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Abstract

Visual inspection is a common approach for collecting data over time on trans-
portation infrastructure. However, the evaluation method in visual inspections mainly
depends on a subjective metric, as well as the experience of the individual performing
the task. State-space models (SSM) have enable quantifying the uncertainty associated
with the inspectors while modelling the degradation of bridges based on visual inspection
data. The main limitation in the existing SSM-model is the assumption that each
inspector is unbiased, due to the high number of inspectors which makes the problem
computationally demanding for optimization approaches, and prohibitive for sampling-
based Bayesian estimation methods. The contribution of this paper is to enable the
estimation of the inspector bias, and to formulate a new analytical framework that
allows the estimation of the inspectors’ biases and variances using Bayesian updating.
The performance of the analytical framework is verified using synthetic data, where the
true values are known, and validated using data from the network of bridges in Quebec
province, Canada. The analyses have shown that the analytical framework has enabled
reducing the computational time required for estimating the inspectors’ uncertainty,
and is adequate for the estimation of the inspectors’ uncertainty, while maintaining a
comparable performance to the gradient-based framework.

1 Introduction

Effective management and decision making on transportation infrastructure requires accurate
measures for the health state of bridges over time [5, 20, 10]. For that purpose, structural
health monitoring (SHM) is implemented to allow tracking the performance of bridges, by
collecting and analyzing temporal data [1, 3]. Collecting data about the health state of
bridges can be done by relying on different approaches, nonetheless, visual inspections are
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considered as the default option [2, 29, 15, 11].
Visual inspections consist in on-site evaluations performed by inspectors who prospect for
evidence of defects in the structural elements and assess the severity of their degradation
condition [24]. The main advantage of visual inspections over other techniques is the
capacity to provide a general evaluation for the structural condition that is not limited to a
specific type of damage [22]. However, visual inspections have inherent limitations where
the inspectors rely on subjective metrics in order to grade the health state of a structural
element [15, 29]. Moreover, the difference in the experience of the inspector performing the
inspection task leads to variability in visual inspection data, where some inspectors could
have a tendency to overestimate the actual degradation state, while others to underestimate
it [23, 25]. In addition, the frequency of inspections for a bridge is defined within a range
from two to four years depending on structure’s age among other factors, meaning that few
inspection data is available over time [24, 17, 9, 21].
There are different types of degradation models that aim at improving the interpretability of
visual inspection data and predict the condition of infrastructure over time [30, 4, 19, 6, 8, 28].
Out of the existing models, state-space models (SSM) have been effectively applied to model
the degradation behaviour while partially taking into account the inspectors’ uncertainty
[14, 12]. The existing SSM framework neglects the bias associated with each inspector,
which could affect the performance of the model given the limited inspections available per
structural element. In addition, the SSM framework relies on a gradient-based approach for
estimating the entire set of model parameters including the inspectors’ uncertainty, which
is computationally demanding.
The aim of this work is to improve the overall predictive capacity of the SSM-based
degradation model by estimating the inspectors’ relative biases, where relative indicates
that the bias of one inspector is estimated in comparison with other inspectors, while
assuming that on average all inspectors are unbiased. Furthermore, an analytical framework
is proposed as a computationally efficient alternative to the gradient-based framework for
estimating the inspectors’ uncertainty. The proposed approach is based on approximate
Gaussian variance inference (AGVI), which is an approximate analytical inference method
[7]. The choice of AGVI over other Bayesian methods is mainly attributed to the fact
that other Bayesian methods rely on either variational or sampling techniques, which can
be computationally demanding in this context. This is because the number of variance
parameters in the deterioration model is equivalent to the number of inspectors performing
inspections on the entire network of bridges [12].
The overall performance of the modified degradation model is examined using a synthetic
dataset and a real database from the Quebec province, Canada. The results and analyses
have shown that including the inspectors’ relative bias improves the performance of the
degradation model. Moreover, the analytical framework provides a comparable performance
with the gradient-based framework while significantly reducing the computational cost of
estimating the inspectors’ uncertainty.

2



Laurent, B., Deka, B., Hamida, Z. and Goulet, J-A. (Preprint 2023). Analytical Inference
for the Inspectors Uncertainty Using Network-Scale Visual Inspections.

1.1 Nomenclature

The SHM database encompass information about the visual inspections and interventions
data from a network of B bridges represented by the set, Q = {B1,B2, ...,BB}, where each
bridge Bj is composed of structural categories Bj = {Sj1 ,Sj2 , ...,SjSj}, and each category is

composed of structural elements Sjs = {ej1, ej2, ..., ejEj}. The structural attributes associated

with each bridge Bj are represented by the set Z = {zj1, zj2, ..., zjQ}. Moreover, visual
inspections provide data about the deterioration state of the elements in each bridge. Each
inspection is performed at a year t, for an element ejp, by an inspector Ii ∈ I = {I1, I2, . . . , II}.
The inspector evaluates the condition ỹ of the elements on a scale from l to u, where l
represents the worst condition possible of the element, while u represents the best condition
possible.

2 Degradation Analyses using State-Space Models (SSM)

The SSM framework is employed to describe the deterioration process using the visual
inspections data from each structural element ejp. The prediction and update steps in the
SSM framework are performed using a transition model and an observation model [12].
Knowing the deterioration state at time t−1, the transition model predicts the deterioration
state at time t,

transition model︷ ︸︸ ︷
xjt,p = Akixjt−1,p +wt, wt : W ∼ N (w; 0,Qki)︸ ︷︷ ︸

process error

, (1)

with xjt,p = [xjt,p, ẋ
j
t,p, ẍ

j
t,p]

