability,
average detection time, and false alarm rate per ten years. The detection probability has
been defined in Equation 5.3, whereas the detection time refers to the average time required
to detect the synthetic anomalies with a slope βb presented in the multiple abnormal time
series. All the data points after the anomaly’s start time are considered as abnormal data
so that if multiple alarms are triggered within this period, we only consider the detection
time for the first alarm. As for the false alarm rate, we count the number of alarms triggered
before the anomaly’s start time, and divide it by the duration of time before the anomaly’s
start time for synthetic time series having a same slope.

Among the baseline methods, the Prophet, kNN, and MP are intended to be used in an
offline setup employing the entire time series, either for training (Prophet) or for calculating
the distances (kNN and MP). By contrast, our method, the Autoencoder, and VAE can
operate online after having learnt their parameters using the anomaly-free training set. They
process the entire time series without requiring to retrain the models. Table 5.1 compares
these methods among several characteristics required for SHM applications.

Table 5.1 Characteristics comparison of anomaly detection methods for SHM applications.
N/a for the MP and kNN means that no training is required for these methods.

Characteristics TAGI-SKF Prophet MP kNN Autoencoder VAE
Can be trained on data including anomalies No Yes n/a n/a No No
Can be trained on trend-non-stationary data Yes Yes n/a n/a Yes Yes
Retraining required when processing data online No Yes n/a n/a No No
Continuous adaptation to multiple anomalies Yes Yes No Yes No No
Consider explanatory variables Yes No No No Yes Yes

SHM requires to have a tight control over the false alarm rate because evaluating structures
after an alarm is expensive. Therefore, the hyperparameters for the baseline models are tuned
in order to reach zero false alarm over the training period. However, when this criteria could
not be fulfilled for a method, we choose the hyperparameters that leads to the smallest false
alarm rate. The detailed hyperparameters-tuning procedure for these methods are given in
Appendix E.

Figure 5.7a presents the detection probability pβb , whereas Figure 5.7b shows the false alarm
rate per ten years, while Figure 5.7c presents the average detection time along with its ±σ
confidence region for all methods. In general, as the anomaly’s slope increases, the detection
probability increases, while the average detection time decreases. By contrast, the false alarm
rates are almost the same across anomaly’s slopes.

Figure 5.7a shows that our method provides a detection probability pβb > 0.5 for all anomaly’s
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Figure 5.7 Comparison of (a) detection probability pβb , (b) false alarm rate per ten years,
and (c) average detection time among all methods for different anomalies of slope βb. The
shaded area presents the associated ±σ confidence region.
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slopes except for βb = 0.1 [mm/year], while providing no false alarms. Compared to our
method, the kNN provides higher detection probabilities, similar detection times, and an
equal robustness toward false alarms. On the other hand, the MP also provides higher
detection probabilities, but it takes a much longer time to detect anomalies compared our
method. Moreover, the MP’s detection time does not decrease as the slope’s value increases.

The Autoencoder and VAE provide higher detection probabilities pβb compared to our
method, but they both provide higher detection times and false alarm rates. At term, we will
face the challenge of dealing with data from a network of more than 20000 sensors spread
across hundreds of dams in the province of Quebec, Canada. The Autoencoder and VAE
methods have about 5 and 1.8 false alarms per ten years, respectively, which would trigger 27
and 10 false alarms per day at the scale of the network. These false alarm rates are too high
for the large-scale deployment of SHM system. The Prophet method provides the smallest
detection probabilities compared to other methods, but it is able to provides the shortest
detection times, while having less than one false alarm per ten years.

On this relatively simple synthetic data, the kNN and Prophet exhibit competitive perfor-
mance compared to our method. In contrast, the MP, Autoencoder, and VAE models demon-
strate a poor performance. In the next section, we will show how our method outperforms
the kNN and Prophet on complex real SHM datasets.

5.3.2 Experiment – Structural Health Monitoring Dataset

This section compares the anomaly detection performance between TAGI-SKF and other
methods on three SHM time series obtained from dams in Canada.

Case study #1

This first case study uses a dam’s crack opening dataset from Jan-2011 to Jan-2023 as
presented in Figure 5.8a. The original data is resampled using linear interpolation [123] to
obtain weekly data, and the two weeks in 2012 without measurements are considered as
having missing values. The data is divided into a training set from Jan-2011 to Jan-2014, a
validation set from Jan-2014 to Jan-2015, and the remaining data is used as a test set.

Engineers responsible with monitoring the behavior of large structures, such as the dams
studied in this chapter, are looking for changepoints indicating switches from a regime with
known kinematic to a different one. The presence of a change in the kinematic is an indication
of a possible anomaly in the structural condition which should trigger further investigations
in order to identify its cause along with preventive maintenance actions. As illustrated in
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Figure 5.8b, this exercice of identifying changepoints is fairly easy to do in retrospective after
several years of data have been collected, however, doing so online as the data is collected is
a much harder task. This task is made even harder by the non-stationary behavior displayed
by structures and to which the model must constantly adapt without the supervision of an
engineer. From this case study, we want to show that after training on a subset of stationary
data, our model can detect the regime switches online in a nonstationary environment where
the baseline changes over time, without requiring to retrain the model.
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Figure 5.8 Case study #1. (a) Crack opening data from a dam in Canada, and (b) preliminary
analysis to identify visually possible anomalies where the grey shaded area presents the regime
switch quantitatively. The dash line with a corresponding colour presents the extension for
the regime identified.

Following the procedure presented in Section 5.2, we first learn the model parameters on the
training set illustrated in Figure 5.8a, which is assumed to be stationary and anomaly-free.
We then evaluate the model’s ability to detect the anomalies identified in the preliminary
analysis as illustrated by the grey regions in Figure 5.8b.

For the TAGI-LSTM/SSM model, we employ the same hidden state vector as in the experi-
ment presented in Section 5.3.1. The neural network architecture and hyperparameters are
presented in Appendix C. In order to estimate the error variance for this dataset, we grid-
search the optimal value σ∗V from the set σV ∈ {0.1, 0.2, 0.3, 0.4}. Figure 5.9a shows that
using σ∗V = 0.3 gives the largest validation’s log-likelihood at the epoch e = 42. Figure 5.9b
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presents the multi-step-ahead predictions for the validation set using the optimal parameters
θ∗.
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Figure 5.9 Case study #1: crack opening. Log-likelihood and multi-step-ahead predictions
for the validation set. The ±σ regions contain both the epistemic (parameter’s) uncertainties
obtained from the prior predictive distributions of the hidden states as well as the aleatory
uncertainties associated with the error term’s variance σ2

V .

