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RÉSUMÉ

Les infrastructures de transport jouent un rôle crucial dans la croissance économique en
facilitant la circulation des personnes, des biens et des services. Au fil du temps, l’état
des infrastructures se détériore en raison du vieillissement, de l’utilisation et des facteurs
environnementaux. Bien que les inspections visuelles périodiques constituent l’approche la
plus courante pour surveiller l’état des structures à grande échelle, elles sont coûteuses et
subjectives. Il en résulte peu de points de données, souvent peu fiables, pour chaque structure.
Malgré cela, la plupart des propriétaires d’infrastructures publiques, s’appuient de plus en
plus sur des modèles de détérioration basés sur les inspections visuelle pour planifier les
activités d’entretien et de réhabilitation. Cependant, se fier uniquement à un nombre limité
d’inspections visuelles pour chaque structure n’est pas suffisant pour modéliser de manière
fiable leur détérioration. La prise en compte des attributs structurels (par exemple, l’âge,
l’emplacement, etc.) peut compenser le manque d’inspections en permettant le partage
d’informations entre les structures. Ces attributs sont de bons prédicteurs de détérioration
et sont souvent facilement disponible. Une récente méthode de régression par le noyaux a
réussi à inclure des attributs structurels dans un modèle probabiliste de détérioration des
infrastructures tout en quantifiant l’incertitude des inspecteurs. Bien qu’elle soit capable de
modéliser de manière fiable la détérioration, cette méthode nécessite des ressources de calcul
considérables et ne peut inclure que peu d’attributs structurels. Ces problèmes rendent
l’approche basée sur les noyaux impropre à la modélisation de la détérioration des grands
réseaux d’infrastructures ; Pourtant, trouver une méthode alternative n’est pas anodin, car
elle doit être probabiliste, efficace sur le plan informatique et capable d’inclure de nombreux
attributs. Bien que les réseaux de neurones bayésiens (BNN) soient bien adaptés aux grands
ensembles de données et possèdent bon nombre des qualités souhaitées, leur intégration dans
le modèle de détérioration existant a été limitée par leurs mécanismes d’inférence reposant sur
l’échantillonnage ou l’optimisation basée sur le gradient. Cependant, l’inférence sous forme
fermée dans les BNN a récemment été rendue possible grâce à une méthode probabiliste
appelée tractable approximate Gaussian inference (TAGI). Cette recherche vise à fusionner
un BNN entrainé par TAGI avec un modèle probabiliste de détérioration des infrastructures
à grande échelle pour apprendre la relation entre les attributs structurels et les taux de
détérioration. La méthode proposée est vérifiée sur un ensemble de données d’inspection
visuelle synthétique et ses performances sont comparées à l’approche existante en utilisant les
données du réseau de ponts de la province de Québec. Il est démontré que la nouvelle méthode
est plusieurs fois plus rapide que la méthode existante sans compromettre les performances
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prédictives. Il intègre de manière transparente tous les attributs disponibles, ce qui supprime
la tâche fastidieuse et chronophage consistant à identifier les variables les plus importantes
à chaque fois que de nouvelles analyses sont effectuées. Ces avantages ont incité à étendre
la méthode proposée pour estimer conjointement les paramètres de l’inspecteur dans toutes
les catégories structurelles (poutres, platelage, etc.), plutôt que de devoir s’appuyer sur la
configuration actuelle par catégorie. Ils ont également permis d’automatiser le traitement de
bout en bout de l’ensemble des données composées de milliers de structures englobant des
millions d’inspections visuelles. L’effet du cadre conjoint sur les paramètres des inspecteurs
est examiné et ses performances sont comparées à l’approche par catégorie utilisant plusieurs
catégories structurelles. Dans l’ensemble, l’efficacité et l’évolutivité des cadres conjoints et
par catégorie proposés permettent de modéliser de manière fiable la détérioration de grands
réseaux d’infrastructures.
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ABSTRACT

Transportation infrastructure plays a crucial role in fueling the economic growth by facilitat-
ing the movement of people, goods, and services. Over time, the condition of the infrastruc-
ture deteriorates due to aging, usage, and environmental factors. Although periodic visual
inspections are the most common approach to monitoring structural health at a large scale,
they are costly and subjective. This results in few and often unreliable data points for each
structure. Despite this, most public infrastructure owners increasingly rely on deterioration
models based on visual inspections for planning maintenance and rehabilitation activities.
Yet, depending solely on a limited number of visual inspections for each structure is not
sufficient to reliably model their deterioration. Factoring in structural attributes (e.g., age,
location, etc.) can compensate for the lack of inspections by allowing information-sharing
between structures. These attributes are good predictors of deterioration and are often
readily available. A recent kernel-based regression method has successfully included struc-
tural attributes in an infrastructure probabilistic deterioration model while also quantifying
the inspectors’ uncertainty. Despite being capable of reliably modeling deterioration, this
method requires considerable computational resources and can only include few structural
attributes. These issues make the kernel-based approach unfit for modeling the deterioration
of large infrastructure networks; yet, finding an alternative method is not trivial, as it must be
probabilistic, computationally efficient, and capable of including many attributes. Although
Bayesian neural networks (BNN) are well-suited for large datasets and have many of the
desired qualities, their integration into the existing deterioration model has been restricted
by their inference mechanisms relying on sampling or gradient-based optimization. However,
closed-form inference in BNNs was recently made possible by a probabilistic method called
tractable approximate Gaussian inference (TAGI). This research aims to fuse a TAGI-trained
BNN with a large-scale infrastructure probabilistic deterioration model to learn the relation
between the structural attributes and the deterioration rates. The proposed method is ver-
ified on a synthetic visual inspection dataset and its performance is compared against the
existing kernel-based approach using the bridge network data from the province of Quebec.
The new method is shown to be orders of magnitude faster than the existing one without com-
promising the predictive performance. It seamlessly incorporates all the available attributes,
which removes the tedious and time-consuming task of identifying the most important ones
each time new analyses are performed. These advantages prompted the extension of the pro-
posed method to jointly estimate the parameters of inspector’ across all structural categories
(beams, slabs, etc.), rather than having to rely on the current category-wise setup. They
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also enabled automating the end-to-end processing of all the data composed of thousands of
structures encompassing millions of visual inspections. The effect of the joint framework on
inspectors’ parameters is examined, and its performance is compared against the category-
wise approach using several structural categories. Overall, the efficiency and scalability of the
proposed joint and category-wise frameworks allow for reliably modeling the deterioration of
large infrastructure networks.
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CHAPTER 1 Introduction

1.1 Motivation

Deterioration of transportation infrastructure from aging, usage, and environmental exposure
is an issue faced by most industrialized countries [4]. For instance, in Canada, 80% of the
roads and bridges are over 20 years old and 40% of them are in fair or worse condition
[5]. Monitoring and maintaining deteriorating infrastructure is essential for prolonging its
life, reducing economic costs, and ensuring public safety. This task becomes challenging
when dealing with large networks of structures on limited budgets, as done by most public
infrastructure managers. In order to make informed decisions and efficiently use the available
resources, infrastructure managers increasingly rely on deterioration models to gain insight
on the current state of their assets and understand how their condition is expected to evolve
in the future. Therefore, reliable deterioration models are critical for effectively allocating
limited resources and maintaining the safety and serviceability of the infrastructure.

The predominant approach to modeling infrastructure deterioration is based on periodic
visual inspections that assess structural health. However, relying solely on raw visual inspec-
tion data is not sufficient because inspections are subjective and infrequent. This results in
few highly uncertain data points for each structure over a long period of time. The lack of
inspections arises over and over again, particularly for newly built structures and for those
with replaced elements, where the past history of inspections becomes irrelevant. Consider-
ing additional sources of information can improve the deterioration models based on visual
inspections by enabling information-sharing between structures. In particular, infrastructure
managers have access to structural attributes like location, age, and traffic load, which have
been shown to be good predictors of structural deterioration [6]. For instance, the deteriora-
tion of a bridge located in a cold climate is expected to be different from one that is located
in a warm one due to the exposure to different environmental loads. Nonetheless, the scale
of the problem makes it challenging to incorporate all available structural attributes into a
network-scale deterioration model. Existing approaches are inefficient and limited to using
only a subset of all the available attributes due to the computational constraints [7]. The
computational time is further amplified when modeling the deterioration of large networks
of structures, where each one is made up of many elements belonging to different categories.
This is because the analysis of each element category requires a hand-picked selection of
attributes. These issues make the existing approaches unfit for modeling the deterioration of
large networks of structures.
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Yet, integrating structural attributes within a stochastic deterioration model based on visual
inspections is not trivial. The approach must be probabilistic for a seamless integration, and
computationally efficient to be practical for large-scale applications. The aim of this work
is to develop a hybrid framework that uses visual inspections to model infrastructure dete-
rioration and factors-in structural attributes to improve the model’s predictions by sharing
information between structures. Unlike the existing approaches [7], the proposed model is
computationally efficient and is not restricted to using only few attributes. Moreover, the
method allowed for the end-to-end data process automation, which will facilitate its adop-
tion by the infrastructure managers. All these advantages make the proposed framework
well-suited for modeling deterioration of large networks of structures.

1.2 Visual Inspections on Networks of Bridges

Infrastructure managers typically monitor the structural health using routine visual inspec-
tions. In this work, infrastructure deterioration is modeled using the visual inspections and
structural attributes from a network of approximately 10000 bridges located in the province
of Quebec, Canada, shown in Figure 1.1. Structural attributes are included in the deteriora-
tion model as they can encode common deterioration patterns between similar bridges. For
instance, bridges located in the southern region of Quebec will experience more freeze-thaw
cycles than those in the north, which is expected to accelerate their deterioration.

500 1000 1500
# of bridges

Figure 1.1 Density map of the network of bridges in Quebec, Canada.

Figure 1.2 illustrates the hierarchy of the data used in this thesis. The network of structures
consists of a set of bridges {B1, B2, . . . , BB}. Each bridge Bj is made up of many elements
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ej
p, where the notation indicates that ej

p is the p-th element from the j-th bridge. The
bridges’ elements are further grouped into a set of structural categories such as beams, slabs,
pavement, and so on, denoted by {Cj

1, Cj
2, . . . , Cj

S}. That is, {ej
1, ej

2, . . . , ej
E(Ci)

} ∈ Cj
i , where

E(Ci) is the number of elements in the i-th category of the j-th bridge, Cj
i . The structural

attributes associated with an element include the material it is made of, in addition to the
attributes it inherits from its parent bridge (e.g., location, traffic load, etc.).

The inspection of a bridge consists of examining each of its elements according to the guide-
lines set by the Ministry of Transportation Quebec [8]. The condition of each element is
evaluated by visually examining it and assigning fractions of its area to four damage cat-
egories: A: Nothing to little, B: Medium, C: Important, and D: Very Important [8]. For
example, an element with a rating of yABCD = {yA = 80%, yB = 0%, yC = 0%, yD = 20%}
implies that 80% of it is undamaged while 20% of it is severely damaged. Modeling the deteri-
oration with four metrics while accounting for their interdependency increases the complexity
of the analysis. Hence, the four damage categories are aggregated into a single metric ỹ using
a weighted sum, as done in the work of Hamida and Goulet [3]:

ỹ = ωAyA + ωByB + ωCyC + ωDyD,

where the weights are defined as ωA = 1, ωB = 0.75, ωC = 0.5, and ωD = 0.25. This results
in ỹ = 100 corresponding to the perfect condition and ỹ = 25 corresponding to the worst
condition.

B
j. . .. . . . . . . . .B

1
B
B

. . .. . . . . .
Cj

1
Cj

S

. . .
ej1

ejE(C1)
. . .

ej1
ejE(CS)
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Element level

Inspection level

ỹj
3,1

ỹj
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ỹj
3,E
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2,E
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ỹj
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year

2014
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. . . . . .

Figure 1.2 Graphical illustration of the components making up the bridge database employed
in this thesis. Each bridge Bj has many elements, which are grouped into structural categories
Cj

i . The inspections are done on an element level, whereby the p-th element on the j-th bridge,
denoted by ej

p, is assigned a condition rating of ỹj
t,p at the time step t.
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1.3 Research Objectives

The objective of this thesis is to develop a scalable and efficient probabilistic deterioration
model that overcomes the limitations of the existing approach based on state-space models
(SSM) and kernel regression (KR). The core objectives include the following:

• Develop a probabilistic deterioration model that is scalable to entire infrastructure
networks.