ᵀ representing the hidden state vector containing the components,

xjt,p which represents the deterioration condition, ẋjt,p is the deterioration speed, and ẍjt,p is

the acceleration [12]. The matrix Aki represents the kinematic model transition matrix, wt

is the normally distributed process error, and Qki is the covariance matrix of the process
error; The aforementioned matrices are detailed in Appendix A. The hidden states estimates
are updated by the inspection data yjt,p using the observation model,

observation model︷ ︸︸ ︷
yjt,p = Ckixjt,p + vt, vt : V ∼ N (v; 0, σ2

V (Ii))︸ ︷︷ ︸
observation error

, (2)

where Cki = [1, 0, 0] is the observation vector, and vt the observation error associated
with the i-th inspector who has performed the inspection of the element ejp at time t [12].
Performing the hidden state estimation is done using the Kalman filter (KF) [18] and
the RTS Kalman smoother [26], which are further detailed in Appendix A. The SSM
deterioration model is extended to integrate the information about structural attributes
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in the deterioration analyses by using Kernel Regression (KR) [13]. The KR role in the
SSM-KR is to take advantage of the structural similarities (e.g., location, age, . . . , etc.)
across bridges in order to provide an estimate for the initial deterioration speed. The
estimation for the initial deterioration speed in each structural element is done using,

ẋj0,p = (ajp)
ᵀẋz + w0, W0 ∼ N (w0; 0, σ2

w0
), (3)

where w0 is the process noise described by the variance σ2
w0

, and ajp is a vector defined by,

ajp =
k(zj ,Zc(m), `)

ΣMQ
m=1(k(zj ,Zc(m), `))

, m = 1, ..., MQ, (4)

with Q is the number of structural attributes, and Zc(m) = [z1
c , . . . ,z

Q
c ] is a Q−dimensional

grid discretized by M uniformly-spaced reference points [13]. The function k is a multivariate
kernel function k : RQ → R defined by,

k(zj ,Zc(m), l) = k

(
z1
j − z1

c(m)

`1

)
· ... · k

(
zQj − zQc(m)

`Q

)
, m = 1, ..., MQ, (5)

where k(.) is the univariate kernel function and ` = [`1...`Q] are the kernel length param-
eter for each covariate [13]. Determining the kernel length parameters along with other
model parameters is done by using the Maximum Likelihood Estimate (MLE) approach
Hamida:2020ab, which is further detailed in the next section. In order to ensure the mono-
tonicity throughout the deterioration modelling process, the deterioration speed represented
by ẋjp,t : Ẋ ∼ N (µ̇jp,t, (σ

ẋ)2), is maintained within the negative domain according to the

constraint, µ̇+ 2σẋ ≤ 0. If the aforementioned constraint is violated at any time t, the PDF
truncation method is applied to revise the hidden state estimate [27, 12]. Furthermore,
the deterioration condition estimate xjt,p is ensured to be within the feasible condition
bounds [l, u], by performing space transformation using the transformation function o(·)
[12]. The transformation function o(·) enables mapping each point in the original bounded
space [l, u] to a point in the unbounded space such that, o : [l, u] → R. Further details
about the transformation functions o(·) and its inverse o−1(·) are provided in Appendix B.
Figure 1 shows all the steps for modelling the deterioration of element ejp, starting from
the element’s inspection data ỹjt,p, to the bounded degradation state estimate x̃jt,p. From

Figure 1, each element ejp has a set of inspections ỹjt,p and structural attributes zjp. The

structural attributes zjp can provide a prior estimate for the deterioration speed ˙̃xj0,p by using
KR as described in Equation 3. The transformation function o(·) is employed to perform
the transformation on the inspection data ỹjt,p from the bounded space to the unbounded

space, and obtain yjt,p. Thereafter, the inspection data yjt,p and the prior estimate for the
degradation state are provided to the SSM model to infer and predict the degradation state
xjt,p over time. The degradation state xjt,p is back-transformed to the original bounded space
by relying on the inverse transformation function o−1(·). The set of parameters involved in
the SSM-KR degradation model are described in the next section.
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Figure 1: Flowchart for modelling the deterioration of element ejp, starting from the
inspection data ỹjt,p and structural attributes zjp. The inspection data are transformed
using the step function o(·) to the unbounded space so that it is possible to model the
deterioration behaviour using the SSM model. The SSM model also relies on the initial
estimate of the deterioration speed ˜̇xjt,p provided by the KR model. The end result of the

framework is the bounded deterioration state estimate x̃jt,p which is obtained using the
transformation function o−1(.).

2.1 Degradation Model Parameters and the Inspector Relative Bias

The full set of parameters to be estimated in the SSM-KR deterioration model [13] are,

θ = {σV (I1:I), σW , n, σ0, σ̈0, p1, p2, σw0, `} , (6)

where σV (I1:I) is the standard deviation of each inspector Ii ∈ I, σW is the process error
standard deviation, σ0 and σ̈0 are the standard deviations for the initial condition and
initial acceleration respectively and p1, p2 are parameters associated with standard deviation
of the initial deterioration speed [13]. The parameters σw0 and ` are related to the KR
framework as described in the previous section [12, 13].
From the set of model parameters θ and Equation 2, it can be noticed that the inspectors
biases are omitted by assuming a zero-mean observation error for each inspector Ii ∈ I. It
is possible to bypass this simplification by estimating the relative bias for each inspector,
where the word ”relative” implies that while each inspector could have the tendency to
overestimate or underestimate the true condition, the expected value for the biases from all
inspectors is zero, E[µb(i:I)] = 0. In this context, the observation error for any inspectors
Ii ∈ I is defined by vt : V ∼ N (v;µV (Ii), σ

2
V (Ii)).

The relative bias for each inspector can be estimated using the same Maximum Likeli-
hood Estimate (MLE) approach implemented originally in estimating the SSM-KR model
parameters [13]. The log-likelihood in this context is defined as,

L(θ) =

B∑
j=1

Ej∑
p=1

Tp∑
t=1

ln f(yjt,p|yj1:t−1,p,θ), (7)

where B is the total number of bridges, Ej is the total number of structural element of the
j-th bridge, and Tp is the total number of observation for the p-th element [12]. The full
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formulation for optimizing the models parameters in θ is,

θ∗ = argmax
θ

L(θ),

subject to : σ2
V (Ii) > 0,∀Ii ∈ I,
− u < µV (Ii) < u,∀Ii ∈ I,
σW , n, σ0, σ̈0, p1, p2, σw0, ` > 0,

n ∈ [1, 2, 3, 4, 5].