We employ the same two competing TAGI-LSTM/SSM models as presented in Section 5.3.1.
For estimating the switching parameter P = {σ12, z12}, we define three slopes βb ∈
{0.1, 0.05, 0.04} [mm/year], and generate 3× 50 = 150 simulated abnormal time series from
the anomaly-free training set. Figure 5.10a presents three time series with anomalies having
different slopes introduced at the same time step, whereas Figure 5.10b presents N = 50 time
series containing synthetic anomalies with a same slope βb = 0.05 [mm/year], but with a
random start time. Figure 5.10c shows an example of probability of regime switch along
with the detection time for one time series.
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Figure 5.10 Case study #1: crack opening. Synthetic time series (a) with anomalies of
different slopes introduced at the same time step, (b) with 50 anomalies of the same slope
introduced at different time steps, and (c) the probability of anomaly πt|t and detection time
for one synthetic time series. The shaded grey area presents the period where synthetic
anomaly is randomly added.

The sets Pk,∀k ∈ {1 : 9}, are obtained from the grid points σ12 ∈ {10−3, 10−4, 10−5} and
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z12 ∈ {10−4, 10−5, 10−6}. Figure 5.11 presents the detection probabilities pβ associated with
Pk for each slope value. The results show that the smallest slope that can be detected is
0.05 [mm/year] with the detection probability pβ = 0.64, and the corresponding optimal
parameters are P∗ ≡ P2 = {σ12 = 10−3, z12 = 10−5}.
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Figure 5.11 Case study #1: crack opening. Probability of detection for different anomaly’s
slopes.

Figure 5.12a presents the filter results, where the data is processed online, for the detection
probability as well as the interpretable hidden states of our models. After obtaining all
historical data up to now, we can perform an offline smoothing analysis for the hidden states
and detection probability as presented in Figure 5.12b.

Unlike the case study using simulated data as presented in Section 5.3.1, the anomaly labels
for this dataset are not available so that we cannot exactly quantify the detection time,
detection probability and false alarm rate. Despite this, we can still judge a model’s detection
performance based on the regime switches that are visually identifiable from the data as
shown in Figure 5.8b. Figure 5.12c compares the anomaly detection performance among
different methods where each horizontal line of scatter points presents the timestamps when
the alarms are triggered. The details on obtaining the hyperparameters for these methods
are presented in Appendix E.

Figure 5.12c shows that our model triggers four alarms in which the first three correspond to
the regime switches that are visually identifiable from the data, whereas the last one seems
to be triggered by an abnormally low seasonal cycle. More data beyond 2023 will be required
in order to confirm whether this alarm is associated with a temporary or a persistent effect.
This further shows that when not having access to multi-years of data, it is especially hard
to distinguish between regime changes and a one-off variability in the reversible effect caused
by the environmental factors.



97

01-13 01-15 01-17 01-19 01-21 01-23
−0.2

−0.1

0

0.1
C

ra
ck

op
en

in
g

[m
m

] yt µ µ± σ

01-13 01-15 01-17 01-19 01-21 01-23
−0.2

−0.1

0

0.1

zL
[m

m
]

01-13 01-15 01-17 01-19 01-21 01-23−4
−2
0
2
4
6 ·10−3

zL
T

01-13 01-15 01-17 01-19 01-21 01-23−0.1

0

0.1

z(
O
)
[m

m
]

01-13 01-15 01-17 01-19 01-21 01-23

−0.05
0

0.05

Time [MM-YY]

R
es

id
ua

l[
m

m
]

01-13 01-15 01-17 01-19 01-21 01-230

0.5

1

π
t|t

(a) Switching Kalman Filter results

01-13 01-15 01-17 01-19 01-21 01-23
−0.2

−0.1

0

0.1

C
ra

ck
op

en
in

g
[m

m
] yt µ µ± σ

01-13 01-15 01-17 01-19 01-21 01-23
−0.2

−0.1

0

0.1

zL
[m

m
]

01-13 01-15 01-17 01-19 01-21 01-23−4
−2
0
2
4
6 ·10−3

zL
T

01-13 01-15 01-17 01-19 01-21 01-23−0.1

0

0.1
z(

O
) [m

m
]

01-13 01-15 01-17 01-19 01-21 01-23

−0.05
0

0.05

Time [MM-YY]

R
es

id
ua

l[
m

m
]

01-13 01-15 01-17 01-19 01-21 01-230

0.5

1

π
t|t

(b) Switching Kalman Smoother results

01-11 01-13 01-15 01-17 01-19 01-21 01-23

TAGI-SKF
Prophet

MP
kNN

Autoencoder
VAE

Time [MM-YY]

(c) Comparison with other anomaly detection methods

Figure 5.12 Case study #1. Anomaly detection results obtained from our method and other
models. Each line of scatter points presents when the alarms are triggered for each method,
and the grey shaded area presents the visually identified anomalies from the preliminary
analysis. The blue dashed lines present where the anomalies are detected by our method. The
±σ confidence intervals in the top row of (a) and (b) contain both the epistemic (parameter’s)
uncertainties obtained from the posterior predictive distributions of the hidden states as well
as the aleatory uncertainties associated with the error term’s variance σ2

V .
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The Prophet model provides a similar performance as most of the alarms trigged correspond
to either the visually identified regime switches, or the same last anomaly detected by our
method. Note that Prophet operates in an offline setup, using the entire time series for
training, so that the results provide an upper bound for the detection performance. In order
to use Prophet to process data online, ones would need to retrain the model each time new
data becomes available, which would both reduce the performance and significantly increase
the computational cost.

The Autoencoder and VAE models use the same setup as ours, where their parameters are
learnt using the anomaly-free training set, and are tested using the entire time series. Both
the Autoencoder and VAE models provide poor results as Autoencoder detects none of the
two visually identifiable regime switches, and VAE almost continuously triggers alarms after
the first regime switch.

The results for kNN and MP methods are obtained using an offline setup relying on the entire
time series. The kNN model provides a good performance on synthetic data as presented
in Section 5.3.1, but for this real dataset, it only correctly detects one of the two visually
identifiable regime switches. None of the alarms detected by the MP model correspond to
the regime switches identified.

This case study shows that our model can correctly detect the regime switches that are
visually identifiable from the data, and it can operate online in a non-stationary environment
where the baseline changes over time, without requiring to retrain. In addition, our model
can provide interpretable results in terms of the hidden states which are useful for engineers.
Our model which operates in an online setup provides a similar performance compared to
the Prophet which works offline while using all the data for training. That highlights the
superiority of the TAGI-SKF method for SHM applications where processing data online and
adapting to changing conditions are mandatory.