• Enable a seamless integration of the structural attribute information in the probabilistic
deterioration model.

• Use the advantages of the proposed model to develop an automated end-to-end frame-
work for modeling infrastructure deterioration for all structural categories.

1.4 Thesis Outline

This thesis is organized as follows: Chapter 2 presents a review of the existing methods for
modeling infrastructure deterioration. Since the core objective of this work is to address
the limitations of the existing kernel-based approach, it is covered in greater depth. Chap-
ter 2 also provides the background for the tractable approximate Gaussian inference method
(TAGI), which is used to learn the parameters of the Bayesian neural network (BNN) em-
ployed in this thesis. Chapter 3 presents the methodology behind the proposed infrastructure
deterioration model, which couples a state-space model with a TAGI-trained BNN. Chapter 4
verifies the new model on synthetic data. After verification, this model is compared against
the existing kernel-based approach on synthetic and real datasets. Chapter 5 extends the
proposed method to enable the joint estimation of each inspector’s bias and variance using
all their observations across different structural categories. The effect of the joint estimation
of the inspectors’ uncertainty parameters is examined using real data for several structural
categories. Finally, Chapter 6 presents the conclusion of the thesis, the limitations of the
proposed method, and directions for future work.
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CHAPTER 2 Literature Review

This chapter presents a review of the state-of-the-art methods for modeling infrastructure
deterioration based on visual inspections. The background for the tractable approximate
Gaussian inference method is also provided, as it is used to estimate the parameters of the
proposed deterioration model.

2.1 Infrastructure Deterioration Models Based on Visual Inspections

This section presents methods for modeling infrastructure deterioration based on visual in-
spections.

2.1.1 Discrete Markov Models

The predominant approach behind probabilistic infrastructure deterioration models based
on visual inspections relies on the discrete Markov processes [9–11]. In general, these are
defined by a set of states S = {s1, s2, . . . , sS} and a transition matrix P, where its elements
pij represent the probability of transitioning from state si at time t to state sj at time t + 1.
In the context of infrastructure deterioration modeling, the states represent the condition of
the structural element. For example, s1 ≡ excellent, s2 ≡ good, s3 ≡ fair, and s4 ≡ poor.
In this case, the transition matrix P is defined as follows,

P =


p11 p12 p13 p14

0 p22 p23 p24

0 0 p33 p34

0 0 0 p44

 ,

where the elements below the main diagonal are zero because the condition of the structural
element cannot improve over time without maintenance or repair. Figure 2.1 illustrates
the state transition diagram for this example. The transition probability matrix P can
be estimated from the inspection data using the maximum likelihood estimation (MLE)
method [12]. For a sequence of observed transitions, the log-likelihood function is given by

L(p) =
S∑

i,j

Nij log (pij)
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Excellent

s1
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s3
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s4

p11 p22 p33 p44

p33p12 p23

p13

p14

p24

Figure 2.1 Markov chain representing the deterioration process of a structural element with
the arrows indicating the possible transitions between states.

where Nij is the number of observed transitions from state si to state sj [12]. Maximizing the
log-likelihood yields the following point estimates for the transition probabilities,

p̂ij ≈ Nij∑S
j=1 Nij

,

which corresponds to the fraction of times the given transitions are observed in the data [12].

Despite the widespread adoption of discrete Markov processes for modeling infrastructure
deterioration, they have some notable drawbacks. Namely, the transition matrix P is typi-
cally assumed to be time-invariant (homogenous) to reduce the number of model parameters
and computational demand [11, 13–15]. However, this assumption is not realistic for many
infrastructure systems. To include the non-homogeneity of the deterioration process while
using a homogenous Markov model requires categorizing the structures into age groups and
estimating a transition matrix for each [11,13,16]. Factoring in other covariates that influence
the deterioration process, such as traffic load, climate, and material properties, can be done
in a similar manner [13,14]. However, such an approach considerably increases the number of
transition matrices that must be estimated and requires data to be manually categorized into
groups [13]. Moreover, each group must have a sufficient amount of data for its transition
matrix estimates to be accurate. Alternative approaches to consider the non-homogeneity
of the deterioration process include inhomogeneous Markov models with time-varying tran-
sition matrices [17] and semi-Markov models with transition rate functions [18]. The lack of
adoption of these approaches in practice may be attributed to the challenges associated with
accurately estimating the additional parameters resulting in a marginal improvement in the
predictive performance compared to the standard homogenous Markov models [16,19]. Much
of the recent developments in discrete Markov models for infrastructure deterioration focused
on addressing their limitations by combining them with other methods. These developments
are discussed in Section 2.2.1.
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2.1.2 Regression Models

Regression consists of finding the relation between a response variable y and a set of explana-
tory variables x [20]. In the context of infrastructure deterioration, the response variable is
typically the condition of the structural element and the explanatory variables are the co-
variates that influence the element’s deterioration process such as its age and material prop-
erties. The regression data consists of D pairs of covariates and associated response variables,
D = {(x1, y1), (x2, y2), . . . , (xD, yD)}, and the objective is to learn a mapping g : x 7→ y.

Early application of regression to model infrastructure deterioration primarily consisted of
linear regression [21,22]. Using linear regression in this context is not ideal because it treats
the condition rating as a continuous variable g(x) ∈ R, even though it is discrete [23,24]. To
overcome this limitation, ordinal logistic regression was used to take into account the response
being a discrete variable with more than two categories [23,24]. Feedforward neural networks
(FNN) are another popular approach for modeling infrastructure deterioration based on
regression [19, 25–27]. FNNs can be viewed as a composition of many simple non-linear
functions [20]. Their application to structural health modeling had already been explored two
decades ago [26,27]; however, there has been a resurgence of interest that may be attributed
to the success of neural networks in other domains [28]. Much of the recent work explored
the usage of more advanced architectures such as convolutional neural networks, which are
effective at learning meaningful representation of the input data [29], and recurrent neural
networks, which are suited for processing sequential data [30].

Although widely used, the regression-based approaches employed for modeling infrastructure
deterioration are incapable of quantifying uncertainty in their predictions. This is a major
limitation because the deterioration process is affected by many factors which cannot be fully
accounted for by the covariates. Despite the importance of uncertainty quantification in this
context, a review of the literature did not reveal any attempts at modeling infrastructure
deterioration with methods such as Gaussian process regression [20] or Bayesian neural net-
works [12]. Although these methods report uncertainty in their predictions, regression-based
approaches are still ill-equipped for modeling deterioration based on visual inspections. For
one, the inspection data is highly imbalanced since most of the structures are kept in good
health and are seldom left to deteriorate to the point of failure. This uneven distribution in
the condition ratings biases the regression models towards predicting better condition states.
Moreover, having few inspections per element limits the capacity of regression methods to
effectively capture the temporal dependence of the deterioration process. The reviewed meth-
ods also neglect to factor-in the uncertainty associated with each inspector, which is problem-
atic because the inspection process is inherently subjective [31]. For instance, two inspectors
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may assign different condition ratings to the same structural element depending on their ex-
perience level. Contrary to the regression methods, an approach based on state-space models
has been shown to be effective at probabilistically modeling infrastructure deterioration while
also quantifying the uncertainty of each inspector [3]. This framework is described in the
following section.

2.1.3 State-Space Models

State-space models (SSM) describe the behavior of a system over time using probabilistic
transition and observation models [20]. SSM have been shown to be effective at modeling
infrastructure deterioration on a network-scale [3]. In this context, the transition model
describes the physical deterioration process given by

transition model︷ ︸︸ ︷
xt = Axt−1 + wt,

process errors︷ ︸︸ ︷
wt : W ∼ N (w; 0, Q), (2.1)

where the state of a structural element at time t is represented by a vector xt containing
the condition xt, speed ẋt, and acceleration ẍt, A is the state transition matrix, wt is the
process error, and Q is the process error covariance matrix. The state transition matrix and
its associated process error covariance matrix are defined assuming a constant-acceleration
kinematic model following

A =


1 ∆t ∆t2

2
0 1 ∆t

0 0 1

 , Q = σ2
W


∆t4

4
∆t3

2
∆t2

2
∆t3

2 ∆t2 ∆t
∆t2

2 ∆t 1

 ,

where ∆t is the time step between successive states and σ2
W is the variance of the process

error [3]. The visual inspections are characterized by the observation model, which is given
by

observation model︷ ︸︸ ︷
yt = Cxt + vt,

observation errors︷ ︸︸ ︷
vt : V ∼ N (v; µV (i), σ2

V (i)), (2.2)

where yt represents the observation at time t, C = [1 0 0] is the observation matrix, and vt

is the observation error with µV (i) and σ2
V (i) representing the relative bias and variance of

the i-th inspector [32].

At each time step t, the deterioration state is inferred using the Kalman filter (KF) [33],
which consists of the prediction and update steps. The prediction step estimates the state
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xt from xt−1 using the transition model from Equation 2.1, such that,

µt|t−1 = Aµt−1|t−1,

Σt|t−1 = AΣt−1|t−1A⊺ + Q.

Here, µt|t−1 ≡ E[Xt|y1:t−1] and Σt|t−1 ≡ cov[Xt|y1:t−1] are the expected value and covariance
for the state at time t, given all the observations up to time t − 1, which are denoted by
y1:t−1 ≡ {y1, y2, . . . , yt−1}. In the absence of an observation at time t, the prediction step is
repeated; otherwise, if an observation is available, the update step is applied. The update
step finds the posterior knowledge of xt conditioned on all the observations y1:t using the
Gaussian conditional equations:

f (xt | y1:t) = N
(
xt; µt|t, Σt|t

)
,

µt|t = µt|t−1 + Kt

(
yt − µy,t|t−1

)
,

Σt|t = (I − KtC) Σt|t−1,

Kt = Σt|t−1C⊺/σ2
y,t|t−1,

µy,t|t−1 = Cµt|t−1 + µV (i),
σ2

y,t|t−1 = CΣt|t−1C⊺ + σV (i)2,

where µy,t|t−1 and σ2
y,t|t−1 are the expected value and variance of the predicted observation,

which are obtained using the observation model from Equation 2.2, and Kt is the Kalman gain
matrix, which weighs the importance of the prior predicted state relative to the observation.
The KF can be expressed concisely as

(µt|t, Σt|t, Lt) = Kalman filter
(
µt−1|t−1, Σt−1|t−1, yt, A, Q, C, µV (i), σ2

V (i)
)

,

where Lt denotes the likelihood for the observation yt, given all the previous observations
y1:t−1. Conveniently, the likelihood Lt is parametrized by µy,t|t−1 and σ2

y,t|t−1, which are
readily available:

Lt = f (yt | y1:t−1) = N
(
yt; µy,t|t−1, σ2

y,t|t−1

)
.

Once the state estimates are obtained by the KF, they are then refined using the Kalman



10

smoother (KS) [34], which is given by the following equations:

f (xt | y1:T) = N
(
xt; µt|T, Σt|T

)
,

µt|T = µt|t + Jt

(
µt+1|T − µt+1|t

)
,

Σt|T = Σt|t + Jt

(
Σt+1|T − Σt+1|t

)
J⊺

t ,

Jt = Σt|tA⊺Σ−1
t+1|t,

where µt|T and Σt|T are the posterior mean and covariance of the smoothed state estimates
at time t, given all the observations up to time T, which denotes the time step of the last
observation. The KS can be expressed in a compact form as

(µt|T, Σt|T) = Kalman smoother
(
µt|t, Σt|t, µt+1|t, Σt+1|t, µt+1|T, Σt+1|T, A

)
.

Using the KF to model deterioration requires imposing two constraints on the state estimates
to ensure the condition xt is monotonically decreasing over time and to keep the model
predictions within a predefined range of values [3]. The first constraint is enforced at each time
step by restricting the deterioration rate ẋt to be negative using a probability density function
(PDF) truncation method [35]. The second constraint is imposed before and after analyses
to maintain the hidden states and observations within a predefined range of health indexes
[l, u]. Here, l ≡ 25 represents the worst damage state and u ≡ 100 represents the perfect
condition. This transformation is required because SSM models the observations and hidden
states as Gaussian random variables, which are unbounded. Hence, the original observations
ỹt ∈ [l, u] are first transformed into an unbounded domain (−∞, ∞) to carry out analyses.
Afterwards, the predicted hidden states are back-transformed into the original space [l, u] for
interpretation. Appendix A presents more details related to this space transformation.