(8)

Solving the above mentioned problem is possible using an iterative gradient-based optimiza-
tion method such as Newton-Raphson (NR) [16, 12]. Nonetheless, the main limitation of
such an approach is the computational cost, especially as the number of inspectors increases.
Moreover, as inspections are performed every year, the parameters need to be updated with
the new data. In order to resolve these limitations, an analytical inference framework is
proposed in this paper to enable the estimation of the inspectors’ standard deviations as
well as biases.

2.2 Analytical Inference for the Inspectors Uncertainty

The aim of the analytical inference framework is to provide a computationally-efficient
alternative to the NR approach for estimating the inspectors’ uncertainty. The basis of this
framework relies on the analytical Gaussian variance inference (AGVI) approach [7], for
estimating the variance parameters σ2

V (Ii), as well as a recursive framework for estimating
the biases µV (Ii). The estimation of µV (Ii) and σ2

V (Ii) in this framework requires defining
two additional hidden states: vb(Ii) to estimate µV (Ii), and vs(Ii) to estimate σ2

V (Ii) for
each inspector Ii ∈ I, where,

vb(i) : Vb(i) ∼ N (vb(i);µb(i), σ
2
b(i)),

vs(i) : Vs(i) ∼ N (vs(i); 0, σ2
s(i)).

(9)

It should be noted that by implementing this framework alongside the relative bias estimation
framework, it is required to add a correction to the variance estimate σ2

s(i) by adding

the variance of the bias σ2
b(i), such that, σ2

V (Ii) = σ2
s(i) + σ2

b(i). The inference of the
aforementioned parameters is done alongside the inference of the degradation states within
the SSM framework. This is achieved by updating the hidden states Vb(i) and Vs(i), associated
with the inspector Ii, whom has performed the inspection at time t. Accordingly, the
state vector xjt,p at time t is augmented to include the additional hidden states, such that

xjt,p = [xki; vb(Ii); vs(Ii)]
ᵀ, where xki are the hidden states associated with the kinematic

model of the degradation. This adjustment results in modifying the transition matrix A,
and the process error covariance matrix Q so that,

A =

[
Aki 02×2

02×2 I2×2

]
, Q =

[
Qki 02×2

02×2 02×2

]
, (10)
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where I represents the identity matrix. The observation matrix C is also modified to
account for the changes in xjt,p as in, Ct = [Cki, 1, 1]. The estimation for the hidden
states vb(Ii) and vs(Ii) is done simultaneously using the frameworks described in the next
sub-sections. It should be noted that the inspectors errors are considered to be independent,
and the inspector performance over time is assumed to be stationary.

2.2.1 Estimating the Relative Bias for Each Inspector

In this framework, the estimation for the relative-bias µV (Ii) is done recursively by estimating
the hidden states vb(Ii) for all inspectors Ii ∈ I, based on the inspection data from all
structural elements ejp. The initialization for the hidden states vb(Ii) is done based on a
weakly-informative prior with an expected value for the initial bias, µb(i) = 0, and an initial
variance σ2

b(i) = 4, for each inspector Ii ∈ I. Following the initialization step, the analytical

inference framework is applied, where the state vb(Ii) is updated based on the inspection
data yjt,p on element ejp from inspector Ii. The updated state estimate of vb(Ii) is then

employed as a prior in the analyses of structural element ejp+1, which enables updating
the state vb(Ii), with another set of inspection data from the same inspector Ii. The
sequential updates are carried out simultaneously for all inspectors Ii ∈ I, down to the last
structural element with inspection data. It should be noted that during the estimation for
the relative bias Vb(i), the expected value for the initial condition µj0,p of each element ejp is

considered as a ratio of the maximum observation as, µj0,p =
(

1− |E[µb(1:I)]|
u−l

)
×max(yjt,p).

The aforementioned initialization mitigates the likelihood of activating the deterioration
speed constraints described in Section 2, and is found empirically to yield overall good
estimation results.

2.2.2 Estimating the Variance for Each Inspector

Estimating the variance parameters σ2
V (Ii) is done using the AGVI approach [7], and by

learning the hidden state vs(Ii) for each inspector Ii ∈ I. The inference for vs(Ii) is done by
relying on the theoretical definition of the variance such that, var[Vs(i)] = E[V 2

s(i)]−E[Vs(i)]
2.

The AGVI approach is derived based on the assumption that E[Vs(i)] = 0; therefore, the
variance for each inspector can be represented by, var[Vs(i)] = E[V 2

s(i)]. As a result, the

hidden state vs(Ii) is infered by estimating E[V 2
s(i)]. The expected value E[V 2

s(i)] can be

modelled as a random variable Vν̄(i) ∼ N (µν̄(i), σ
2
ν̄(i)), where it has been demonstrated

that σ2
s(i) = µν̄(i)[7]. Moreover, according to the Gaussian multiplication approximation

(GMA) [7], the variable V 2
s(i) can be approximated by a Normal variable described by
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Vν(i) ∼ N (µν(i), σ
2
ν(i)), where at any time t,

µν(i),t|t = µ2
s(i),t|t + σ2

s(i),t|t,

σ2
ν(i),t|t = 2σ4

s(i),t|t + 4
(
µ2
s(i),t|t × σ2

s(i),t|t

)
.

(11)

It should be noted that for clarity, the notation ν is used to refer to the hyper-parameters
describing the square of the inspectors uncertainty V 2

s(i), while ν̄ refers to the hyper-

parameters describing the expected value of the square of the inspector uncertainty E[V 2
s(i)]

.
At time t = 0, the variance σ2

s(i), is assumed to be equal to the initial variance estimate

for each inspector σ2
V , where σ2

s(i) = µν̄(i) = σ2
V . On the other hand, the variance σ2

ν̄(i) is

considered as, σ2
ν̄(i) = 122, which represents weakly-informative prior value for vν̄(Ii). The

transitions of the hidden states vs(Ii) are handled directly by the transition model described
in Equation 1, while using the modified transition matrix A [7]. However, the transition of
the variable vν(Ii) from time t− 1 to t is expressed by,

µν(i),t|t−1 = µν̄(i),t−1|t−1,

σ2
ν(i),t|t−1 = 3σ2

ν̄(i),t−1|t−1 + 2µν̄(i),t−1|t−1.
(12)