Case study #2

This case study analyzes a dam’s displacement dataset from Nov-2005 to Mar-2022 as pre-
sented in Figure 5.13. The original data is resampled using linear interpolation to obtain
weekly data, and the weeks without measurements are considered as having missing values.
The data is divided into a training set from Nov-2005 to Jan-2008, a validation set from Jan-
2008 to July-2008, and the remaining data is used as a test set as presented in Figure 5.13.
The preliminary analysis for visually identifying the possible regime switches is presented in
Figure 5.14.
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Figure 5.13 Case study #2: displacement data from a dam in Canada.
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Figure 5.14 Case study #2: dam’s displacement. Preliminary analysis to identify visually
possible anomalies where the grey shaded area presents the regime switch quantitatively. The
dash line with a corresponding colour presents the extension for the regime identified.

We employ the same TAGI-LSTM/SSM models as presented in Section 5.3.1. The neural
network architecture and hyperparameters are presented in Appendix C. The process to
obtain the parameters σV and θ is presented in Figure 5.15, whereas the process to obtain
the parameters P = {σ12, z12} is presented in Figure 5.16.
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Figure 5.15 Case study #2: dam’s displacement. Log-likelihood and multi-step-ahead pre-
dictions for the validation set.

The filter and smoother results for the detection probability as well as the interpretable
hidden states are presented in Figures 5.17a and 5.17b. The comparison of anomaly detection
performance with other methods is presented in Figure 5.17c. Figure 5.17c shows that our
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Figure 5.16 Case study #2: dam’s displacement. Probability of detection for different
anomaly’s slopes.

method triggers two alarms where the first one corresponds to the visually identifiable regime
switch, whereas the second one seems to be triggered by an abnormally low seasonal cycle.
The Prophet and kNN models provide a similar performance compared to our models as
they also detect the visually identifiable regime switch, and triggers multiple alarms for the
same second anomaly detected by our method. By contrast, the MP is not able to detect
the regime switch. Although Autoencoder and VAE detect the visually identifiable regime
switch, they also trigger many false alarms.

Case study #3

This case study analyzes another dam’s crack opening dataset from Apr-2006 to Jan-2023
as presented in Figure 5.18a. The original data is resampled using linear interpolation to
obtain weekly data, and the weeks without measurements are considered as having missing
values. The air temperature for the same period as presented in Figure 5.18b is used as an
explanatory variable, with missing data from Apr-2006 until Dec-2007. The data is divided
into a training set from Apr-2006 to Mar-2009, a validation set from Mar-2009 to Sep-2009,
and the remaining data is used as a test set as presented in Figure 5.18a.

The preliminary analysis for visually identifying the possible regime switches is presented in
Figure 5.19. We employ the same TAGI-LSTM/SSM models as presented in Section 5.3.1.
The neural network architecture and hyperparameters are presented in Appendix C. The
process to obtain the parameters σV and θ is presented in Figure 5.20, whereas the process
to obtain the parameters P = {σ12, z12} is presented in Figure 5.21. The filter and smoother
results for the detection probability as well as the interpretable hidden states are presented
in Figures 5.22a and 5.22b. The comparison of anomaly detection performance with other
methods is presented in Figures 5.22c.
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(b) Switching Kalman Smoother results
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Figure 5.17 Case study #2. Anomaly detection results obtained from our method and other
models. Each line of scatter points presents the alarms triggered for each method, and the
grey shaded area presents the visually identified anomalies from the preliminary analysis.
The blue dashed lines present where the anomalies are detected by our method. The ±σ
confidence intervals in the top row of (a) and (b) contain both the epistemic (parameter’s)
uncertainties obtained from the posterior predictive distributions of the hidden states as well
as the aleatory uncertainties associated with the error term’s variance σ2

V .
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Figure 5.18 Case study #3: crack opening and air temperature from a dam in Canada.
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Figure 5.19 Case study #3: crack opening. Preliminary analysis to identify visually possible
anomalies where the grey shaded area presents the regime switch quantitatively. The dash
line with a corresponding colour presents the extension for the regime identified.

0 50 100 150 200
20

40

60

#epoch

Lo
g-

lik
el

ih
oo

d

σV = 0.05 0.1 0.2

(a) Log-likelihood

01-07 01-08 01-09 10-09-0.4

0

0.4

Time [MM-YY]

C
ra

ck
op

en
in

g
[m

m
]

yt µ (e=27) µ± σ

(b) Validation predictions

Figure 5.20 Case study #3: crack opening. Log-likelihood and multi-step-ahead predictions
for the validation set.
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Figure 5.21 Case study #3: crack opening. Probability of detection for different anomaly’s
slopes.

Figure 5.22c shows that our model triggers three alarms where all of them correspond to
the regime switches that are visually identifiable from the data. The Prophet method, which
provides a similar performance with our method in the case study #1, now can only detect two
out of three visually identifiable regime switches, while triggering several false alarms. This
poor performance is in part related to the inability of the method to consider dependencies
with respect to explanatory variables. Both the MP and kNN methods trigger alarms for
only one out of the three regime switches. Similar to the case study #1, both Autoencoder
and VAE provide poor performance as they almost constantly trigger alarms after the first
visually identifiable regime switch making them unsuitable for SHM applications.
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(b) Switching Kalman Smoother results
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Figure 5.22 Case study #3. Anomaly detection results obtained from our method and other
models. The blue dashed lines present where the anomalies are detected by our method. The
±σ confidence intervals in the top row of (a) and (b) contain both the epistemic (parameter’s)
uncertainties obtained from the posterior predictive distributions of the hidden states as well
as the aleatory uncertainties associated with the error term’s variance σ2

V .
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5.4 Conclusion

In this chapter, we proposed a methodology to use the hybrid TAGI-LSTM/SSM model in the
Switching Kalman Filter (SKF) framework in order to detect anomalies for structural health
monitoring time series. The proposed TAGI-SKF method eliminates the need for manual
feature engineering for defining the models’ structures so that it can be applied to a large
number of SHM time series. The experimental results on real SHM datasets showed that
our method outperforms other baseline anomaly detection methods as it can reliably detect
anomalies while having a tight control over the false alarm rate. In addition, our method can
provide interpretable results which give useful insights for engineers, and it has the ability to
process data online, as well as to adapt to changing conditions, while not requiring to retrain
the model, making it suited for SHM applications.
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CHAPTER 6 Conclusion

6.1 Thesis Conclusion

This thesis has contributed with scientific advancements by providing the mathematical
formulations for establishing the analytically tractable Bayesian recurrent neural networks
(RNN), hybrid models that probabilistically couple RNN with state-space models (SSM)
along with their applications in order to enhance the scalability of structural health moni-
toring (SHM) data analysis. The following section presents the conclusions derived from this
thesis.