Figure 2.2 illustrates an example of time series depicting structural deterioration modeled by
the SSM [3]. The blue points represent the inspections performed on the element, denoted by
ỹt, while the asterisks correspond to the offset associated to each inspectors’ relative bias µVi

.
Each inspector’s variability is quantified by his or her standard deviation σVi

, represented by
the blue error bars. The SSM is capable of predicting the deterioration speed alongside the
deterioration condition. The model predictions are shown by the black dashed line with the
shaded area corresponding to their uncertainty.

Although SSM can effectively model deterioration, they solely rely on the visual inspection
data without sharing information between structural elements. This is especially problematic
when there are only few inspections available for each element. This limitation was addressed
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Figure 2.2 Example time series depicting structural deterioration modeled by the SSM.

by coupling the SSM framework with a kernel-based regression (KR) method [7], which is
detailed in Section 2.2.2.

2.2 Hybrid Infrastructure Deterioration Models

This section starts with an overview of the recent approaches for modeling infrastructure
deterioration with hybrid models. This is followed by a detailed description of the hybrid
framework made up of a state-space model combined with kernel regression, since the core
objective of this thesis is to develop a method that overcomes its limitations.

2.2.1 General Overview

A number of recent approaches sought to model infrastructure deterioration with hybrid
frameworks consisting of two models. In general, this is done to avoid reliance on the visual
inspections, which are highly subjective and limited in number [31]. The reliance on visual
inspections is overcome by relating the information characterizing the physical understanding
of the deterioration process to the model based on visual inspections. For instance, Zambon
et al. [36] combined a semi-Markov model with an analytical carbonation-induced corrosion
model, and they demonstrated the use of their framework on a single bridge. However, scal-
ing this method to a large network of bridges is not practical, as relating the analytical model
parameters to the transition probabilities of the semi-Markov model requires in-depth knowl-
edge about each structure. Specifically, this approach requires information from the original
design documents and additional tests and measurements on top of the visual inspections
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(e.g., to determine carbonation depths at various points of interest). Collecting this data is a
time-consuming and costly process. Dizaj et al. [37] proposed a similar method, where they
estimated the transition probabilities of a non-homogeneous Markov model using an empiri-
cal model for chloride-induced corrosion. They tested their framework on a single reinforced
concrete column from the UW-PEER database [38]; however, scaling their approach to a
network of structures is impractical as it also requires detailed information on each struc-
ture. In contrast, Hamida and Goulet [7] demonstrated the use of their hybrid framework for
modeling the deterioration of a network of bridges. Their method consists of the state-space
model presented in Section 2.1.3, which serves as the base deterioration model using the vi-
sual inspections, and a kernel regression model, which enhances the base model’s predictions
by sharing information between structural elements using their attributes such as age and
material type. Although this approach was demonstrated to work on a network level, it is still
hindered by limitations that prevent it from being employed in practice. Namely, the kernel
regression model can only use a limited number of explanatory variables, and even with a
low number of inputs, it is computationally demanding. Moreover, bridges are composed of
elements belonging to different categories (beams, slabs, etc.), and a network-level analysis
involves processing each one separately. Hence, each category requires identifying the best
combination of explanatory variables for the kernel regression model, as well as expertise for
selecting its hyperparameters.

While the aforementioned hybrid frameworks focused on including additional information in
the deterioration analyses, either through physics-based models or by including explanatory
variables, some hybrid frameworks combined two models where one simply aids the other
in obtaining the best possible performance. For instance, Yosri et al. [39] coupled a genetic
algorithm (GA) to refine the estimates of transition probabilities of a Markov model. Simi-
larly, Alogdianakis et al. [40] combined a neural network with GA, using the latter to both
find the best network architecture and select the optimal subset of explanatory variables. In
such hybrid models, the underlying base model is not modified. The hybrid framework is
merely used to optimize the base model’s performance. As such, these frameworks still suffer
from the limitations of the base models, be it a Markov model (Section 2.1.1) or a regression
model (Section 2.1.2).

Hybrid models that counteract the limitations of visual inspections by integrating other
sources of information have shown promising results. In particular, the approach based on
state-space models and kernel regression has been validated on a network-scale, albeit with
limitations [7]. Given that one of the objectives of this thesis is to develop a method that
overcomes the shortcomings of this existing approach, it is covered in detail in the following
section.
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2.2.2 State-Space Models with Kernel Regression

Augmenting the state-space model (SSM) framework presented in Section 2.1.3 with a kernel-
based regression method (KR) enables sharing information between structural elements. This
reduces the dependence of SSM on visual inspections alone, which are limited in number for
each structural element. The purpose of KR is to include structural attributes z in the
deterioration analyses to improve the prior for each element’s initial state x0 = [x0 ẋ0 ẍ0]⊺

by sharing information between structures. More precisely, KR predicts the deterioration
rate ẋ0 based on each element’s attributes that are defined for each bridge by a vector
zj = [z1

j . . . zQ
j ]⊺. The KR method involves discretizing each of the Q covariates’ domains

with M reference points, which are then permuted to form a grid of N ≡ MQ points denoted by
G = [g1 . . . gN]⊺ ∈ RN×Q. Each i-th grid point in G corresponds to a unique combination of
the reference points and is associated with a deterioration rate ẋi ∈ ẋz = [ẋ1 . . . ẋN]⊺. KR
estimates each element’s deterioration rate ẋ0 based on the proximity of its attributes zj to
different grid points using a weighted sum given by

ẋ0 = a⊺ẋz + w0, w0 : W0 ∼ N
(
0, σ2

W0

)
, (2.3)

where w0 is the process error and a = [a1 a2 . . . aN]⊺ is the vector of weights, which is obtained
using a multivariate kernel function k(·) following

ai =
k
(
zj, G(i), ℓ

)
∑N

n=1 k
(
zj, G(n), ℓ

) , i = 1, . . . , N, (2.4)

where ℓ = [ℓ1 . . . ℓQ]⊺ are the kernel bandwidths and G(i) is the i-th point on the grid. The
kernel function k : RQ → R is defined as a product of univariate kernels k(·) given by

k
(
zj, G(i), ℓ

)
= k

(
z1

j − g1
i

ℓ1

)
· . . . · k

(
zQ

j − gQ
i

ℓQ

)
.

The parameter estimation of the SSM-KR model is detailed in the work of Hamida and Goulet
[7]. Although coupling SSM with KR leads to improved predictions of the deterioration state,
this hybrid model suffers from several limitations that are presented next.

Limitations of the SSM-KR Model

Using SSM-KR to model infrastructure deterioration on a large scale is hindered by the lack
of scalability and efficiency of the KR method. Namely, KR can only use a limited number of
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structural attributes as its covariates, and even with a few covariates, it requires significant
computational resources. Additionally, the performance of KR is highly dependent on the
selection of its hyperparameters, such as kernel types, which requires expertise [7]. Despite
these limitations, the KR method cannot be easily replaced with any other regression tech-
nique. Its replacement has to be capable of reporting prediction uncertainty to be compatible
with SSM, as well as scalable and computationally efficient to overcome the limitations of
KR. Finding a regression method that meets all these criteria is not trivial. For example,
Gaussian process regression quantifies prediction uncertainty, but it is difficult to scale it
given its non-parametric nature [20]. In contrast, Bayesian neural networks (BNN) are effec-
tive on larger datasets, but the inference of BNN parameters is dominated by sampling-based
or gradient-based methods, making them computationally inefficient if coupled with the SSM
framework. However, the method called tractable approximate Gaussian inference (TAGI)
was recently developed by Goulet et al. [1], which enables analytical inference in BNN, mak-
ing it a suitable candidate for replacing KR as the regression method in the proposed hybrid
model. The next section provides an overview of the TAGI method.

2.3 Tractable Approximate Gaussian Inference

TAGI is a computationally efficient analytical method for inferring the parameters of a BNN
[1]. Although TAGI can be employed to infer the parameters of various network architectures
such as convolutional neural networks and generative adversarial networks [41], it is described
here in the context of a fully-connected feedforward neural network (FNN), which is the
architecture employed in this thesis.

A FNN consists of inputs x ∈ RX and outputs y ∈ RY connected by L hidden layers, graph-
ically depicted in Figure 2.3. These connections are established through matrix-vector mul-
tiplication and addition with the network parameters θ = {W, b}, followed by a non-linear
activation function φ(·). Specifically, the hidden units h(j) ∈ R|j| in layer j are used to obtain
the hidden units in the next layer h(j+1) ∈ R|j+1| following

h(j+1) = W(j)
(
φ(h(j))

)
+ b(j), j = 0, 1, . . . , L, (2.5)

where W(j) ∈ R|j+1|×|j| and b(j) ∈ R|j+1| are the weights and biases in layer j with |j| and
|j + 1| indicating the number of units in layers j and j + 1, respectively. Note that the
activated units in layer j = 0 are defined as x ≡ φ(h(0)).

TAGI uses Equation 2.5 to analytically propagate uncertainty forward while making several
assumptions and approximations. First, it treats the network parameters as independent
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Figure 2.3 Graphical representation of a feedforward neural network consisting of L hidden
layers with A hidden units in each one. The network maps the relation between the inputs
x = [x1 · · · xX]⊺ and the unit at the output layer h(0). To simplify visualization, the output is
shown here as one-dimensional. The observation y is connected to the output layer unit h(0)

and the error term v through the observation model defined in Equation 2.6. The parameters
connecting layer j with layer j + 1 consist of a vector of biases b(j) and a matrix of weights
W(j), such that w

(j)
m,i ∈ W(j) represents the weight connecting the i-th unit in layer j to the

m-th unit in layer j + 1. This figure is adapted from [1].

Gaussian random variables, so that θ ∼ N (µθ, I · σ2
θ). TAGI then uses the Gaussian Multi-

plicative Approximation (GMA) [1,42] to approximate the product of two Gaussian random
variables as a Gaussian. Finally, it locally linearizes the activation function φ(·) at the
expected value of its input and assumes that the hidden units within a same layer are in-
dependent. The justifications for these assumptions and approximations, along with their
detailed derivations can be found in [1]. The relation between the network’s outputs h(O) and
the observed system responses y is described by the following observation model,

y = h(0) + v, v : V ∼ N
(
0, I · σ2

V

)
, (2.6)

where v represents independent zero-mean Gaussian errors. TAGI performs closed-form
inference in several stages. First, it leverages the properties of Gaussian conditional equations
to infer the posterior expected value and covariance for the hidden units in the output layer
h(O) given the observations y, such that,

f(h(O)|y) = N (h(O); µH(O)|y, ΣH(O)|y), (2.7)
µH(O)|y = µH(O) + Σ⊺

YH(O)Σ−1
Y (y − µY ) ,

ΣH(O)|y = ΣH(O) − Σ⊺
YH(O)Σ−1

Y ΣYH(O) .
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Next, TAGI recursively infers the posterior for the hidden units h(j) and parameters θ(j)

on each layer j using (1) a diagonal structure for the covariance of the parameters θ and
the hidden layers h(j) and (2) the inherent conditional independence between the hidden
layers embedded in the FNN structure, i.e., H(j−1) ⊥ H(j+1)|h(j). This layer-wise inference
is performed using the Rauch-Tung-Striebel (RTS) smoother [34] as follows,

f(h|y) = N (h; µH|y, ΣH|y),
µH|y = µH + JH

(
µH+|y − µH+

)
,

ΣH|y = ΣH + JH

(
ΣH+|y − ΣH+

)
J⊺

H ,

JH = ΣHH+Σ−1
H+ ,

f(θ|y) = N (θ; µθ|y, Σθ|y),
µθ|y = µθ + Jθ

(
µH+|y − µH+

)
,

Σθ|y = Σθ + Jθ

(
ΣH+|y − ΣH+

)
J⊺

θ,

Jθ = ΣθH+Σ−1
H+ ,

where the following shorthand notations are defined for simplicity: {θ+, H+} ≡ {θ(j+1), H(j+1)}
and {θ, H} ≡ {θ(j), H(j)}. Given that TAGI parameters θ = {W , B} are initialized with
a weakly informed prior, the inference is performed over multiple successive passes over the
training set. To prevent overfitting, this iterative learning process is stopped once the per-
formance on the validation set degrades.