Following the transitions, the updates for the hidden states vs(Ii) are done based on the
updates of the hidden state vν̄(Ii) such that,

µν̄(i),t|t = µν̄(i),t|t−1 +Kν

(
µν(i),t|t − µν(i),t|t−1

)
,

σ2
ν̄(i),t|t = σ2

ν̄(i),t|t−1 +K2
ν

(
σ2
ν(i),t|t − σ2

ν(i),t|t−1

)
,

(13)

where Kν is defined as Kν =
σ2
ν(i),t−1|t−1

σ2
ν(i),t|t−1

[7]. The above equations are computed for each

inspector independently, and at each time step where an inspection data is available. The
estimation of the hidden states vb(Ii) and vs(Ii) is done sequentially and over multiple
epochs. The modified parameter estimation framework is detailed in the pseudo-code in
Appendix D. Moreover, further details about the analytical framework are provided in the
flowchart in Appendix C.

3 Visual Inspections Database

This section provides an overview for the network-scale visual inspection database, as well
as the concepts employed in generating synthetic visual inspection dataset.
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3.1 Visual Inspections - Real Case

The database includes reports of visual inspections and interventions on structural elements
from the network of bridges Q. In general, visual inspections are performed on-site and using
standard techniques described in the inspections manual [24]. The inspector evaluates and
records the deterioration condition of a structural element based on four levels of damage
severity, which are: A: Nothing to little, B: Medium, C: Important and D: Very Important
[24]. An example case for an inspection report is, ya = 60%, yb = 20%, yc = 15%, yd = 5%,
which translates to 60% of the structural element area has no damage, 20% has medium
damage, 15% has an important damage and 5% has a very important damage. Note that
the sum of the ratios from each damage category must adhere to, ya + yb + yc + yd = 100%,
where, 0% ≤ ya, yb, yc, yd ≤ 100%. Since the deterioration process is monotonic, it is
possible to aggregate the damage categories into a single measure using,

ỹ = ω1ya + ω2yb + ω3yc + ω4yd, (14)

where ω1 = 100, ω2 = 75, ω3 = 50, ω4 = 25 representing the serviceability for each damage
level, and ỹ is the aggregated observation [12]. Using the aforementioned aggregation
approach, each inspection ỹ becomes a continuous numerical value with ỹ ∈ [25, 100], where
ỹ = 100 is equivalent to a perfect state (ya = 100%, yb = 0%, yc = 0%, yd = 0%), and ỹ = 25
is equivalent the worst state (ya = 0%, yb = 0%, yc = 0%, yd = 100%).

3.2 Synthetic Visual Inspections

Verifying the proposed framework is possible by using synthetic data, where the true
inspectors parameters as well as the true deterioration condition are available. The synthetic
dataset resembles the real database quantitatively and qualitatively, where a set of predefined
criterion are maintained [12]. The true deterioration state of E = 18000 synthetic elements is
generated over a lifespan of T = 60 years, based on the transition model defined in Equation
1, and by using σw = 5× 10−3. In this context, the deterioration condition is represented by
a continuous numerical value where ỹ ∈ [25, 100]. The inspection data are generated using
the observation model in Equation 2 and based on I = 250 synthetic inspectors, where
each inspector Ii ∈ I has an observation error described by, vjt,p : V ∼ N (v;µV (Ii), σV (Ii)).
The bias µV (Ii) and standard deviation σV (Ii) are generated for each inspector using a
Uniform distribution where, σV (Ii) ∼ U(1, 6), and µV (Ii) ∼ U(−4, 4). The total number
of inspections per element range from 3 to 5 observations over time for the majority of
elements, with few structural elements having 8-10 observations.

4 Case Studies

This section presents the case studies the are employed for verifying and validating the
proposed approach for inferring the inspectors’ uncertainty. These case studies are intended

9



Laurent, B., Deka, B., Hamida, Z. and Goulet, J-A. (Preprint 2023). Analytical Inference
for the Inspectors Uncertainty Using Network-Scale Visual Inspections.

to quantify the gain of performance obtained by including the inspector’s biases into the
degradation analyses, as well as comparing the predictive capacity of the SSM-based model
while using the parameters estimated from the analytical or the gradient-based framework.
In order to distinguish the sets of parameters estimated by each framework, the following
notation are defined :

• The set of parameter using the gradient-based framework while considering unbiased
inspectors, θG− = {µv(Ii:I) = 0, σv(Ii:I)} ,

• The set of parameter using the gradient-based framework while considering biased
inspectors, θG = {µv(Ii:I), σv(Ii:I)},

• The set of parameter using analytical framework, θA = {µb(i:I), µν̄(i:I)}.

Finally the computational time required for estimating the inspectors’ uncertainty parame-
ters θv is denoted as tc.

4.1 Verification Analyses Using Synthetic Data

In this section, the synthetic database described in Section 3.2 is used to verify the capacity
of the gradient-based framework to estimate the inspectors’ biases as well as the effect of
considering the bias on the predictive capacity of the degradation model. Therafter, the
proposed analytical framework is employed to estimate the inspectors’ uncertainty from the
same database in order to compare its performance with the gradient-based framework.

4.1.1 Estimating the Synthetic Inspectors’ Uncertainty Using the Gradient-
Based Framework

Verification analyses are performed to study the capacity of the gradient-based framework
to estimate the inspectors’ biases, as well as the effects of including the biases on the
predictive capacity of the SSM-KR model. Figure 2 shows the set of estimated parameters
θG and θG−, where the scatter plots show a comparison between the estimated parameters
versus the true values of both, the inspectors’ standard deviations and biases. From Figure
2a, in view of the concentration of the estimated biases and standard deviations along
the diagonal, it is possible to conclude that the gradient-based framework is effective in
estimating the model parameters associated with each inspector. This is validated by the
accuracy measures reported in Figures 2a and 2b, where the coefficient of determination
R2 is near 90% and the root mean square error (RMSE) is close to zero. Moreover, it
can be noticed from Figures 2b and 2c, that omitting the bias in the previous framework
affects the quantification of the inspectors’ uncertainty. This is because when the biases are
neglected, the standard deviation increase to account for the additional variability resulting
from biases.
The aforementioned sets of parameters are used separately in the SSM-based model in order
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(a) Estimated biases from θG (b) Estimated standard devia-
tions from θG