The existing deterministic and Bayesian RNN models infer their parameters using backprop-
agation and gradient descent (GD). This thesis provides a new approach that uses Bayesian
inference, specifically the Tractable Approximate Gaussian Inferrence (TAGI) method, in
order to estimate the parameters as well as the hidden states for the long short-term memory
(LSTM) and gated hidden unit (GRU) architectures. The limitation of the existing RNN
models is that they either do not consider the epistemic uncertainties associated with the
parameters or estimate them using Variational inference with a limited efficiency. The new
analytically tractable RNN’s formulations proposed in this thesis can take into account these
epistemic uncertainties and estimate them analytically. With the predominant use of RNN
in time series analysis and forecasting problems, this thesis provides a new Bayesian tool for
such tasks. The experiments performed showed that for a same network architecture, our
models provide on-par performance compared to the deterministic and variational RNN mod-
els trained with backpropagation and GD. In addition, the analytically tractable RNN can
perform the smoothing procedure in a similar manner as it is done in SSM, where information
is sent backward over time.

Existing hybrid models have explored the coupling between deterministic RNN and SSM
models. Again, a limitation of these models is that they do not account for the epistemic
uncertainties associated with the RNN’s parameters. Moreover, these hybrid models need
to use two different inference methods, i.e., the backpropagation for estimating the RNN’s
parameters and Bayesian inference for updating the SSM’s hidden states. To address these
limitations, this thesis presents how to probabilistically couple the analytically tractable
RNN with SSM, where the epistemic uncertainties are taken into account, while Bayesian
inference is used as the single mechanism for inferring both the network’s parameters and
SSM’s hidden states. With the proposed method, one can now couple RNN with the existing
components borrowed from SSM. This thesis has demonstrated, for example, how we can
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couple TAGI-LSTM with the existing SSM’s level and trend components, as well as a new
parameter-free exponential smoothing component in order to analyze trended data, while
not requiring offline preprocessing to remove trends from the data. This new hybrid model
framework provides both the uncertainties associated with predictions as well as interpretable
results, which are intuitive for engineers, in terms of hidden states decomposition and their
associated uncertainties. The results obtained for SHM datasets showed that the proposed
hybrid models provide on-par performance compared to the existing Bayesian Dynamic Linear
Models (BDLM). This is achieved without requiring labor-intensive and time-consuming
feature engineering nor optimization, thanks to the capability of the analytically tractable
Bayesian RNN component at automatically identifying the dependencies within and across
time series. This contribution is the key to enabling large-scale SHM data analysis.

In the context of structural health monitoring, the existing Switching Kalman filter (SKF)
framework for anomaly detection relies on the capacity of the BDLM for describing different
regimes. The limitation of the existing BLDM is that they require extensive manual feature
engineering in order to define the models’ structures, limiting the applications of the SKF
to a small number of time series. To overcome this limitation, this thesis proposes using the
TAGI-LSTM/SSM hybrid models for replacing the BDLM ones in the SKF framework. As
a result, this new framework allows to eliminate the need for manual feature engineering in
defining the models’ structures so that the SKF framework for anomaly detection can be
applied to a large number of SHM time series.

In conclusion, the methods developed in this thesis enhance the scalability of structural health
monitoring data analysis. The experiments presented mostly focus on SHM applications, but
our methods are generally applicable for time series analysis and forecasting as tested with
several real world benchmarks.

6.2 Limitations

This section provides the limitations of the methods proposed in this thesis. Resolving these
limitations will further improve the applicability of these methods.

6.2.1 Local versus Global Recurrent Neural Networks

For modeling multiple time series, this thesis uses the local setup, building a separate neural
network model for each time series. The limitation of this setup is that each time series is
considered as independent such that there is no information shared across time series. In
future work, we should explore using a global setup where we train a single model for all
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time series. Using this setup, the neural network’s parameters would be shared and learnt
from multiple time series. Note that there are problems arising when employing this global
setup. Firstly, standardizing all time series into a common range is necessary and this task
is non-trivial given that the range for each time may differ. Secondly, the standard deviation
for the error term σV needs to be estimated for each time series, given that the noisiness of
data for each time series is different. To address the scaling problem, one possible solution is
using the experimental scaling approach as presented in [3], whereas for learning individual
σV , we could extend the AGVI method presented in [6] to multiple outputs where each has
a different σV . We see the potential to improve the current results by further exploring the
initialization for the hidden and cell states for the TAGI-LSTM and TAGI-GRU.

6.2.2 Coupling Analytically Tractable Bayesian Recurrent Neural Networks and
State-space Models

State-space models (SSM) update their hidden states using a single observation at a time so
that the batch size B = 1. As the analytically tractable Bayesian recurrent neural network is
used as a component in SSM, the hybrid model also has the batch size B = 1. Because SSM
process data sequentially in time order, one cannot take advantage of parallel computation,
using a batch size B > 1. Solving this issue would lead to faster computation and enhance
the capability of the methods to analyze larger datasets.

6.2.3 Anomaly Detection

The method presented in this thesis for anomaly detection in SHM can operate in a non-
stationary environment where the baseline changes over time. However, this model cannot
adapt in an environment where the recurrent pattern changes drastically in terms of its shape
or magnitude. This is because the RNN which is responsible for modeling recurrent patterns
has its parameters θ fixed after the training. One possible solution for this problem is to
keep learning the parameters θ online after the training time as the data comes in. However,
one needs to keep in mind that θ are typically learnt over multiple epochs so that updating
θ online (using each new data once) might not adjust their values fast enough. Another
limitation of the proposed anomaly detection model is that it could not be trained on data
containing anomalies. Addressing these limitations would broaden the applicability of the
method for detecting anomalies in SHM time series.
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APPENDIX A COVARIANCES FOR TAGI-LSTM

A.1 TAGI-LSTM – Covariances Required for Backward Step

This appendix presents the calculations for the covariances between the hidden states and
parameters of the jthe LSTM layer with the hidden states of the j + 1th LSTM layer,
cov(H(j)

t|t−1,H
(j+1)
t|t−1 ) and cov(θ(j)

t|t−1,H
(j+1)
t|t−1 ), which are necessary for the backward step pre-

sented in Section 3.2.2.