Despite TAGI providing closed-form inference for the parameters of BNN while matching
state-of-the-art performance on various regression tasks [1], it treats the error variance σ2

V

in Equation 2.6 as a hyperparameter. This requires identifying an optimal value for σ2
V sep-

arately from the analytical framework, which is computationally expensive. It also restricts
σ2

V to be homoscedastic, i.e., constant across the input covariates. These limitations were
addressed in the work of Deka [2], which is presented next.

2.4 Observation Error Variance Inference with TAGI

TAGI can be extended to infer the error variance σ2
V from the observation model in Equa-

tion 2.6 by coupling it with the Approximate Gaussian Variance Inference (AGVI) method
[2, 43]. AGVI establishes the relation between the error variance σ2

V , the error v, and the
square of the error v2. The key relation is formed by noting that the expected value for the
square of the error v2 is equal to the variance of the error v, and treating this variance as a
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Gaussian random variable. Using the definition of variance to express this statement as an
equation yields

var [V ] = E
[
V 2

]
−��

��*0
E [V ]2 = σ2

V ≡ v2 : V 2 ∼ N
(
µ

V 2 , I · σ2
V 2

)
,

where we leverage the definition of v as a zero-mean Gaussian error with a variance of σ2
V ,

and denote the expected value of v2 as v2. Establishing this relation enables AGVI to connect
the priors of v2, v2, and v as follows,

f
(
v2
)

= N
(
µ

V 2 , I · σ2
V 2

)
, Expected value of square of errors (2.8)

f
(
v2 | v2

)
= N

(
µ

V 2 , I ·
(
3σ2

V 2 + 2µ2
V 2

))
, Square of errors (2.9)

f(v | v2) = N (0, I · µ
V 2). Errors (2.10)

Figure 2.4 illustrates these connections as a directed acyclic graph (DAG). The detailed
derivation of these relations is presented in the work of Deka and Goulet [2, 43].

vv2v2

µ
V 2

σ2

V 2

Figure 2.4 Graphical representation of the relation between the error v, the square of the
error v2, and the expected value of the square of the error v2, which models the error variance
σ2

V . The arrows indicate the dependence between the units. This figure is adapted from [2].

AGVI is coupled with TAGI by introducing additional hidden units in the neural network’s
output layer. Each additional unit corresponds to the expected value of the square of the error
v2

i ∈ v2 = [v2
1 · · · v2

Y]⊺ which models the error variance σ2
Vi

∈ σ2
V = [σ2

V1 · · · σ2
VY

]⊺ associated
with the observation yi ∈ y = [y1 · · · yY]⊺. This formulation allows the error variance σ2

V to be
treated as heteroscedastic, i.e., to vary across the input covariates. From Equations 2.8–2.10,
the forward propagation of uncertainty through the DAG in Figure 2.4 relies only on the
prior mean and variance of v2, which are predicted by the neural network. More precisely,
µ

V 2 and σ2
V 2 correspond to the mean and variance of the additional hidden units from the

output layer of the network. For instance, if the target variable is two-dimensional, then the
output layer of the network will have four units, where the first two correspond to the prior
prediction for the expected value of the observation y and the last two correspond to the
prior prediction for the expected value for the square of the error v2. Figure 2.5 illustrates
how the DAG from Figure 2.4 is integrated into the neural network architecture with a slight
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yθ(0) θ(1) θ(L-1)

θ(L)

θ
(L)

v2

Figure 2.5 Compact representation of the network architecture from Figure 2.3 coupled with
the DAG from Figure 2.4. The network parameters connecting layer j to layer j + 1 are
denoted as θ(j). This figure is adapted from [2].

modification. Namely, the output units of the network corresponding to v2 are restricted
to the positive domain using an exponential activation function, which yields ṽ2 = exp(v2).
This is done because v2 models the observation error’s variance σ2

V , which must be positive.
When v2 is treated as a Gaussian, its transformation ṽ2 is described by a log-normal PDF [2],
whose moments can be computed analytically as follows,

µ
Ṽ 2

= exp
(
µ

V 2 + 1
2σ2

V 2

)
, (2.11)

σ2
Ṽ 2

=
(
exp

(
σ2

V 2

)
− 1

)
⊙ exp

(
2µ

V 2 + σ2
V 2

)
, (2.12)

where ⊙ denotes element-wise multiplication. To preserve the relations in Equations 2.8–2.10,
ṽ2 is approximated as a Gaussian random variable.

Inferring the error variance σ2
V using the network architecture shown in Figure 2.5 requires

modifying the hidden vector h(O) in the Gaussian conditional update defined in Equation 2.7.
Specifically, the hidden vector h(O) is concatenated with the error vector v, forming the
augmented hidden vector h = [h(O); v]. The posterior mean and covariance of the augmented
hidden vector h are then computed using the Gaussian conditional equations in the same
manner as in Equation 2.7, which yields

µH|y = µH + Σ⊺
YHΣ−1

Y (y − µY ) , (2.13)
ΣH|y = ΣH − Σ⊺

YHΣ−1
Y ΣYH . (2.14)

Following this, the posterior PDF of the error f(v|y) is marginalized from the joint PDF
f(h(O), v|y) defined by Equations 2.13–2.14. The posterior moments of the error vector v are
then used to obtain the posterior moments of the square of the error v2 using the Gaussian
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multiplicative approximation (GMA) [42], resulting in

µV 2|y = µ2
V |y + σ2

V |y, (2.15)

ΣV 2|y = 2
(
σ2

V |y

)2
+ 4σ2

V |y ⊙ µ2
V |y. (2.16)

Continuing our way through the DAG from Figure 2.5, the posterior of ṽ2 is found from the
prior and posterior information about the square of the error v2 using the RTS smoother [34],

µ
Ṽ 2|y

= µ
Ṽ 2

+ J
Ṽ 2

(µV 2|y − µV 2),

Σ
Ṽ 2|y

= Σ
Ṽ 2

+ J
Ṽ 2

(ΣV 2|y − ΣV 2)J⊺

Ṽ 2
,

J
Ṽ 2

= Σ
Ṽ 2V 2

Σ−1
V 2 ,

where the covariance between the square of the error v2 and ṽ2 is simply Σ
Ṽ 2V 2

= Σ
Ṽ 2

[2].
Finally, the posterior of v2, which models the error variance σ2

V , is found from the prior and
posterior information about the transformed random variable ṽ2. The posterior moments of
v2 are given by

µ
V 2|y = µ

V 2 + J
V 2(µ

Ṽ 2|y
− µ

Ṽ 2
),

Σ
V 2|y = Σ

V 2 + J
V 2(Σ

Ṽ 2|y
− Σ

Ṽ 2
)J⊺

V 2 ,

J
V 2 = Σ

V 2Ṽ 2
Σ−1

Ṽ 2
,

where the covariance between the transformed random variable ṽ2 and the original random
variable v2 is

Σ
V 2Ṽ 2

= I ·
(
σ

V 2 ⊙ exp(µ
V 2 + 1

2σ2
V 2)

)
.

The remainder of TAGI’s inference procedure remains unchanged. Namely, the posteriors
for the hidden units h(j) and the parameters θ(j) for each layer j are inferred in a recursive
manner as detailed in Section 2.3. Coupling TAGI with AGVI, henceforth simply referred to
as TAGI, enables analytical inference of both the heteroscedastic observation error variance
and the neural network’s parameters and hidden units.

Figure 2.6 illustrates an application of TAGI to a one-dimensional heteroscedastic regression
problem. Such variation in system response over the input space x is typically observed
in real-world applications due to lack of access to all the explanatory variables [2]. Note
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Figure 2.6 Illustration of TAGI’s capacity to learn a mapping to a target variable with
heteroscedastic variance. This figure is adapted from [2].

that the regression problem tackled in this thesis is significantly more complex than the one
shown in Figure 2.6; contrary to this simple example, the objective is predicting a target
variable that is not directly observable. Learning such a latent relation is challenging as
the target variable (i.e., deterioration speed) used for training the regression method has
to be inferred from a limited amount of data, which consists of few highly uncertain visual
inspections corresponding to the deterioration condition of an element. Nonetheless, the
next chapter presents how the proposed infrastructure deterioration model is able to learn
the aforementioned latent relation by using TAGI.
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CHAPTER 3 Hybrid Framework for Modeling Infrastructure Deterioration

The hybrid framework described in Section 2.2.2 combines a state-space model (SSM) with
the kernel regression (KR) to model infrastructure deterioration. However, the SSM-KR
approach has several limitations that make it impractical for large-scale applications. Specif-
ically, it is limited to using few structural attributes, lacks computational efficiency, and
requires fine-tuning to perform effectively. This chapter presents a new hybrid framework
that addresses these limitations. The proposed model couples the SSM method from Sec-
tion 2.1.3 with a Bayesian neural network (BNN) that employs TAGI (Section 2.4) as an
inference engine. This new SSM-BNN approach offers significant improvements over SSM-
KR in terms of scalability, computational efficiency, and ease of use.

This chapter starts with presenting the methodology of the new SSM-BNN model in Sec-
tion 3.1. Following this, Section 3.2 outlines all the parameters of the new model. Finally,
Section 3.3 presents the estimation procedure for the model parameters.

3.1 Modeling Infrastructure Deterioration with SSM-BNN

In the proposed SSM-BNN model, the SSM backbone (Section 2.1.3) models the infrastruc-
ture deterioration, while the BNN component is used to enhance the SSM predictions by
learning the relation between the attributes of structural elements (age, location, etc.) and
their deterioration rates. Thereafter, this learned relation is used to define better priors for
the initial deterioration rates of elements. To illustrate this, let us examine how a fully-trained
SSM-BNN estimates the evolution of the deterioration state of a p-th structural element from
the j-th bridge, denoted by ej

p.

The estimation of the deterioration state of a given element starts with transforming its
visual inspection data ỹj

t,p = [ỹj
1,p . . . ỹj

T,p]⊺ ∈ [l, u] into an unbounded domain yj
t,p =

[yj
1,p . . . yj

T,p]⊺ ∈ (−∞, ∞) using the function o(·) detailed in Appendix A. Here, l represents
the worst damage state and u represents the perfect condition. The transformed observa-
tions yj

t,p are then passed to the SSM, which relies on the Kalman filter (KF) to estimate
the element’s deterioration state over time. The KF starts with a guess about the element’s
initial state and propagates this prior knowledge forward in time using the transition model,
generating predictions that are updated using the observations (see Section 2.1.3). Defining
the initial state of an element xj

0,p = [xj
0,p ẋj

0,p ẍj
0,p]⊺ is an important aspect that affects the

quality of the KF predictions. Much like the SSM-KR model presented in Section 2.2.2,
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the SSM-BNN model improves initialization of the KF for each element ej
p by predicting its

initial deterioration rate ẋj
0,p based on its structural attributes zj

p. The SSM-BNN method
defines the full initial state of each element as follows,


xj

0,p

ẋj
0,p

ẍj
0,p

 ∼ N


µj
0,p︷ ︸︸ ︷

µj
0,p

µ̇z

0

,

Σj
0,p︷ ︸︸ ︷

σj
0,p 0 0
0 σ̇z 0
0 0 σ̈0


2 . (3.1)

Here, µj
0,p and σj

0,p correspond to the expected value and standard deviation of the element’s
initial condition, which are defined as

µj
0,p

.= yj
1,p, (3.2)

σj
0,p

.= max {σ0, σV,t=1} , (3.3)

where yj
1,p is the first observation on the element, σV,t=1 is the standard deviation correspond-

ing to the uncertainty of the inspector that performed the first observation, and σ0 is the
global standard deviation of the initial condition. The prior uncertainty of each element’s
initial condition σj

0,p is defined with a maximum operation to prevent having a prior with a
variance lower than the first observation. The expected value and standard deviation of the
element’s initial deterioration speed, denoted by µ̇z and σ̇z, are predicted by the BNN based
on the element’s attributes zj

p:

(µ̇z, σ̇z) .= BNN
(
zj

p

)
.