(c) Estimated standard devia-
tions from θG−

−4 −2 0 2 4
−4

−2

0

2

4
R2 = 0.91

RMSE = 0.7

Inspector’s True µV (Ii)

In
sp

ec
to

r’
s

E
st

im
at

ed
µ
V
(I

i)

1 2 3 4 5 6
1

2

3

4

5

6
R2 = 0.89

RMSE = 0.53

Inspector’s True σV (Ii)
In

sp
ec

to
r’

s
E

st
im

at
ed
σ
V
(I

i)

1 2 3 4 5 6
1

2

3

4

5

6
R2 = 0.69

RMSE = 0.85

Inspector’s True σV (Ii)

In
sp

ec
to

r’
s

E
st

im
at

ed
σ
V
(I

i)

Figure 2: Results for the estimation of all inspectors’ parameters using the gradient-based
framework, the biases µV (Ii) (a), and the standard deviations σV (Ii) (b) while considering
the biased inspectors and σV (Ii) (c) while considering unbiased inspectors , compared to
their true value. Each figure is accompanied by accuracy measures, which include the
coefficient of determination R2 and the root mean square error (RMSE).

to evaluate the effect of including the bias in the degradation model. Figure 3 shows an
example of the degradation analyses performed on the synthetic element e16

1 , where Figure
3a represents the analysis when neglecting the bias, and 3b shows the degradation condition,
when including the bias. The cyan points correspond to the synthetic inspection data, and
the blue asterisks represent the observations corrected with the bias estimated for each
inspector. The black dashed line is the true degradation condition of the elements, while
the red dashed line is the expected value of the condition from the model analyses, and the
shaded areas represent the confidence interval for σModel and 2σModel. In this example, the
framework that considers biases is closer to the true state compared with the framework
without biases, indicating that the inclusion of the bias in the degradation analyses has
improved the predictive performance in this case.
In order to assess the network-scale performance of including the biases, Figure 4 compares
the error in the predictions between the framework considering or neglecting the biases. The
errors in the degradation condition estimates are computed following

∑E
p=1(xjt,p − µjt|T,p)/E,

and for the speed following
∑E

p=1(ẋjt,p − µ̇jt|T,p)/E. By comparing Figure 4a and 4b, the
average forecast errors for both the condition and speed are smaller for the framework that
accounts for the inspector bias, compared with the one with µV (Ii) = 0. Therefore, we can
conclude that the inclusion of the biases is improving the overall predictive capacity of the
SSM-based degradation model.
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Figure 3: Degradation condition analysis from synthetic inspection data ỹ16
t,1 of a synthetic

structural element e16
1 , while neglecting the bias (a) and including the bias (b). The black

dashed line represents the true condition, while the red one is the estimated condition. The
shaded areas represent the confidence interval for σModel and 2σModel.
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Figure 4: Average error in forecast for the degradation condition and speed, over 10 years,
for the gradient-based framework, while including the bias (a), and without biases (b), with
the confidence interval for the estimation ±2σ.
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4.1.2 Estimating the Synthetic Inspectors’ Uncertainty Using the Analytical
Framework

Verification analyses are performed in this section to study the capacity of the analytical
framework to estimate the inspectors’ uncertainty compared with the gradient-based
framework. An example of application of the analytical inference framework for a single
inspector I143 is shown in Figure 5. From this figure, the bias estimates from all the
observations associated with the inspector I143 are shown, where the initial state, defined
by µb = −1.17 and σb = 1.57, is the result of the last epoch of the analytical inference
framework. Similarly, Figure 5b shows the estimation process of the standard deviation
σV (I143). The analytical framework relies on more than one epoch, and the expected values
for the hidden state vb and the hyper-parameter vν̄ obtained at the end of one epoch serve as
prior for the expected values µb and µν̄ for the next epoch. On the other end, the standard
deviations for both hidden states are reinitialized using their prior σb = 1, and σν̄ = 12
to avoid early convergence. The true values for the bias and standard deviation, which
are represented by red dashed lines, are within in the confidence interval of the estimated
values, which confirms the quality of these estimates.
Figure 6 presents the expected values of the estimated hidden states for all inspectors
compared with the true values of the inspectors’ uncertainty. The alignment with the
diagonal line in Figures 6a and 6b confirm the capacity of the analytical framework to
estimate the inspectors’ uncertainty. The coefficient of determination R2 in this case is near
80% and the root mean square error (RMSE) is at 0.66 for the estimated standard deviations
and 1.05 for the estimated biases. By comparing the results from Figures 6 and 2, it is
possible to conclude that the estimation of the inspectors’ parameters is more accurate when
using the gradient-based framework; however, the results from the analytical framework
is still consistent with the true parameters’ value. Moreover, the hidden states associated
with the inspectors’ uncertainty are estimated using only 4 epochs compared with a total
of 3000 epochs for the parameters using the gradient-based method (shown in Figure 2).
This is mainly attributed to the fact that in a single epoch, the analytical inference enables
updating the value of all the inspectors’ hidden states at once. On the other hand, the
gradient-based framework requires multiple epochs for updating the parameters associated
with each inspector. Consequently, the computational time associated with estimating
the inspectors’ parameters is tc = 6 minutes using the analytical framework compared
with tc = 1140 minutes using the gradient-based framework. The computational times are
assessed based on a system equipped with CPU Intel Xeon CPU E5-2687W v4, 256GB
memory and NVIDIA Tesla P40 GPU.
In order to evaluate the SSM-KR performance using the aforementioned parameters, Figure
7 presents the average forecast errors on the degradation condition and speed over the
span of 10 years for the analytical framework. The black dashed line represents the error
associated with the gradient-based framework presented in Figure 4b. From Figure 7a, it
can be noted that the loss in the precision for the prediction of the condition and speed
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Figure 5: Estimation process of the uncertainty parameters of inspector I143, the bias
µV (I143) in (a), and the standard deviation σV (I143) in (b), using the analytical framework,
with the parameters’ true value represented by the dashed line, and the blue area representing
the uncertainty associated with the estimation.

when replacing the gradient-based framework by the analytical one is not significant. The
performance of the SSM-based model is not affected by loss in accuracy on the parameter
estimation from the analytical framework. Consequently, it is possible to conclude that
even though the performance of the gradient based framework is better, the analytical
framework is acceptable for the estimation of the inspectors’ uncertainty.