A.1.1 Covariances Between the Hidden States of Two Consecutive LSTM Layers
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t|t−1 , and Jc(j+1)
t|t−1 are the diagonal Jacobian matrices.

A.1.2 Covariances Between the Parameters and Hidden States of Two Consec-
utive LSTM Layers

The parameters of the forget gate:
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vectors at time t for row i at jth layer.

A.2 TAGI-LSTM – Covariances Required for Smoothing Procedure

This appendix presents the calculations for the covariances which are necessary for the
smoothing procedure presented in Section 3.2.3.

A.2.1 Covariances Between the Hidden States of the Same LSTM Layer

cov(H(j)
t|t ,H

(j)
t+1|t) = cov(H(j)

t|t ,O
(j)
t+1|t � ˜tanh(C(j)

t+1|t))

= cov(H(j)
t|t ,O

(j)
t+1|t)� E[ ˜tanh(C(j)

t+1|t)] + cov(H(j)
t|t ,

˜tanh(C(j)
t+1|t))� E[O(j)

t+1|t]

= cov(H(j)
t|t ,O

(j)
t+1|t)� E[ ˜tanh(C(j)

t+1|t)] + cov(H(j)
t|t ,C

(j)
t+1|t)J

c(j)
t+1|t � E[O(j)

t+1|t],

where

cov(H(j)
t|t ,O

(j)
t+1|t) = cov(H(j)

t|t , σ̃(W o(j−1)
t+1|t H

(j−1)
t+1|t +U o(j−1)

t+1|t H
(j)
t|t +Bo(j−1)

t+1|t ))

= cov(H(j)
t|t ,W

o(j−1)
t+1|t H

(j−1)
t+1|t +U o(j−1)

t+1|t H
(j)
t|t +Bo(j−1)

t+1|t )Jo(j)t+1|t

= cov(H(j)
t|t ,U

o(j−1)
t+1|t H

(j)
t|t )Jo(j)t+1|t

= cov(H(j)
t|t ,H

(j)
t|t )E[U o(j−1)

t+1|t ]Jo(j)t+1|t,

cov(H(j)
t|t ,C

(j)
t+1|t) = cov(H(j)

t|t ,F
(j)
t+1|t �C

(j)
t|t + I(j)

t+1|t � C̃
(j)
t+1|t)

= cov(H(j)
t|t ,F

(j)
t+1|t �C

(j)
t|t ) + cov(H(j)

t|t , I
(j)
t+1|t � C̃

(j)
t+1|t)

= cov(H(j)
t|t ,F

(j)
t+1|t)� E[C(j)

t|t ] + cov(H(j)
t|t ,C

(j)
t|t )� E[F (j)

t+1|t]

+ cov(H(j)
t|t , I

(j)
t+1|t)� E[C̃(j)

t+1|t] + cov(H(j)
t|t , C̃

(j)
t+1|t)� E[I(j)

t+1|t]

= cov(H(j)
t|t ,H

(j)
t|t )E[U f(j−1)

t+1|t ]Jf(j)
t+1|t � E[C(j)

t|t ] + cov(Hj
t|t,C

(j)
t|t )� E[F (j)

t+1|t]

+ cov(H(j)
t|t ,H

(j)
t|t )E[U i(j−1)

t+1|t ]Ji(j)t+1|t � E[C̃(j)
t+1|t]

+ cov(H(j)
t|t ,H

(j)
t|t )E[U c̃(j−1)

t+1|t ]Jc̃(j)t+1|t � E[I(j)
t+1|t].
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A.2.2 Covariances Between the Cell States of the Same LSTM Layer

cov(C(j)
i,t|t, C

(j)
i,t+1|t) = cov(C(j)

i,t|t, F
(j)
i,t+1|t � C

(j)
i,t|t + I

(j)
i,t+1|t � C̃

(j)
i,t+1|t)

= cov(C(j)
i,t|t, F

(j)
i,t+1|t � C

(j)
i,t|t)

= cov(C(j)
i,t|t, C

(j)
i,t|t)� E[F (j)

i,t+1|t].

A.2.3 Covariances Between the Output Hidden States

cov(Z(O)
t|t ,Z

(O)
t+1|t) = cov(W (L)

t|t H
(L)
t|t +B(L)

t|t ,W
(L)
t+1|tH

(L)
t+1|t +B(L)

t+1|t)

= cov(W (L)
t|t H

(L)
t|t ,W

(L)
t+1|tH

(L)
t+1|t) + cov(B(L)

t|t ,B
(L)
t+1|t)

= cov(W (L)
t|t ,W

(L)
t|t )cov(H(L)

t|t ,H
(L)
t+1|t) + cov(W (L)

t|t ,W
(L)
t|t )E[H(L)

t|t ]E[H(L)
t+1|t]

+ cov(H(L)
t|t ,H

(L)
t+1|t)(E[W (L)

t|t ])2 + cov(B(L)
t|t ,B

(L)
t|t ),

where W (L)
t+1|t = W

(L)
t|t and B(L)

t+1|t = B
(L)
t|t .
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APPENDIX B COVARIANCES FOR TAGI-GRU

B.1 TAGI-GRU – Covariances Required for Estimating Hidden States

E[Hi,t|t−1] = E[Hi,t−1|t−1]− E[Zi,t|t−1 ·Ht−1|t−1] + E[Zi,t|t−1 · H̃i,t|t−1],

var(Hi,t|t−1) = var(Hi,t−1|t−1) + var(Zi,t|t−1 ·Ht−1|t−1) + var(Zi,t|t−1 · H̃i,t|t−1)

− 2cov(Hi,t−1|t−1, Zi,t|t−1 ·Hi,t−1|t−1) + 2cov(Hi,t−1|t−1, Zi,t|t−1 · H̃i,t|t−1)

− 2cov(Zi,t|t−1Hi,t−1|t−1, Zi,t|t−1H̃i,t|t−1)

= var(Hi,t−1|t−1) + var(Zi,t|t−1 ·Ht−1|t−1) + var(Zi,t|t−1 · H̃i,t|t−1)

− 2
(
cov(Hi,t−1|t−1, Zi,t|t−1) · E[Hi,t−1|t−1] + var(Hi,t−1|t−1) · E[Zi,t|t−1]

)
+ 2

(
cov(Hi,t−1|t−1, Zi,t|t−1) · E[H̃i,t|t−1] + cov(Hi,t−1|t−1, H̃i,t|t−1) · E[Zi,t|t−1]