These values define the prior knowledge for the deterioration speed and are clipped as µ̇z ∈
[−3, 0] and σ̇z ∈ [0.05, 0.5] to keep the predictions of the BNN within a reasonable range and
ensure numerical stability of the deterioration model. Finally, the element’s acceleration state
is initialized with an expected value of zero and the global standard deviation parameter σ̈0.
In contrast to the parameters defined on an element-by-element basis, the global parameters
are shared among all the elements.

After defining the element’s initial state xj
0,p, it is passed into the KF, together with the

element’s transformed observations yj
t,p. The KF then predicts the deterioration state of the

element over time {xj
0,p, . . . , xj

τ,p}, where τ denotes the time-horizon of the prediction. At
each time step of the KF, the deterioration rate ẋj

t,p is restricted to be negative by requiring
that µ̇j

t,p + 2σ̇j
t,p ≤ 0 [3]. If this condition is not satisfied, the deterioration rate is constrained

to the negative domain by truncating its PDF [3, 35]. Following the completion of the KF,
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the Kalman smoother (KS) is used to refine the KF state estimates. The smoothed state
estimates are then back-transformed to the original space {x̃j

0,p, . . . , x̃j
τ,p} using the inverse

of the transformation function o(·)−1 (see Appendix A). Figure 3.1 graphically illustrates the
overview of this process while omitting the aforementioned finer details.

ej
p ỹj

t,p yj
t,p SSM xj

t,p

o(·)

l u

x̃j
t,p

o(·)−1

zj
p

ẋj
0,p

BNN

−∞ ∞

−∞ 0

Figure 3.1 Overview of the procedure for estimating the deterioration state of the p-th ele-
ment from the j-th bridge, denoted by ej

p, using the proposed SSM-BNN framework. The
original visual inspections of the element ỹj

t,p are first transformed into an unbounded do-
main using the sigmoid function o(·), yielding the transformed observations yj

t,p. The BNN
then uses the structural attributes of the element zj

p to define its initial deterioration rate
ẋj

0,p. The initial state xj
0,p and the transformed observations yj

t,p are then passed into SSM to
predict the element’s deterioration state over time xj

t,p = [xj
t,p ẋj

t,p ẍj
t,p]⊺ for t ∈ {1, 2, . . . , τ},

where τ denotes the time-horizon of the prediction. These predicted states are finally back-
transformed to the original space using o−1(·), resulting in x̃j

t,p = [x̃j
t,p

˜̇xj
t,p

˜̈xj
t,p]⊺.

3.2 SSM-BNN Model Parameters

The parameters of the SSM-BNN model include the inspectors’ relative biases µV1:I and
standard deviations σV1:I that characterize the observation errors (Equation 2.2), the standard
deviation of the process noise error σW that characterizes the imperfection of the transition
model (Equation 2.1), and the standard deviations defining the prior of the initial state
{σ0, σ̇0, σ̈0} for the Kalman filter. In this framework, the standard deviation of the initial
deterioration rate σ̇0 is described by the parameters p1 and p2 as follows,

σ̇2
0 = p2

1 (u − µ̃1) + p2
2, (3.4)

where µ̃1 represents the expected value of the condition at t = 1. This relation is intended to
improve the estimation of the deterioration rate given that each element has a low number
of inspections over time [3]. The intention is to counteract the low number of observations
in the time series by incorporating an informative prior, so that the elements having a near
perfect condition (u−µ̃1 ≈ 0) will start with a lower uncertainty about their deterioration rate
compared to worn out elements, whose uncertainty is defined in proportion to their condition.
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The value of µ̃1 is initially set to the first observation y1, but once the smoothed estimates
are obtained, it is redefined as the smoothed estimate for the condition at the first time step
µ̃1 = µ1|T. As a result, the Kalman filter and smoother need to be run twice: the first time
to get the smoothed estimates and define µ̃1, and the second time to get the final smoothed
estimates. The relation in Equation 3.4 was proposed by Hamida and Goulet [3] based on
experiments with the real and synthetic data. The remaining parameters of the SSM-BNN
include the weights and biases of the BNN represented by θBNN and the space transformation
parameter n, which governs the curvature of the transformation function used to bound the
hidden states and observations (see Appendix A). All the model parameters are compactly
organized in the following set,

θ = {µV1:I , σV1:I , σW , σ0, σ̈0, p1, p2, θBNN, n}.

3.3 Parameter Estimation Procedure

This section presents an overview of the estimation procedure for all the model parameters,
followed by a more detailed exposition of the recursive process for estimating the BNN
parameters.

3.3.1 Estimation of the Global Model Parameters

The parameters of the proposed SSM-BNN model are estimated using a combination of
gradient-based optimization and approximate Bayesian inference [12]. The estimation of θ

is divided into three stages: 1) estimation of the inspectors’ parameters θI = {µV1:I , σV1:I},
2) estimation of the process noise and initial state parameters θS = {σW , σ0, σ̈0, p1, p2}, and
3) estimation of the BNN parameters θBNN. These parameters are estimated from multiple
passes over the data, which is split into training, validation, and test sets. The data is
split while ensuring that the elements of a same structure cannot be simultaneously in the
training set and the validation or test sets. The number of passes over the data is controlled
by measuring performance using the likelihood on the validation set. The likelihood function
corresponds to the joint prior predictive probability of all the observations on the network of
bridges, given the model parameters θ, and assuming that the observations are conditionally
independent given the hidden states xj

t,p. The natural logarithm of the likelihood is taken to
ensure numerical stability, resulting in the following log-likelihood function

L(θ) =
B∑

j=1

Ej∑
p=1

Tp∑
t=1

ln f(yj
t,p|yj

1:t−1,p, θ),
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where B denotes the total number of bridges in the network, Ej denotes the number of
structural elements in the j-th bridge, and Tp denotes the number of inspections for the p-th
element in the j-th bridge. The log-likelihood of the validation set is evaluated after each
estimation stage (θI, θS, θBNN). If there is no improvement, the parameter update at that
stage is discarded.

To illustrate the full estimation procedure, let us examine it with a single pass over the
data. The estimation procedure starts with learning θS and σV with the Newton-Raphson
(NR) gradient optimization algorithm [3]. Here, the σV parameter is the standard deviation
assigned to each inspector. In this initial step, all inspectors are assumed to be unbiased
(µV1:I = 0), each having the same observation error N (0, σ2

V ). The optimization is carried out
using NR to maximize the log-likelihood L(θ) with respect to θS and σV . After completing
this stage, the inspectors’ parameters θI are learned while keeping the rest of the model
parameters fixed. The inspectors’ parameters are estimated using the Approximate Gaussian
Variance Inference (AGVI) method presented in Section 2.4 in the context of Bayesian neural
networks. For details related to using AGVI to estimate inspectors’ uncertainty, refer to
the work of Laurent et al. [32]. Following the estimation of the inspectors’ parameters θI,
the estimates of the SSM parameters θS are refined using NR, as in the initial step above.
The final stage involves estimating the parameters of the BNN θBNN while keeping θI and θS

fixed. The estimation of θBNN relies on the Tractable Approximate Gaussian Inference (TAGI)
method (Sections 2.3–2.4) employed in a recursive manner, which is detailed in the next
section. The sequential estimation of θI, θS, and θBNN is repeated until the improvement in the
validation-set’s log-likelihood is negligible. Since the number of options for the transformation
parameter n is limited, its optimal value is determined by repeating the full estimation
procedure for all of its possible values n ∈ {1, 2, 3, 4, 5}. The full estimation procedure is
summarized by the Algorithm 1.

Algorithm 1: The pseudocode for estimation of the model parameters θ.
for n ∈ {1, 2, 3, 4, 5} do

optimize {σW , σV , σ0, σ̈0, p1, p2} using NR
while validation set log-likelihood improvement ≥ 0.1% do

optimize θI = {µV1:I , σV1:I } using AGVI
optimize θS = {σW , σ0, σ̈0, p1, p2} using NR
optimize θBNN using recursive estimation (Section 3.3.2)

end
end
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3.3.2 Recursive Estimation of the BNN Parameters

The parameters of the BNN are estimated through a recursive process, where the BNN plays
a role in generating the response variables that it is trained with. More precisely, the BNN
uses the structural attributes of each element zj

p to define their initial deterioration speeds
ẋj

0,p ∈ xj
0,p. The initial state vector of each element xj

0,p is then passed into the SSM to obtain
the smoothed estimates of their initial speeds f(ẋj

0,p|yj
1:T,p) = N

(
µ̇j

0|T,p, (σ̇j
0|T,p)2

)
, which are

used to train the BNN. Figure 3.2 illustrates the full recursive estimation procedure, which
is explained in detail in the following paragraph.

Initially, at iteration i = 0, the parameters of the BNN θBNN are calibrated to predict the
smoothed estimates of the deterioration speed produced by the SSM approach (Section 2.1.3),
where the priors for the initial states xj

0,p are defined as follows,


xj

0,p

ẋj
0,p

ẍj
0,p

 ∼ N


µj
0,p︷ ︸︸ ︷

µj
0,p

0
0

,

Σj
0,p︷ ︸︸ ︷

σj
0,p 0 0
0 g(γp1, p2) 0
0 0 σ̈0


2 . (3.5)

Here, the prior expected value and standard deviation for each element’s condition, denoted
by µj

0,p and σj
0,p, are defined as in Equations 3.2–3.3. The initial acceleration is also defined

as was presented in Section 3.1, with an expected value of zero and a standard deviation

[xj
0,p ẋ

j
0,p ẍ

j
0,p]ii = 0, Li = −∞

start
SSM

(µ̇j
0|T,p, σ̇

j
0|T,p)i

BNN(θi
BNN) θi+1

BNN SSM-BNN(θi+1
BNN )

zj
p

Li+1 > Li

return θi
BNN

end

train

yesi = i+ 1

no

predict

Figure 3.2 The recursive process of estimating the BNN parameters θBNN. At i = 0, the initial
states [xj

0,p ẋj
0,p ẍj

0,p]i are defined with Equation 3.5 and passed through the SSM to obtain the
smoothed initial speeds (µ̇j

0|T,p, σ̇j
0|T,p)i. These are then used to train the BNN, so that it learns

to predict them based on the structural attributes zj
p. The SSM-BNN model then evaluates

the log-likelihood of the validation set Li+1 and compares it to the previous iteration Li. If
there is an improvement, the BNN uses the structural attributes zj

p to define the priors for
the initial deterioration speeds ẋj

0,p, and the recursive loop is continued. Otherwise, the loop
is terminated and the BNN parameters from the previous iteration θi

BNN are returned. The
forward and backward steps of the loop are represented by the magenta and blue arrows.
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parameter shared by all the elements σ̈0. Lastly, the prior of the initial speed is defined with
an expected value of zero and a standard deviation parameter g(γp1, p2), which corresponds
to the linear relation from Equation 3.4 with a slope parameter p1 scaled by a positive factor
γ ∈ R+. Scaling the slope of the linear model provides a broad prior for the initial speeds,
which is intended to provide the SSM model with more flexibility to fit the low number of
highly variable observations in the time series and improve the first set of smoothed estimates
used for training the BNN model. A scaling factor of γ = 5 is employed in this thesis based
on the experiments with synthetic data.