4.2 Validation Analyses Using Real Database

The real database in this study is composed of visual inspections from year 2007 up to
2019, corresponding to E = 51955 beam elements from B = 5998, bridges. The structural
attributes zj employed within this degradation analyses are: z1

j the elements material, z2
j

the age of the structure, z3
j the bridge’s location represented by the latitude and z4

j the
structural element’s condition. The selection of the aforementioned attributes is based
on the kernel length `, estimated using a MLE approach [13]. In order to perform the
parameter estimation, the database is divided into three independent sets of bridges, 1)
the training set containing Etr = 42374 elements from Btr = 1915 bridges, 2) validation set
with Ev = 6388 elements from Bv = 142 bridges and a testing set with Et = 3193 structural
elements from Bt = 76 bridges.

4.2.1 Real Inspectors’ Uncertainty Quantification Using the Gradient-Based
Framework

Figure 8a and 8b show the histograms of the estimated inspectors’ parameters θG, while
Figure 8c shows the histogram of the estimated standard deviations based on θG− for the
framework considering unbiased inspectors. In Figure 8a, the average of the estimated
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Figure 6: Results for the estimation of all inspectors’ hidden states, the biases µb(i) in (a),
and the standard deviations µν̄(i) in (b), compared to their true value using the analytical
framework. Each figure is accompanied by accuracy measures, which include the coefficient
of determination R2 and the root mean square error (RMSE)
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framework in black, with the confidence interval for the estimation ±2σ.
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Table 1: Performance comparison for the different frameworks in the log-likelihood associated
with the validation and test set.

Model Log-likelihood

Test set Validation set

Biased inspectors, µV (Ii) 6= 0 −35850 −67916

Unbiased inspectors, µV (Ii) = 0 −37100 −68410

biases from all inspectors is 0.12, and is represented by the dashed line. The maximum value
of the absolute bias is max(|µV (Ii)|) = 3.47, while the majority of the estimated bias values
are between −1 and +1. By comparing Figure 8b with 8c, it can be noticed that neglecting
the bias enlarges the standard deviation estimates; this is due to the additional variability
in the inspection data from inspectors having large bias values. In order to validate the
estimation capacity of the gradient-based framework, the estimated parameters θG are
utilized to model the degradation of structural elements from the real database. An example
for time series analyses using the estimated model parameters θG and θG− is shown in
Figure 9, where the inspection data of element e56

128 in bridge b56 are employed to perform
the degradation analysis using the SSM-KR framework, and the estimated parameters θG

and θG−. In Figure 9, in order to distinguish the bias estimated for each inspector, the
observations corrected with inspectors’ biases are represented by an asterisk. Moreover,
the last inspection performed on this element in 2019 (represented by a red circle), was
removed from the training set and was never used in the estimation of the model parameters
nor in the degradation model in order to test the predictive capacity of the SSM-based
model. By comparing the analysis considering biased inspectors (red circle markers) with
the one relying on unbiased inspectors (black square markers), it can be noted that the
addition of the bias improves the consistency with the hidden observation. Moreover, when
the hidden observation is corrected with the inspector’s bias, the degradation condition
prediction overlaps with the hidden observation. The network-scale performance of the
degradation model when considering biased inspectors and unbiased inspectors are reported
in Table 1, where the log-likelihood associated with the validation and test set are shown.
In both cases, the framework showing the best (i.e., the highest) log-likelihood is the one
considering biased inspectors.

4.2.2 Real Inspector’s Uncertainty Quantification Using the Analytical Frame-
work

The analytical framework is validated first, by comparing the parameters θA estimated
using the analytical framework with θG from the gradient-based framework, then, by
evaluating the performance of the SSM-based model at predicting the degradation based on
the estimated inspectors’ uncertainty from θA and θG. The inspectors’ variables estimated
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Figure 8: Histograms for the estimation of the inspectors’ parameters in the transformed
space for the gradient-based framework. Figure (a) and (b) show the histogram for the
estimated biases µV (Ii) and standard deviations σV (Ii) respectively while considering biased
inspectors, while Figure (c) shows the histogram for the estimated standard deviations
σV (Ii), when the inspectors are considered unbiased.
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Figure 9: Deterioration state analysis for the condition of the structural element e3
1 based

on the inspections ỹ53
t,1 ∈ [25, 100]. The inspections ỹ53

t,1 are represented by blue points,
where the asterisks represent the correction associated with the estimated bias µV (Ii), and
the error bars represent the inspectors’ standard deviation. The red point shows the hidden
inspection data that was removed from the training data in order to test the predictive
capacity of the SSM-based model. The expected value for the model estimates for the
condition µ̃56

t|T is shown in red dashed line when µV (Ii) 6= 0, and in black when µV (Ii) = 0.

The red areas represent the confidence interval for σModel and 2σModel while µV (Ii) 6= 0.

17



Laurent, B., Deka, B., Hamida, Z. and Goulet, J-A. (Preprint 2023). Analytical Inference
for the Inspectors Uncertainty Using Network-Scale Visual Inspections.

−4 −2 0 2 4 6
0

20

40

60

80

100

µb(Ii)

N
um

be
r

of
in

sp
ec

to
r

(a) Estimated biases

2 4 6 8 10
0

20

40

60

80

100

µν̄(i)

N
um

be
r

of
in

sp
ec

to
r

(b) Estimated standard devia-
tions

Figure 10: Histograms for the estimation of the inspectors’ variables θA in the transformed
space for the analytical framework while considering the relative biases. Figure (a) show the
histogram for the estimated biases µV (Ii) and Figure (b), the estimated standard deviations
σV (Ii) respectively.