)
− 2[var(Zi,t|t−1) · cov(Hi,t−1|t−1, H̃i,t|t−1 + cov(Zi,t|t−1, H̃i,t|t−1) · cov(Hi,t−1|t−1, Zi,t|t−1

− var(Zi,t|t−1) · E[Hi,t−1|t−1] · E[H̃i,t|t−1] + cov(Zi,t|t−1, H̃i,t|t−1) · E[Hi,t−1|t−1] · E[Zi,t|t−1]

+ cov(Hi,t−1|t−1, Zi,t|t−1) · E[Zi,t|t−1] · E[H̃i,t|t−1] + cov(Hi,t−1|t−1, H̃i,t|t−1) · E[Zi,t|t−1]2]

= var(Hi,t−1|t−1) + var(Zi,t|t−1 ·Ht−1|t−1) + var(Zi,t|t−1 · H̃i,t|t−1)

+ 2cov(Hi,t−1|t−1, Zi,t|t−1)[E[H̃i,t|t−1]− E[Hi,t−1|t−1]− cov(Zi,t|t−1, H̃i,t|t−1)

− E[Zi,t|t−1]E[H̃i,t|t−1]]

+ 2cov(Hi,t−1|t−1, H̃i,t|t−1)
[
E[Zi,t|t−1]− var(Zi,t|t−1)− E[Zi,t|t−1]2

]
− 2var(Hi,t−1|t−1) · E[Zi,t|t−1]− 2var(Zi,t|t−1) · E[Hi,t−1|t−1] · E[H̃i,t|t−1]

− 2cov(Zi,t|t−1, H̃i,t|t−1) · E[Hi,t−1|t−1] · E[Zi,t|t−1],

where
cov(Hi,t−1|t−1, Zi,t|t−1) = cov

(
Hi,t−1|t−1, σ̃(Zz

i,t|t−1)
)

= cov
(
Hi,t−1|t−1, Z

z
i,t|t−1

)
· Jzi,t|t−1

= cov
(
Hi,t−1|t−1,W

z
i,t|t−1 ·Xt|t−1 +U z

i,t|t−1 ·Ht−1|t−1
)
· Jzi,t|t−1

= var(Hi,t−1|t−1) · U z
i,t|t−1 · Jzi,t|t−1,
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cov(Hi,t−1|t−1, H̃i,t|t−1) = cov
(
Hi,t−1|t−1, ˜tanh(Zh

i,t|t−1)
)

= cov
(
Hi,t−1|t−1, Z

h
i,t|t−1

)
· Jhi,t|t−1

= cov
(
Hi,t−1|t−1,W

h
i,t|t−1 ·Xt|t−1 +Uh

i,t|t−1 ·Ct|t−1
)
· Jhi,t|t−1,

= cov
(
Hi,t−1|t−1,U

h
i,t|t−1 ·Ct|t−1

)
· Jhi,t|t−1,

= cov
(
Hi,t−1|t−1,U

h
i,t|t−1 · (Rt|t−1 �Ht−1|t−1)

)
· Jhi,t|t−1.

B.2 TAGI-GRU – Covariances Required for Backward Step

This appendix presents the calculations for the covariances between the hidden states
and parameters of the jthe GRU layer with the hidden states of the j + 1th GRU layer,
cov(H(j)

t|t−1,H
(j+1)
t|t−1 ) and cov(θ(j)

t|t−1,H
(j+1)
t|t−1 ), which are necessary for the backward step pre-

sented in Section 3.3.

B.2.1 Covariances Between the Hidden States of Two Consecutive GRU Layers

cov(H(j)
t|t−1,H

(j+1)
t|t−1 ) = cov

(
H

(j)
t|t−1,H

(j+1)
t−1|t−1 −Z

(j+1)
t|t−1 �H

(j+1)
t−1|t−1 +Z(j+1)

t|t−1 � H̃
(j+1)
t|t−1

)
=
���

���
���

���:
0

cov
(
H

(j)
t|t−1,H

(j+1)
t−1|t−1

)
− cov

(
H

(j)
t|t−1,Z

(j+1)
t|t−1 �H

(j+1)
t−1|t−1

)
+ cov

(
H

(j)
t|t−1,Z

(j+1)
t|t−1 � H̃

(j+1)
t|t−1

)
= −cov

(
H

(j)
t|t−1,Z

(j+1)
t|t−1

)
� E[H(j+1)

t−1|t−1]−
��

���
���

���
�: 0

cov
(
H

(j)
t|t−1,H

(j+1)
t−1|t−1

)
� E[Z(j+1)

t|t−1 ]

+ cov
(
H

(j)
t|t−1,Z

(j+1)
t|t−1

)
� E[H̃(j+1)

t|t−1 ] + cov
(
H

(j)
t|t−1, H̃

(j+1)
t|t−1

)
� E[Z(j+1)

t|t−1 ]

= cov
(
H

(j)
t|t−1,Z

(j+1)
t|t−1

)
�
(
E[H̃(j+1)

t|t−1 ]− E[H(j+1)
t−1|t−1]

)
+ cov

(
H

(j)
t|t−1, H̃

(j+1)
t|t−1

)
� E[Z(j+1)

t|t−1 ],
where

cov
(
H

(j)
t|t−1,Z

(j+1)
t|t−1

)
= cov

(
H

(j)
t|t−1, σ̃(Zz(j+1)

t|t−1 )
)

= cov
(
H

(j)
t|t−1,Z

z(j+1)
t|t−1

)
· Jz(j+1)

t|t−1

= cov
(
H

(j)
t|t−1,W

z(j)
t|t−1 ·H

(j)
t|t−1 +U z(j)

t|t−1 ·H
(j+1)
t−1|t−1

)
· Jz(j+1)

t|t−1

= cov
(
H

(j)
t|t−1

)
· E[W z(j)

t|t−1] · Jz(j+1)
t|t−1 ,
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cov
(
H

(j)
t|t−1, H̃

(j+1)
t|t−1

)
= cov

(
H

(j)
t|t−1,

˜tanh(Zh(j+1)
t|t−1 )

)
= cov

(
H

(j)
t|t−1,Z

h(j+1)
t|t−1

)
· Jh(j+1)

t|t−1

= cov
(
H

(j)
t|t−1,W

h(j)
t|t−1 ·H

(j)
t|t−1 +Uh(j)

t|t−1 ·C
(j+1)
t|t−1

)
· Jh(j+1)

t|t−1

= cov
(
H

(j)
t|t−1,W

h(j)
i,t|t−1 ·H

(j)
t|t−1 +Uh(j)

t|t−1 · (R
(j+1)
t|t−1 �H

(j+1)
t−1|t−1)