After defining the priors for the initial states xj
0,p, they are propagated forward in time with

the Kalman filter (KF). The KF estimates are then improved using the Kalman smoother
(KS), yielding the smoothed initial speeds (µ̇j

0|T,p, σ̇j
0|T,p). These are then used to train the

BNN, whose objective is to learn to predict the initial deterioration speed based on the struc-
tural attributes zj

p. The BNN is trained using the TAGI method presented in Sections 2.3–2.4.
Following the first iteration, the SSM-BNN model is used in subsequent iterations (i > 0) to
obtain the smoothed initial speeds (µ̇j

0|T,p, σ̇j
0|T,p) as outlined in Section 3.1, with one excep-

tion. The prior standard deviation for each element’s deterioration speed σ̇j
0,p is defined with

Equation 3.4, rather than with the standard deviation predicted by the actively trained BNN
model. This is done to avoid a premature convergence caused by the predicted deterioration
speeds having narrow priors, which restricts the capacity of the deterioration model to fit the
observations. Given the recursive nature of estimating the BNN parameters, this can result
in the BNN learning a poor representation of the relation between the structural attributes
and the deterioration speeds. The recursive procedure of estimating the smoothed initial
speeds (µ̇j

0|T,p, σ̇j
0|T,p) with SSM-BNN and then using them to estimate the BNN parameters

θBNN is repeated until there is no improvement in the validation set log-likelihood L.
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CHAPTER 4 Case Studies

4.1 Introduction

This chapter presents two case studies comparing the proposed SSM-BNN model with the
existing SSM-KR model presented in Section 2.2.2. Prior to comparing these two methods,
the proposed SSM-BNN model is first verified on synthetic data, where the true parameters
and states are known. The synthetic visual inspection data is designed to have characteristics
similar to the real visual inspection data from the network of bridges in the province of
Quebec. Section 4.2 describes the real and synthetic data. Section 4.3 compares the two
deterioration models on the synthetic data, while Section 4.4 compares them on the real
data.

4.2 Real and Synthetic Data Description

The real data consists of visual inspections performed on roughly 10000 bridges located in
the Quebec province of Canada. Each bridge is characterized by a set of attributes such
as age, location, and material type. The inspection frequency for each bridge ranges from
once a year to once every five years, with the majority of the bridges undergoing four or five
inspections in total from 2007 up to 2023. To ensure that the synthetic data is representative
of the real data, it is generated with characteristics similar to those derived from the real
visual inspections on the beam elements. The synthetic data consists of E = 20000 elements,
each designed to have a service life of τ = 60 years. The deterioration curves for each
synthetic element are generated using the transition model defined in Equation 2.1 with
the standard deviation of the process noise set to σW = 5 × 10−3. To ensure that these
curves exhibit the characteristics of the real deterioration, several criteria are enforced on the
synthetic elements’ states xj

t,p [3]. For instance, a slow deterioration is imposed by requiring
that the condition of each element at half of it service life has degraded by no more than
15%, i.e., xj

T
2 ,p

> 0.85 × xj
1,p. The full set of criteria is provided in the work of Hamida and

Goulet [3]. Following the creation of the synthetic deterioration curves, a set of 300 synthetic
inspectors is created, with each inspector’s error defined by vt : V ∼ N (µVi

, σ2
Vi

). The
bias and standard deviation of each inspector’s error are sampled from uniform distributions,
following µVi

∼ U(−4, 4) and σVi
∼ U(1, 6). The synthetic visual inspection data is generated

using the observation model defined in Equation 2.2 by sampling synthetic observations from
the true synthetic deterioration states. The synthetic inspections are created while ensuring
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that the inspection frequency of the synthetic elements matches the inspection frequency of
the real beam elements. The true deterioration states and observations are generated in the
transformed space using n = 4 as the transformation function parameter. The synthetic
structural attributes zj are generated using the relation proposed by Hamida and Goulet [7]:

zj = ln(|ẋj
0|) + w0, w0 : W0 ∼ N (0, 0.12). (4.1)

This relation results in unevenly distributed synthetic attributes as illustrated by the plot of
their histogram in Figure 4.1. Using synthetic attributes that exhibit a long-tail distribution
allows verifying the robustness of the proposed framework.
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Figure 4.1 Histogram of the synthetic structural attribute.

4.3 Analyses on Synthetic Data

The SSM-BNN framework is verified on synthetic data using a simple neural network archi-
tecture. Namely, one hidden layer is employed with 128 hidden units and ReLU activation
functions. The parameters of the BNN are initialized using He’s method [44]. The training
data is standardized to have a zero mean and unit variance, and the network is trained with
a batch size of 16. To prevent overfitting, the training data is further split into training and
validation sets using an 85/15 split. In order to use the SSM-KR framework as a benchmark,
its KR component is configured following the work of Hamida and Goulet [7]. For details
related to the training procedure and hyperparameters of KR, refer to Appendix B.

Figure 4.2 illustrates the latent relation between the synthetic structural attribute z and
the initial deterioration speed ẋ0 learned by the BNN, along with the training data and the
ground truth. The true speed lies within two standard deviations of the mean predicted by
the BNN for nearly the full range of inputs; the exception is only in the range of inputs outside
the training data z ∈ [−0.4, 0). The BNN also correctly captures the heteroscedasticity of
the data and assigns large uncertainty to the ranges with a lower density of training data
z ∈ [−7, −2].
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Figure 4.2 The latent relation between the synthetic structural attribute z and the deteriora-
tion speed ẋ0 learned by the BNN. The black line represents the expected values predicted by
the BNN with the shaded green area representing uncertainty. The true relation is depicted
by the red line with the shaded red area representing its variability. Having this variability
makes the synthetic attributes resemble reality, where structures with different attributes can
deteriorate at the same speed.

Having verified that SSM-BNN is capable of learning the latent relation between the synthetic
structural attribute and the initial deterioration speed, we now proceed to compare it with
SSM-KR on the synthetic data. To evaluate the performance on a network scale, we randomly
sample 500 elements from the synthetic data and examine the capacity of the two models for
predicting the deterioration conditions and speeds. First, we examine the predictive capacity
of the two models to estimate the initial deterioration speeds. Figure 4.3a presents the
scatter plot of the true initial deterioration speed ẋ0 versus the predicted initial deterioration
speed µ̇0 for the synthetic data. The initial speed values estimated by both models exhibit a
reasonable spread around the diagonal line of the scatter plot. In Figure 4.3b, the histogram
showing the difference between the true and predicted values demonstrates that SSM-KR
model is slightly biased compared to the SSM-BNN model.

Figure 4.4 illustrates the capacity of the two models to predict the condition and speed across
different time intervals following the last inspection points. Both models produce reliable
estimates, as evident from their absolute average prediction errors being within reasonable
ranges. Figure 4.4a demonstrates that the SSM-BNN model achieves better predictions for
the deterioration condition closer to the last inspection point, while the SSM-KR model
achieves better predictions further away. The SSM-KR model also achieves slightly lower
prediction errors for the deterioration speed throughout the full prediction time interval, as
shown in Figure 4.4b. Despite the marginal disparity in terms of the predictive capacity, the
SSM-BNN model completed training in approximately half the time required by the SSM-
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(a) Scatter plot of the true speed ẋ0 versus
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Figure 4.3 Scatter plot and histogram comparing the true initial deterioration speeds ẋ0 of
the synthetic elements with those predicted by SSM-BNN and SSM-KR.
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Figure 4.4 Absolute average errors for the difference between the predicted values for condi-
tion µj

t,p and speed µ̇j
t,p and the true values for condition xj

t,p and speed ẋj
t,p across different

time intervals following the last inspection points.

KR model (Table 4.1). The computational difference between the two models becomes more
pronounced when increasing the number of training data and structural attributes, which
significantly slows down the SSM-KR model [7]. Furthermore, while the SSM-KR model
requires hyperparameter tuning to achieve the performance displayed here, the SSM-BNN
model is able to match that with a default network configuration.
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Table 4.1 Training time for SSM-KR and SSM-BNN on the synthetic data.

Model Training time (min)
SSM-KR 57.4

SSM-BNN 28.5

Some challenges with the inspection data are illustrated by the deterioration analysis of a
synthetic element e912

1 in Figure 4.5. The inspector I1 is noticeably biased towards overesti-
mating the element’s condition, which shifts upwards the deterioration condition estimates
of both the SSM-BNN and SSM-KR. Although the estimated initial speed for both models is
close to the true value, the overestimation of the deterioration condition forces both models
to compensate by overestimating the deterioration speed. Despite the challenges posed by
the variable and biased inspection data in this example, both models perform equally well, as
illustrated by their predictions almost overlapping and the true state being within two stan-
dard deviations of their predictions. Overall, the synthetic analyses presented here verified
the functionality of the SSM-BNN framework. The SSM-BNN method demonstrated a com-
parable performance to the SSM-KR method on a synthetic dataset with a single structural
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Figure 4.5 Predicted deterioration of a synthetic element e912
1 . The predictions of SSM-BNN

are shown in purple while the predictions of SSM-KR are shown in green. The true deteri-
oration is represented by the dashed black line. The shaded area represents the uncertainty
associated with the predictions of SSM-BNN. The synthetic inspections are represented by
the blue circles. The blue asterisks represent the inspections corrected by the estimated bias
of the associated inspector and the blue error bars indicate the inspector’s estimated stan-
dard deviation.
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attribute. Although SSM-KR resulted in lower errors for the forecasted speed, training the
SSM-BNN model was two times faster and it achieved better estimates of the initial speeds.
Moreover, unlike the SSM-KR model, the SSM-BNN model did not require any hyperparam-
eter tuning. The next section compares the two models on the real data to demonstrate the
performance and scalability advantages offered by the SSM-BNN framework.

4.4 Analyses on Real Data

The SSM-BNN and SSM-KR models are compared using all the inspection data for the
beam elements’ category. The two models are initially compared using only four covariates
in the regression analyses due to the computational limitations of the KR. The distributions
of these covariates are shown in Figure 4.6. The four covariates consist of three structural
attributes and the condition at time t = 1, which is estimated as the average of the first
three inspections [7]. The structural attributes include the elements’ material type, latitude,
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Figure 4.6 Histograms of the four covariates used in the regression analyses.
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and age at the time of the first inspection. Contrary to KR, BNN has no issues with using
a higher number of covariates. Hence, the SSM-BNN model is also trained with all the
available structural attributes, which are summarized in Table 4.2. This is done to determine
the impact of the additional covariates on the model’s predictive capacity.

Table 4.2 Summary of the structural attributes used in the regression analyses.

Attributes Value Ranges Unit
material - -
age [0, 165] years
latitude [44.99, 58.67] -
longitude [−79.51, −57.25] -
total length [3.674, 1801.4] meters
slab length [3.674, 1801.4] meters
total width [3.35, 120] meters
surface area [17, 52420] square meters
number of lanes [0, 13] lanes
percentage of trucks [0, 100] -
annual average daily traffic [0, 178000] cars per day

The architecture employed for the BNN consists of one hidden layer with 128 units. The
activation function is chosen to be ReLU and the weights and biases of the BNN are initialized
using He’s method [44]. A batch size of 16 is used for training the BNN. The material
covariate is one-hot encoded [45] while the rest of the covariates and the response variables
are standardized to have zero mean and unit variance. The data used to train the BNN is
randomly split into 85% training set and 15% validation set.

Figure 4.7 illustrates the performance of SSM-KR versus SSM-BNN on a single beam ele-
ment from a bridge in Quebec. The plot shows the predictions by SSM-KR and SSM-BNN
using four covariates and SSM-BNN using all twelve covariates. As shown in Figure 4.7, the
predictions of all three models are nearly identical. The predicted deterioration conditions
are also well aligned with the inspection data shown in blue, despite it indicating that the
element’s condition is improving over time. The test observation shown in red is hidden
during the training to assess the models’ predictive capacity. In all three cases, the test ob-
servation nearly overlaps with the model predictions. Note that the inspection data does not
represent the true deterioration condition, but rather its estimate affected by each inspector’s
observation error. Thus, it is not expected, nor is it necessary, for the model predictions to
match the inspection data exactly. However, examining the difference between the expected
values of the model predictions µ̃t|T−1 and the test observations ỹt=T on a network scale can
reveal if the model is biased to overestimating or underestimating the deterioration condi-
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Figure 4.7 The deterioration of element e317
3 , as predicted by SSM-KR and SSM-BNN (4)

using 4 covariates and SSM-BNN (12) using all 12 covariates. The predicted deterioration
is represented by the dashed black lines, with the shaded areas representing the confidence
intervals. The observations ỹ317

t,3 corrected by each inspector’s estimated bias µV (Ii) are rep-
resented by the circles, with the error bars representing each inspector’s estimated variance.
The inspection shown in red is hidden from the models during training, and is used to gauge
their predictive capacity.

tion. To examine this, ≈11000 test observations are used to generate the scatter plots shown
in Figure 4.8. Different markers are used to represent the test observations corresponding
to different forecast durations since the inspection frequency vary for different bridges. Fig-
ure 4.8 shows that the majority of the scatter points are roughly equally distributed on both
sides of the diagonals indicating that none of the examined models are biased.