Table 2: Comparison for the computational time required for estimating the
sets of inspectors’ uncertainty θv and model parameters θ while using the an-
alytical and gradient-based frameworks for estimating θv. The computational
times are estimated using a system equipped with CPU Intel¬ÆXeon¬ÆCPUE5 −
2687Wv4, 256GBmemoryandNV IDIATeslaP40GPU.

Method used for estimating Time required for estimating

θv Inspectors’ parameters θv All parameters θ

Gradient-based framework 33 hours 75 hours

Analytical framework 0.3 hours 43 hours

by the analytical framework are reported in Figure 10.
The average of the estimated biases is equal to 0.63 as represented by the dashed line in
Figure 10, while the maximum bias value is max(|µb(Ii)|) = 5.31, and most of the estimated
bias values are between −1 and 2.

By comparing the results obtained with the gradient-based framework in Figure 8, it
can be noted that the histogram for the estimated biases is not exactly centered at zero;
however, this shift is acceptable considering the range of the estimated bias values. The
computational time for both frameworks is reported in Table 2. The time associated with
the inspectors’ variables corresponds to the time required for estimating the inspectors’
parameters for all epochs, while the total time is for the estimation of the entire set of model
parameters θ, which includes the SSM parameters θs, the inspectors’ variables θA or θG,
and the vector of kernel regression parameters θk. Replacing the gradient-based framework
by the analytical framework in the SSM-based model reduces the total computational
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Figure 11: Forecast estimation of the degradation condition versus hidden observation with
different forecast period of the SSM-based model using the estimated parameters of the
analytical framework θA in Figure (a), and gradient-based frameworks θG in Figure (b).

time by 42%. In the gradient-based framework, the estimation of the inspectors’ variables
represents 44% of the computational time where for the analytical frameworks it is less
than 1%.
In order to assess the predictive capacity of the SSM-based method using the variables θA,
the last inspection ỹT of the elements where removed from the training set of the degradation
model. Figure 11a shows a scatter plot comparing the condition states µ̃t|T−1 estimated
from the data available until T− 1 with the corresponding hidden observations ỹT. Figures
11b shows the same scatter plot for the SSM-based model using the parameters θG. The
forecast period can differs for each structural element, as the number of years between two
consecutive inspections is not the same for every bridges. Each type of marker corresponds
to the number of years for the forecast period, (i.e., the number of years between the last
observation used in the training and the hidden observation).
From Figure 11a, the predictive capacity of the SSM-based model shows no difference with
respect to the forecast time. It should be noted that the predictions are not required to
match the inspection data given that the observations do not represent the true state of the
element, which is unobservable in practice. Moreover, by comparing Figure 11a with Figure
11b, the model predictive capacity is not altered by the use of the analytical framework
instead of the gradient-based one for estimating the inspectors’ uncertainty.
The network-scale performance of the analytical framework is evaluated by the log-likelihood
for the test set associated with the SSM-KR model while using θG or θA, which are reported
in Table 3. Even though the gradient-based framework shows a better log-likelihood for
the test set compared with the analytical framework, the analytical framework’s predictive
capacity is still acceptable considering the results from Figure 11, and the improvements in
the computational time shown in Table 2.
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Table 3: Performance comparison for the SSM-based framework in the log-likelihood
associated with the test set, while using the estimates from the analytical and gradient-
based frameworks.

Parameters used in the Log-likelihood for the

SSM-based model test set

θG −35850

θA −36220

5 Conclusion

This paper has examined the inspectors’ uncertainty in the context of visual inspections on
transportation infrastructure. To that end, two frameworks were developed for estimating
the inspectors’ relative biases and standard deviations. The first framework relies on the
MLE approach that is already employed for estimating the SSM-based model parameters,
while the second framework is based on the AGVI estimation framework as well as the
Kalman update step. The verification and validation analyses performed on synthetic
and real databases have led to the conclusion that the inclusion of the inspectors’ relative
bias in the degradation model improves the overall predictive capacity of the framework.
These improvements are demonstrated by an overall reduction in errors for the synthetic
case, and an increased log-likelihood for the test set for the real data. Moreover, both the
analytical and gradient-based frameworks proved to be effective in quantifying the inspectors’
relative biases. The analytical framework implementation provides a significant gain in the
computational time required for the inspectors’ uncertainty estimation (i.e., reducing from
33 hours to 20 minutes), however, the accuracy of the parameters estimation is slightly
reduced in comparison with the gradient-based framework. The total computational time
is reduced by 40% for the real data when using the analytical framework for estimating
the inspectors’ uncertainty. The main limitations of the propose analytical framework are
related to the initialization of the hidden states associated with the biases and variances, as
well as the assumption that globally, the inspectors are unbiased and only their relative
bias are estimated. Overall, we recommend using the analytical approach for estimating
the inspectors’ uncertainty. Even though the predictive capacity of the SSM-KR using the
parameters estimated by the gradient-based framework have shown a better consistency, the
analytical framework estimations remains satisfactory and the gain in the computational
cost compensates for the reduced accuracy.
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A Kalman Filter and Kalman Smoother Equations

The Kalman filter (KF) enables estimating the hidden state xt at time t using two steps,
the prediction step and the update step. The prediction step describes the transition from
xt−1 using a transition matrix Aki as in,

E[Xt|y1:t−1] ≡ µt|t−1 = Akiµt−1|t−1

cov[Xt|y1:t−1] ≡ Σt|t−1 = AkiΣt−1|t−1A
ki,ᵀ +Qki,

(15)

where E[Xt|y1:t−1] is the expected value the hidden state vector xt at time t given all the
observations y1:t−1 up to time t− 1, cov[Xt|y1:t−1] is covariance of the hidden state vector
xt, and Qki is the covariance matrix of the process error. The transition matrix Aki is
described by,

Aki =

 1 ∆t ∆t2

2
0 1 ∆t
0 0 1

 , (16)

where dt is the time step, and I is the identity matrix and. On the other hand, the
covariance matrix Qki is defined as in,