)
· Jh(j+1)

t|t−1

= cov
(
H

(j)
t|t−1

)
· E[W h(j)

t|t−1] · Jh(j+1)
t|t−1

+ cov
(
H

(j)
t|t−1,R

(j+1)
t|t−1 �H

(j+1)
t−1|t−1

)
· E[Uh(j)

t|t−1] · Jh(j+1)
t|t−1

= cov
(
H

(j)
t|t−1

)
· E[W h(j)

t|t−1] · Jh(j+1)
t|t−1

+ cov
(
H

(j)
t|t−1,R

(j+1)
t|t−1

)
· diag(E[H(j+1)

t−1|t−1]) · E[Uh(j)
t|t−1] · Jh(j+1)

t|t−1 ,

and

cov
(
H

(j)
t|t−1,R

(j+1)
t|t−1

)
= cov

(
H

(j)
t|t−1

)
· E[W r(j)

t|t−1] · Jr(j+1)
t|t−1 .

B.2.2 Covariances Between the Parameters and Hidden States of Two Consec-
utive GRU Layers

The update gate:
cov(W z(j)

i,t|t−1, H
(j+1)
i,t|t−1) = cov

(
W

z(j)
i,t|t−1, H

(j+1)
i,t−1|t−1 − Z

(j+1)
i,t|t−1 ·H

(j+1)
i,t−1|t−1 + Z

(j+1)
i,t|t−1 · H̃

(j+1)
i,t|t−1

)
= cov

(
W

z(j)
i,t|t−1,−Z

(j+1)
i,t|t−1 ·H

(j+1)
i,t−1|t−1

)
+ cov

(
W

z(j)
i,t|t−1, Z

(j+1)
i,t|t−1 · H̃

(j+1)
i,t|t−1

)
+
���

���
���

���
�: 0

cov
(
W

z(j)
i,t|t−1, H

(j+1)
i,t−1|t−1

)
= −cov

(
W

z(j)
i,t|t−1, Z

(j+1)
i,t|t−1

)
· E[H(j+1)

i,t−1|t−1 −
��

���
���

���
��: 0

cov
(
W

z(j)
i,t|t−1, H

(j+1)
i,t−1|t−1

)
· E[Z(j+1)

i,t|t−1]

+
���

���
���

���:
0

cov
(
W

z(j)
i,t|t−1, H̃

(j+1)
i,t|t−1

)
· E[Z(j+1)

i,t|t−1] + cov
(
W

z(j)
i,t|t−1, Z

(j+1)
i,t|t−1

)
· E[H̃(j+1)

i,t|t−1]

= cov
(
W

z(j)
i,t|t−1, Z

(j+1)
i,t|t−1

)
·
(
E[H̃(j+1)

i,t|t−1]− E[H(j+1)
i,t−1|t−1]

)
= cov

(
W

z(j)
i,t|t−1, σ̃(Zz(j+1)

i,t|t−1 )
)
·
(
E[H̃(j+1)

i,t|t−1]− E[H(j+1)
i,t−1|t−1]

)
= cov

(
W

z(j)
i,t|t−1

)
· E[X(j)

t|t−1] · Jz(j+1)
i,t|t−1 ·

(
E[H̃(j+1)

i,t|t−1]− E[H(j+1)
i,t−1|t−1]

)
cov(U z(j)

i,t|t−1, H
(j+1)
i,t|t−1) = cov

(
U
z(j)
i,t|t−1

)
· E[H(j+1)

t−1|t−1] · Jz(j+1)
i,t|t−1 ·

(
E[H̃(j+1)

i,t|t−1]− E[H(j+1)
i,t−1|t−1]

)
The candidate gate:
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cov(W h(j)
i,t|t−1, H

(j+1)
i,t|t−1) = cov

(
W

h(j)
i,t|t−1, H

(j+1)
i,t−1|t−1 − Z

(j+1)
i,t|t−1 ·H

(j+1)
i,t−1|t−1 + Z

(j+1)
i,t|t−1 · H̃

(j+1)
i,t|t−1

)
= cov

(
W

h(j)
i,t|t−1, Z

(j+1)
i,t|t−1 · H̃

(j+1)
i,t|t−1

)
=
��

���
���

���
�: 0

cov
(
W

h(j)
i,t|t−1, Z

(j+1)
i,t|t−1

)
· E[H̃(j+1)

i,t|t−1] + cov
(
W

h(j)
i,t|t−1, H̃

(j+1)
i,t|t−1

)
· E[Z(j+1)

i,t|t−1]

= cov
(
W

h(j)
i,t|t−1,

˜tanh(Zh(j+1)
i,t|t−1 )

)
· E[Z(j+1)

i,t|t−1]

= cov
(
W

h(j)
i,t|t−1

)
· E[X(j)

t|t−1] · Jh(j+1)
i,t|t−1 · E[Z(j+1)

i,t|t−1].

cov(Uh(j)
i,t|t−1, H

(j+1)
i,t|t−1) = cov

(
U
h(j)
i,t|t−1

)
· E[H(j+1)

t−|t−1] · Jh(j+1)
i,t|t−1 · E[Z(j+1)

i,t|t−1].

The reset gate:
cov(W r(j)

i,t|t−1, H
(j+1)
i,t|t−1) = cov

(
W

r(j)
i,t|t−1, H

(j+1)
i,t−1|t−1 − Z

(j+1)
i,t|t−1 ·H

(j+1)
i,t−1|t−1 + Z

(j+1)
i,t|t−1 · H̃

(j+1)
i,t|t−1

)
= cov

(
W

r(j)
i,t|t−1, Z

(j+1)
i,t|t−1 · H̃

(j+1)
i,t|t−1

)
=
���

���
���

���: 0

cov
(
W

r(j)
i,t|t−1, Z

(j+1)
i,t|t−1

)
· E[H̃(j+1)

i,t|t−1] + cov
(
W

r(j)
i,t|t−1, H̃

(j+1)
i,t|t−1

)
· E[Z(j+1)

i,t|t−1]

= cov
(
W

r(j)
i,t|t−1,

˜tanh(Zh(j+1)
i,t|t−1 )

)
· E[Z(j+1)

i,t|t−1]

= cov
(
W

r(j)
i,t|t−1, Z

h(j+1)
i,t|t−1

)
· Jh(j+1)

i,t|t−1 · E[Z(j+1)
i,t|t−1]