The global performance of the models is measured using 1004 beam elements from an inde-
pendent test set of bridges whose data was not used to train the models. The performance
metrics include the log-likelihood and training time of the models, which are presented in
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Figure 4.8 Scatter plots of the test observations ỹt=T versus the model predictions µ̃t|T−1 for
≈ 11000 beam elements. The predictions are obtained by SSM-KR and SSM-BNN using 4
covariates and SSM-BNN using all 12 covariates. Different markers correspond to different
forecast durations since the inspection frequency is not uniform among different bridges.

Table 4.3. The SSM-BNN models significantly outperform SSM-KR in terms of computa-
tional time, which is measured using a system equipped with an Intel Xeon 6248R CPU,
256GB memory, and an NVIDIA Quadro RTX 5000 GPU. The training of SSM-BNN mod-
els is nearly two orders of magnitude faster than the training of SSM-KR. The SSM-BNN
models also achieve ≈ 6% improvement in log-likelihoods compared to the SSM-KR model.
The inclusion of the additional covariates in the SSM-BNN model did not result in a better
log-likelihood, as much of the relevant information is already captured by the four covariates,
which were found to be the most influential in the work of Hamida and Goulet [7]. More-
over, using the log-likelihood to measure if an increased number of covariates improves the
deterioration speed estimates is limited because the deterioration speed is a latent variable,
which limits its impact on the log-likelihood, in contrast to other parameters such as the
inspectors’ variances σVi

.

Table 4.3 The performance and training time of SSM-KR on beam elements against SSM-
BNN with 4 covariates and SSM-BNN with 12 covariates.

model # of covariates log-likelihood total training time (hrs)
SSM-KR 4 -14180 189.3

SSM-BNN 4 -13343 2.9
SSM-BNN 12 -13364 2.8
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CHAPTER 5 Network-scale Joint Estimation of Inspectors’ Parameters

5.1 Introduction

The previous chapter demonstrated that the SSM-BNN outperforms the SSM-KR in terms of
computational efficiency while matching its predictive capacity. The lack of computational ef-
ficiency constraints the SSM-KR to using a limited number of input covariates, which requires
identifying the most influential ones (i.e., feature engineering) for each element category. In
contrast, the SSM-BNN can handle a large number of input covariates, which eliminates
the need for manual feature engineering and introduces the potential to automate the data
processing and parameter estimation. Not being restricted to processing each element cat-
egory one by one also enables pooling the observations of each inspector in the dataset for
estimating their parameters. This is in contrast to the category-wise framework presented
in Section 3, which processes each element category separately and estimates the inspectors’
parameters using only their observations on a single element category. The category-wise
framework also results in different estimates of the inspectors’ parameters for different cat-
egories of elements; whereas, intuitively, one would expect the inspectors’ performance to
remain consistent across different element categories. Moreover, pooling the observations
allows the inspectors’ parameters to be estimated using more data, which should result in
more accurate estimates for inspectors with few observations for a single element category.
Consequently, this chapter presents a network-scale joint estimation framework based on the
SSM-BNN model that learns the inspectors’ parameters using their inspections over all the
different elements. The results compare the inspectors’ parameters estimated using the joint
framework with those estimated using the category-wise framework.

5.2 Parameter Estimation

The proposed joint estimation framework pools the inspections for each inspector across all
element categories. This is in contrast to the SSM-BNN framework presented in Section 3,
which estimates the inspectors’ parameters separately for each element category. The param-
eters of the joint training framework are the same as those of the category-wise framework
presented in Section 3.2. The only difference is that in the joint framework, the inspectors’
parameters {µV1:I , σV1:I} and the transformation function parameter n are shared across dif-
ferent element categories. So the set of parameters for the joint framework are effectively
split into a global set θG, which includes parameters that are shared across different element
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categories, and a local set θL, which includes parameters that are estimated separately for
each element category:

θG = {µV1:I , σV1:I , n} & θL = {σW , σ0, σ̈0, p1, p2, θBNN}.

The procedure for estimating the parameters of the joint network-scale framework is shown
in Algorithm 2. As with the category-wise framework, the parameters are estimated from
multiple passes over the data, which is split into training, validation, and test sets. The split
is done while ensuring that the elements of a same structure are not simultaneously in the
training set and the validation or test sets. The full estimation procedure is repeated for all
the possible values of n since it can only take on a few values. For each n, the estimation
process starts with learning the parameters of each inspector using the AGVI method, as
outlined in the work of Laurent et al. [32]. The estimation of the inspectors’ parameters is
continued until the improvement in the sum of the validation set log-likelihoods of all element
categories is negligible, i.e., ∆∑C

j=1 Lj < 0.1%, where C denotes the total number of different
element categories. The next step involves the estimation of local parameters θL for each
element category separately. The procedure for estimating these parameters is the same as
for the category-wise framework, which is presented in detail in Section 3.2. In short, it
consists of estimating the parameters of the SSM using Newton-Raphson (NR), followed by
estimating the parameters of the BNN using the method presented in Section 3.3.2. The
global estimation of inspectors’ parameters θI, followed by the local estimation of the SSM
parameters θS and the BNN parameters θBNN is repeated until the improvement in the sum of
the validation set log-likelihoods of all element categories is less than a predefined threshold.

Algorithm 2: The pseudocode for the joint estimation framework.
for n ∈ {1, 2, 3, 4, 5} do

while ∆∑C
j=1 Lj ≥ 0.1% do

while ∆∑C
j=1 Lj ≥ 0.1% do

optimize θI = {µV1:I , σV1:I } using AGVI
end
for j ∈ {beams, slabs, columns, ...} do

while ∆Lj ≥ 0.1% do
optimize θj

S = {σW , σ0, σ̈0, p1, p2}j using NR
optimize θj

BNN using recursive estimation (Section 3.3.2)
end

end
end

end
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5.3 Results

This section starts with comparing the SSM-BNN model trained using the joint network-scale
training framework with the SSM-BNN model trained using only the beam elements. The
BNN configuration used for training on the beam elements is the same as the one presented
in Section 4.4. In the network-scale training, all structural categories share the same BNN
configuration. Namely, a BNN with a single hidden layer with 128 hidden units and ReLU
activation function. The training is done with a batch size of 16 and the parameters of the
BNN are initialized using He’s method [44]. The categorical covariates are one-hot encoded
while the rest of the covariates and the response variables are standardized to have zero mean
and unit variance. To prevent overfitting, the training data for the BNN is randomly split
into an 85% training set and 15% validation set.

Figure 5.1 presents the histograms comparing the inspectors’ parameters estimated with the
category-wise approach using the beam elements to those estimated with the joint framework
using all the element categories. The inspector biases µVi

obtained with the joint framework
are centered closer to zero compared to the ones obtained using only beams. Also, the inspec-
tor standard deviations σVi

estimated with the joint framework are generally higher compared
to those estimated with the category-wise approach. This is likely due to inspectors having
larger variations among their observations across categories compared to their observations
on the beam elements only.
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Figure 5.1 Histograms of the inspector parameters obtained using just the beam elements
(category-wise) versus using all the element categories (joint).

While the histograms in Figure 5.1 show the overall distributions of the inspectors’ parameters
estimated by the two frameworks, Figure 5.2 illustrates the changes in the parameters of each
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Figure 5.2 Scatter plots of the inspector biases µVi
and standard deviations σVi

estimated
with the category-wise training using just the beam elements versus those estimated with
the joint framework using all the element categories.

individual inspector. From these scatter plots, we can see that a large portion of inspectors’
parameters change when using the joint estimation framework, with the biases exhibiting a
smaller change compared to the standard deviations. On average, the number of observations
per inspector increased by a factor of seven (or equivalently by 4607 inspections) when using
the joint estimation framework. One might expect that a larger change in the number of
observations would be accompanied by a larger difference between the parameters estimated
by the two frameworks (e.g., ∆µVi

= |µcat
Vi

− µjoint
Vi

|). That is, if an inspector’s observations
shift from being sparse in the category-wise training to becoming abundant in the joint
training, then one would expect two significantly different estimates for that inspector’s
parameters. However, this is not observed from the results. For instance, inspector I64 had
a considerable increase in their number of observations (∆obs = 2428, a 694% increase), yet
their parameters only marginally changed: ∆µV64 = 0.44 and ∆σV64 = 0.08. In contrast, the
inspector with the smallest increase in the number of observations (5 obs. → 22 obs.) had
a comparatively larger change in parameters: ∆µV157 = 2.02 and ∆σV157 = 0.77. Figure 5.3
illustrates the changes in the error distributions for these two inspectors. For reference, the
smallest percentage increase in the number of observations is 236%.

The two frameworks are also compared using the following five structural categories: exterior
walls, front walls, slabs, beams, and pavement. The category-wise training is done on each
of these element categories separately, while the joint estimation is performed using all of
them together. Both frameworks employ the same configuration for the BNN as described in
the beginning of this section. Table 5.1 compares the log-likelihoods of the two frameworks
on the validation and test sets. The joint framework performs better on three out of the
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Figure 5.3 Illustration of the observation errors distributions estimated by the category-wise
and joint frameworks for inspectors I64 and I157. The number of observations for I64 increased
by 2428, whereas inspector I157 only had an increase of 17.

five element categories on the validation set and four out of the five element categories on
the test set. These results indicate that the inspectors’ parameters estimated with the joint
framework are better. The data in Table 5.1 also suggests that the category-wise framework
may overfit the validation data for some categories (e.g, exterior walls and pavement). This
is possible given that the category-wise framework employs more parameters than the joint
estimation framework.

Table 5.1 Comparison of the joint estimation framework versus the category-wise estima-
tion framework using five structural categories. Bold numbers indicate better performance.
The percent changes (evaluated as % ∆ = 1 − Ljoint/Lcat) shown in green/red indicate im-
provement/degradation in performance of the joint framework compared to the category-wise
framework.

Validation set Test setCategory Lcat Ljoint % ∆ Lcat Ljoint % ∆
Exterior walls -1.16E+04 -1.20E+04 -3.6% -5.47E+03 -5.44E+03 0.7%
Front walls -5.79E+03 -5.75E+03 0.7% -2.94E+03 -2.92E+03 0.8%
Slabs -8.18E+03 -8.13E+03 0.6% -3.02E+03 -2.93E+03 3.0%
Beams -2.12E+04 -2.10E+04 1.1% -1.23E+04 -1.25E+04 -2.4%
Pavement -6.64E+03 -7.02E+03 -5.7% -4.69E+03 -3.32E+03 24%
Total -5.34E+04 -5.39E+04 -0.9% -2.84E+04 -2.74E+04 3.5%

The analyses also reveal that the inspectors with smaller uncertainty within the joint frame-
work are more likely to have their category-wise parameters clustered closer together. Fig-
ure 5.4 illustrates this with a scatter of the inspectors’ parameters estimated with the
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Figure 5.4 Illustration of the variability between inspectors’ parameters estimated by the
category-wise framework. The scatter points correspond to the inspectors’ parameters esti-
mated with the category-wise framework using five structural categories. The blue points
are associated with the accurate inspectors (σjoint

Vi
< 2), whereas the red ones correspond to

the inspectors with larger uncertainty (σjoint
Vi

> 4). These thresholds are established based
on the inspectors’ parameters estimated with the joint framework. The contours represent
the estimated density of the scatter points.

category-wise approach on five different element categories. Although the scatter points
correspond to the estimates from the category-wise approach, they are color coded based
on the inspector uncertainty estimated from the joint framework. The blue points corre-
spond to the inspectors with low uncertainty in the joint framework (σjoint

Vi
< 2) and the red

ones correspond to the inspectors with large uncertainty in the joint framework (σjoint
Vi

> 4).
The contours represent the density of the scatter points estimated with a mixture of two
Gaussians [20]. The parameters corresponding to the inspectors with less uncertainty (blue
points) exhibit a tighter spread compared to the ones with higher uncertainty (red points).
This suggests that inspectors that consistently perform well across different elements tend
to perform similarly well across them all. Although inspectors’ biases µVi

exhibit a larger
spread compared to their standard deviations σVi

, their impact on the inspectors’ errors are
less important. For instance, consider an inspector whose observation error is characterized
by a standard Gaussian distribution with a mean µVi

= 0 and a variance σ2
Vi

= 1. In this
case, increasing the bias estimate by one unit (∆µVi

= 1) would result in a minor change in
the range of observation error’s highly likely values, provided the standard deviation remains
constant. In contrast, if the bias remains unchanged, a shift of ∆σVi

= 1 would double the
range of the highly likely observations. Figure 5.5 presents a graphical illustration of these
scenarios.
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Figure 5.5 Illustration of the effects of a unit increase in bias and standard deviation es-
timates on the range of highly probable observations. The figure highlights how bias and
standard deviation adjustments impact the distribution of likely values within the context
of observation error. The black curve corresponds to the original distribution of observation
error, whereas the red and blue curves correspond to the distributions resulting from the bias
and standard deviation adjustments, respectively.