Qki = σ2
w

∆t4

4
∆t3

2
∆t2

2
∆t3

2 ∆t2 ∆t
∆t2

2 ∆t 1

 , (17)

where σw is a model parameter that describe the standard deviation of the kinematic model
process error and Qr is a diagonal matrix of model parameters describing the intervention
errors at the element-level [14]. After the prediction step, updating the model estimate
with observations at time t is possible by using the update step,

f(xt|y1:t) = N (xt;µt|t,Σt|t)

µt|t = µt|t−1 +Kt(yt −Cµt|t−1)

Σt|t = (I −KtC)Σt−1|t−1

Kt = Σt−1|t−1C
ᵀG−1

t

Gt = CΣt−1|t−1C
ᵀ +Rt,

(18)

where the posterior estimates µt|t ≡ E[Xt|y1:t] and Σt|t ≡ cov[Xt|y1:t] are represented by
the expected value and covariance at time t, conditional to the observations up to time t,
the Kalman gain is represented by Kt, and Gt is the innovation covariance. Following the
filtering step, the RTS Kalman smoother (KS) [26] is applied as a backward framework
which relies on the information from all the observations up to time t = T, to update the
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previous hidden states estimates. The equations of the KS are described as in,

f(xt|y1:T) = N (xt;µt|T ,Σt|T )

µt|T = µt|t + Jt(µt+1|T − µt+1|t)

Σt|T = Σt|t + Jt(Σt+1|T −Σt+1|t)J
ᵀ
t

Jt = Σt|tA
ki,ᵀΣ−1

t+1|t.

(19)

B Transformation Function

The transformation function o(x̃) maps a deterioration state from the bounded space
x̃ ∈ [l, u] to the unbounded space x ∈ [−∞,∞], while the function o−1(x) enables reversing
the aforementioned operation. The functions o(x̃) and o−1(x) are described according to
Hamida:2020aa by the equations,

x = o(x̃) =


[

1
Γ(α)

∫ x̃
0 t

α−1e−tdt
]α
, u+l

2 < x̃ ≤ u,
x̃, x̃ = u+l

2 ,

−
[

1
Γ(α)

∫ x̃
0 t

α−1e−tdt
]α
, l ≤ x̃ < u+l

2 ,

x̃ = o−1(x) =


1

Γ(α)

∫ x 1
α

0 tα−1e−tdt, x > u+l
2 ,

x, x = u+l
2 ,

− 1
Γ(α)

∫ x 1
α

0 tα−1e−tdt, x < u+l
2 .

(20)
Note that α is given by: α = 2−n, where n is a model parameter defined as a positive
integer in the range n ∈ [1, 6].

C Full Analytical Framework for Estimating the Inspectors’
Bias and Variance

Figure 12 illustrates the steps for the estimation process using the proposed analytical
framework based on the inspection data from a single bridge Bj . The flowchart on the left
side shows the sequential updates for the variables v(I1:I) associated with each inspector.
For an element ejp ∈ Bj , if an inspection yt is available at year t, the variable v(Ii) associated
with the inspector Ii is updated. The steps for updating v(Ii) for a single inspector Ii
at year t, are outlined in the flowchart on the right side of Figure 12. The first step
corresponds to the update of the variables vν̄(i) and vb(Ii) using the Kalman update step.
Thereafter, the variable vν̄(i) is updated with the additional AGVI update step. Following
the aforementioned update steps, it is possible to obtain vs from vν̄(i), where σ2

s = µν̄(i) and
µs = 0. The resulting estimate for the inspector’s uncertainty v(Ii) at time t is computed
by the summation of vb and vs. These update steps are performed recursively over time for
each element in the bridge Bj . In order to apply the methodology over the entire set of
bridges Q, the same process is repeated sequentially for each bridge Bj ∈ Q.
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Figure 12: Flowchart for the estimation of the inspectors’ uncertainty using the analytical
framework and the inspection data of a single bridge Bj . On the left, the flowchart presents
the iterations performed within the bridge inspection data for estimating the entire set of
inspectors’ variables v(Ii:I). On the right, the flowchart outlines the steps corresponding to
the estimation of a single inspector’s uncertainty v(Ii) at a given time t.
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D Incorporation of the Analytical Method within the Pa-
rameter Estimation Framework for the SSM-KR Model

The estimation of the set of parameter θ = {θs,θk,θv} is done over multiple epochs,
where θs = {σW , n, σ0, σ̈0, p1, p2, σV } associated with the degradation model, θk = {σw0, `}
associated with the kernel regression framework and θv = {µV (Ii:I), σV (Ii:I)} associated
with the inspectors uncertainty are estimated successively, while the other sets remain fixed.

Algorithm 1 Incorporation of the Analytical Method within the estimation framework for
the SSM-KR model

Require: θs0: Initial SSM parameters
Require: θk0 , ẋz: Initial KR parameters and state respectively
Require: x0, ẍ0: Initial state for condition and acceleration
1: θs1 ← NewtonRaphson(L(θs),θs0, ν1)
2: µVs(I1:I) = σV , σV ∈ θs1, σVb(I1:I) = 12
3: µVb(I1:I) = 0, σVb(I1:I) = 1
4: L1 ← −1012 (Initial log-likelihood), L2 ← L(θs1), ε← 0.999 (Convergence tolerance)
5: j ← 1
6: while (Lj+1/Lj) ≤ ε do
7: while (Lj+1/Lj) ≤ ε do
8: Lj ← Lj+1

9: for p := 1 to E do
10: for t := 1 to T do
11: if j = 1 then
12: µV (Ii), σV (Ii),xt+1,p ← AnalyticalFramework(yt,p,xt,p,θ

s
j )

13: else
14: µV (Ii), σV (Ii),xt+1,p ← AnalyticalFramework(yt,p,xt,p,θ

s
j ,θ

k
j , ẋz)

15: Lj+1 ← L(µV (Ii), σV (I1:I))

16: if j = 1 then
17: θsj+1 ← NewtonRaphson(L(θsj ),θj , ν1)
18: else θsj+1 ← NewtonRaphson(L(θsj , ẋz),θj , ν1)

19: [θkj+1, ẋz]← NewtonRaphson(L(θkj ,RecursiveEstimation(ẋz)),θj , ν1)
20: Lj ← L(θj+1)
21: j ← j + 1

22: return θj+1 and ẋz (Resulting parameters)
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