= cov
(
W

r(j)
i,t|t−1,W

h(j)
i,t|t−1 ·X

(j)
t|t−1 +Uh(j)

i,t|t−1 ·C
(j+1)
t|t−1

)
· Jh(j+1)

i,t|t−1 · E[Z(j+1)
i,t|t−1]

= cov
(
W

r(j)
i,t|t−1,W

h(j)
i,t|t−1 ·X

(j)
t|t−1 +Uh(j)

i,t|t−1 · (R
(j+1)
t|t−1 �H

(j+1)
t−1|t−1)

)
· Jh(j+1)

i,t|t−1 E[Z(j+1)
i,t|t−1]

= cov
(
W

r(j)
i,t|t−1

)
· E[X(j)

t|t−1] · Jr(j+1)
i,t|t−1 · E[H(j+1)

i,t−1|t−1] · E[Uh(j)
ii,t|t−1] · Jh(j+1)

i,t|t−1 E[Z(j+1)
i,t|t−1]

cov(U r(j)
i,t|t−1, H

(j+1)
i,t|t−1) = cov

(
U
r(j)
i,t|t−1

)
· E[H(j)

t−1|t−1] · Jr(j+1)
i,t|t−1 · E[H(j+1)

i,t−1|t−1] · E[Uh(j)
ii,t|t−1] · Jh(j+1)

i,t|t−1 E[Z(j+1)
i,t|t−1],

where Uh(j)
ii,t|t−1 is the element at the ith row and the ith column of the weight matrix Uh(j)

t|t−1 .
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APPENDIX C ARCHITECTURE AND HYPERPARAMETERS FOR THE
TAGI-SKF MODEL

This appendix presents the architecture and hyperparameters for the TAGI-SKF model used
in the experiments presented in Section 5.3.

Table C.1 Architecture and hyperparameters for the TAGI-SKF models used in our experi-
ments.

Dataset Synthetic data Case study #1 Case study #2 Case study #3
# LSTM layer 1 1 1 1
# LSTM nodes 50 50 50 50
Lookback length W 52 52 52 52
Lookback length M (covariates) n/a n/a 10 n/a
σW 0 0 0 0
σV 0.2 0.3 0.1 0.05
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APPENDIX D ZOOM-IN FIGURES IN SECTION 4.3.1
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Figure D.1 Zoom-in figures for for Figures 4.2 (a), (e) and (i), respectively
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APPENDIX E HYPERPARAMETERS TUNING FOR OTHER ANOMALY
DETECTION METHODS

This appendix presents how to obtain the hyperparameters for the Prophet, Matrix Profile,
kNN, Autoencoder, and VAE methods for detecting anomalies in the experiments presented
in Section 5.3. The results for the Prophet are obtained using the Prophet library [97], while
the ones for the Matrix Profile is obtained using the stumpy library [104], whereas the results
for the kNN, Autoencoder, and VAE are obtained using the pyod library [124].

For all of these methods, we grid-search their hyperparameters as presented in Tables E.1 and
E.2. Beside the hyperparameters that are being gridsearched, we use default values for others.
We aim at reaching zero false alarm for the training data that is assumed to be anomaly-free.
However, when this criteria could not be fulfilled, we choose the hyperparameters that leads
to a minimal false alarm rate. The hyperparameters-tuning procedure are described following
below steps

• Step 1: Define a grid for each hyperparameter.

• Step 2: Using the anomaly-free training data, compute the false alarm rate per ten
years associated with each set of hyperparameters. Choose the optimal set of hyper-
parameters such that it gives the smallest false alarm rate. If there are more than one
sets which give the same smallest false alarm rate, proceed with step 3.

• Step 3: Using the abnormal synthetic time series that are also used to obtain the
parameters P for the TAGI-SKF method, compute the detection probability associated
with each set of hyperparameters. Choose the optimal set such that it gives the highest
detection probability. If there are more than one sets which give the same highest
probability, randomly choose one set among them.
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Table E.1 Hyperparameters for the Prophet model.

Hyperparameters
Experiment Interval width

Grid Optimal
Synthetic data {0.95, 0.99, 0.995, 0.999} 0.999
Case study #1 {0.95, 0.99, 0.995, 0.999} 0.999
Case study #2 {0.95, 0.99, 0.995, 0.999} 0.99
Case study #3 {0.95, 0.99, 0.995, 0.999} 0.999

Table E.2 Hyperparameters for the Matrix profile, kNN, Autoencoder, and VAE models. N/a
means that the hyperparameter is not applied for the method.

Method Experiment Hyperparameters
Lookback window W Contamination # neighbours

Grid Optimal Grid Optimal Grid Optimal
Matrix Profile Synthetic data {5, 12, 26, 52} 26 n/a n/a n/a n/a

Case study #1 {5, 12, 26, 52} 52 n/a n/a n/a n/a
Case study #2 {5, 12, 26, 52} 52 n/a n/a n/a n/a
Case study #3 {5, 12, 26, 52} 26 n/a n/a n/a n/a

kNN Synthetic data {5, 12, 26, 52} 26 {0.05, 0.1, 0.15, 0.2} 0.2 {5, 10, 15} 10
Case study #1 {5, 12, 26, 52} 52 {0.05, 0.1, 0.15, 0.2} 0.2 {5, 10, 15} 10
Case study #2 {5, 12, 26, 52} 26 {5, 12, 26, 52} 26 {5, 12, 26, 52} 26
Case study #3 {5, 12, 26, 52} 26 {5, 12, 26, 52} 26 {5, 12, 26, 52} 26

Autoencoder Synthetic data {5, 12, 26, 52} 5 {0.001, 0.005, 0.01, 0.015} 0.005 n/a n/a
Case study #1 {5, 12, 26, 52} 5 {0.001, 0.005, 0.01, 0.015} 0.001 n/a n/a
Case study #2 {5, 12, 26, 52} 5 {0.001, 0.005, 0.01, 0.015} 0.001 n/a n/a
Case study #3 {5, 12, 26, 52} 5 {0.001, 0.005, 0.01, 0.015} 0.005 n/a n/a

VAE Synthetic data {5, 12, 26, 52} 5 {0.001, 0.005, 0.01, 0.015} 0.001 n/a n/a
Case study #1 {5, 12, 26, 52} 52 {0.001, 0.005, 0.01, 0.015} 0.001 n/a n/a
Case study #2 {5, 12, 26, 52} 52 {0.001, 0.005, 0.01, 0.015} 0.001 n/a n/a
Case study #3 {5, 12, 26, 52} 5 {0.001, 0.005, 0.01, 0.015} 0.001 n/a n/a
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