Overall, the joint framework significantly increases the number of observations per inspec-
tor, which is expected to bring their estimated parameters closer to the true values. This is
supported by the joint framework achieving better log-likelihoods on most of the validation
and test sets (Table 5.1). Additionally, estimating inspectors’ parameters using all of their
observations is more congruent with reality, where the performance of inspectors is not ex-
pected to change drastically when inspecting elements from different categories. Finally, the
joint estimation framework takes roughly 4 days to train on the entire dataset of ≈ 10000
bridges with hundreds of elements each, comprising ≈1.6 million inspections. In contrast, the
SSM-KR framework, which can only be trained individually on each element category, takes
over 30 days. Note that this estimate does not include the time spent on feature engineering
for SSM-KR, whereas the joint estimation framework is fully automated.
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CHAPTER 6 Conclusion

6.1 Thesis Conclusions

This thesis proposed a new probabilistic method for modeling the deterioration of large in-
frastructure networks using visual inspections and structural attributes (e.g., age, location,
etc.). The proposed method relies on an established state-space model (SSM) as its founda-
tion, enhancing its capabilities by coupling it with a tailored Bayesian neural network (BNN).
The SSM models the deterioration using the visual inspections while the BNN improves the
SSM predictions using the structural attributes, which encode common deterioration pat-
terns among similar structures. The parameters of the BNN are learned analytically using
the tractable approximate Gaussian inference (TAGI) method, allowing the BNN to seam-
lessly integrate with the SSM.

The proposed method sought to address the limitations of the existing approach that coupled
SSM with kernel regression (KR), which lacks scalability and computational efficiency. The
proposed model was compared against the existing SSM-KR approach on a synthetic dataset
and a real dataset consisting of beam elements from all the bridges in the province of Quebec.
The results showed that the proposed model significantly outperforms the existing method in
terms of computational time while matching its predictive capacity. Moreover, the proposed
model can include many structural attributes, unlike the existing approach, which is limited
to considering only a few. This removes the need to identify the most optimal subset of
attributes for each structural category, which is a time-consuming and menial task. Overall,
these benefits make the proposed method more suitable for modeling the deterioration of
large networks of structures.

The aforementioned advantages of the proposed SSM-BNN model motivated its extension
to a joint estimation framework, where the inspectors’ errors are estimated jointly across
all categories. While the proposed category-wise model yields distinct errors for the same
inspector across individual categories, the joint estimation framework maintains consistent
error estimates for the inspectors across all categories. The joint framework also estimates
the inspectors’ errors using more data, as the observations made by each inspector across
various categories are consolidated. The two frameworks were compared on multiple struc-
tural categories from the real dataset. The joint estimation framework achieved a better
performance on either the test or validation set in seven out of ten instances, indicating that
it is a better approach for estimating the inspectors’ parameters.
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6.2 Limitations

This section outlines the limitations of the proposed deterioration model.

6.2.1 State Constraint on the Deterioration Speed

To model the decline in the condition of a structure over time, the predicted deterioration
speed at each time step must be negative. To accomplish this, the proposed framework re-
stricts the deterioration speed to the negative domain by using a probability density function
(PDF) truncation method [3, 35]. The PDF truncation is applied if µ̇j

t,p + 2σ̇j
t,p > 0 [3].

However, this typically causes an overestimation of the deterioration speed when it is close
to zero or when it has large uncertainty. One possible way to overcome this is by performing
a space transformation in the transition model to ensure the speed is always negative.

6.2.2 Lack of Physics in the Model

The proposed model incorporates the structural attributes which help identify structures
with similar deterioration patterns. This indirectly factors-in the physics of the deterioration
process, albeit in a limited way, by relating the structural attributes to the visual inspec-
tions. For instance, older structures should deteriorate faster as they are exposed to the
environment for a longer period of time, increasing the interaction between the structural
components and damaging agents (e.g., chlorides, carbonation, etc.). However, early stages
of such deterioration are seldom captured by routine surface-level visual inspections. Al-
though the transition equation of the state-space model is rooted in physics, its derivation is
based on simple kinematics. The proposed model could benefit from integrating an analytical
physics model for corrosion or developing a transition model with more nuanced physics.

6.3 Future Work

This section discusses future research which can potentially improve the proposed deteriora-
tion model and extend the other methods used in this work.

6.3.1 Time-varying Inspectors’ Errors

The proposed model assumes that the parameters characterizing the inspectors’ errors are
constant. However, this is not consistent with the reality where the inspectors’ errors are
likely to change over time. For instance, an inspector’s performance is expected to improve
with gaining more experience. To accommodate this non-stationarity, the transition model



46

for the mean and variance characterizing each inspector’s error could be modified to be
time-varying within the AGVI method [2, 46].

6.3.2 Estimating the Initial Conditions with the BNN

The definition of the initial states impacts the trajectory of the time series modeled by SSM.
The effect of the initial states is particularly pronounced when the number of observations
is small. In the context of structural deterioration, the state vector is composed of the
condition, speed, and acceleration. The proposed model employs a BNN for defining the
initial deterioration speed of each structural element based on its attributes. However, the
other two states are initialized without learning any dependence on the available data. The
initial condition is defined as a function of the first few inspections performed on the structural
element, and the initial acceleration is assumed to be zero. While the impact of the initial
acceleration is minimal, the initial condition can significantly alter the trajectory of the
deterioration since condition states are directly observed via inspections.

The overall performance of the deterioration model is expected to improve by refining the
initialization of the state vector. One may accomplish this by using regression to infer the
deterioration speed and condition while accounting for the correlation between them. A
survey of the literature did not reveal a regression method with such capabilities. However,
extending the tractable approximate Gaussian inference (TAGI) method can enable BNN to
predict a multidimensional output with a full covariance matrix. One possible approach is to
relate the hidden units from the last layer of a BNN to the predicted response variables and
the elements of their full covariance matrix. Then, it is possible to leverage the ideas from the
multivariate AGVI method [2, 43] to ensure that the predicted covariance matrix is positive
semi-definite, and to form a relation between the predicted random variables representing
the response variables and the elements of their full covariance matrix.

Methodology

Recall that the observation model employed by TAGI (Equation 2.6) assumes that the obser-
vation errors are independent. Removing this assumption enables factoring in the correlation
between the response variables y = [y1 . . . yY]⊺. Specifically, the new observation model is
defined with a full error covariance matrix as follows,

y = h(0) + v, v : V ∼ N (0, ΣV ) .
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Here, h(0) represents the vector of hidden units corresponding to the predicted response
variables, v denotes the vector of observation errors, and ΣV is the full error covariance
matrix. To enable analytical inference of ΣV , we must modify the TAGI method presented
in Section 2.4. First, the output layer of the neural network requires additional hidden units,
which will correspond to the covariance between the observation errors. Next, we must
ensure the predicted covariance matrix is symmetric and positive semi-definite. One way to
accomplish this is to form ΣV using the Cholesky decomposition [47] as follows,

ΣV = LL⊺,

where L is a lower triangular matrix with positive diagonal entries. So instead of predicting
the elements forming the full covariance matrix, the neural network will predict the elements
forming its Cholesky factor L. That is, the additional hidden units from the output layer
will correspond to the elements of the Cholesky factorization of ΣV . Given that the elements
of the Cholesky factor are treated as Gaussian random variables, the full error covariance
matrix is obtained using the Gaussian multiplicative approximation (GMA) as outlined in the
work of Deka and Goulet [43]. Figure 6.1 illustrates the compact representation of the neural
network architecture with these modifications. The predicted diagonal elements of L are
restricted to the positive domain using the exponential activation function, denoted by l → l̃

in Figure 6.1. The inference procedure is analogous to the one presented in Sections 2.3–2.4,
which consists of applying the Gaussian conditional and RTS smoother equations.

x h(1) · · · h(L)

h(O)

vv2l l̃ v2

yθ(0) θ(1) θ(L-1)

θ(L)

θ
(L)
l

Figure 6.1 Compact representation of the network architecture from Figure 2.3 with modifica-
tions to enable inference of the full error covariance matrix. The neural network’s parameters
connecting layer j to layer j + 1 are denoted by θ(j). This figure is adapted from [2].

Results on a Toy Problem

To verify the proposed methodology, synthetic data is generated with one-dimensional inputs
x ∈ R and three-dimensional outputs y ∈ R3 following

y = (x + 1) · sin(πx) + v, v : V ∼ N (0, ΣV ) . (6.1)
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The correlation between the response variables y is factored-in through the full heteroscedas-
tic observation error covariance matrix ΣV given by

ΣV =


σ2

V1 σV1σV2ρ12 σV1σV3ρ13
... σ2

V2 σV2σV3ρ23

sym. . . . σ2
V3

 ,

where its elements are defined using the following relations,

σ2
V (x) =


σ2

V1

σ2
V2

σ2
V3

 =


0.1 · x + 0.25
0.5 · x2 + 0.1
0.5 · (x + 1.5)2

 , ρ =


ρ12

ρ13

ρ23

 =


0.1

−0.3
−0.25

 .

These relations are chosen to avoid the need to standardize the training data. The ob-
servations are generated using Equation 6.1 with 2000 randomly sampled inputs following
∼ U(−0.75, 0.75). Figure 6.2 demonstrates how the variances change as a function of the
input x.
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Figure 6.2 Illustration of the heteroscedastic nature of the variance functions used.

The neural network architecture employed consists of a single hidden layer with 400 units
and ReLU activations. Training is done using a batch size of one to streamline the coding
of the proposed method. To prevent overfitting, data is randomly split into training and
validation sets using a 70/30 ratio. Figure 6.3 illustrates the training data alongside the
outputs predicted by the neural network. These plots demonstrate the model’s capacity
to effectively predict correlated outputs by leveraging their interdependence. Figure 6.4
shows that the proposed method is capable of learning this interdependence by accurately
inferring the full observation error covariance matrix. The next step in future work is to verify
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the proposed method on synthetic network-scale visual inspection data, where the observed
deterioration condition is correlated with the deterioration speed.
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Figure 6.3 Illustration of correlated and highly variable outputs predicted by a Bayesian
neural network relying on the proposed inference method.
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Figure 6.4 Graphical visualization of the full observation error covariance matrix. The true
relations are shown by the dashed red lines, while those inferred by the Bayesian neural
network are shown by the solid black lines with the shaded regions representing uncertainty.
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APPENDIX A SPACE TRANSFORMATION FOR THE OBSERVATIONS
AND HIDDEN STATES PREDICTED BY THE SSM

The original observations x̃ ∈ [l, u] are transformed into an unbounded domain x ∈ (−∞, ∞)
using the following function:

x = o(x̃) =



[
1

Γ(α)
∫ x̃

0 tα−1e−tdt
]α

, u+l
2 < x̃ ≤ u,

x̃, x̃ = u+l
2 ,

−
[

1
Γ(α)

∫ x̃
0 tα−1e−tdt

]α

, l ≤ x̃ < u+l
2 ,

(A.1)

Here, Γ(·) is the gamma function and α is the shape parameter of the gamma distribution.
The shape parameter is defined as α ≡ 2−n, where n is a positive integer that controls the
curvature of the transformation function near the bounds l and u. After completing the
analyses, the predictions of the deterioration model x ∈ (−∞, ∞) are back-transformed into
the original space x̃ ∈ [l, u] using

x̃ = o−1(x) =


1

Γ(α)
∫ x

1
α

0 tα−1e−tdt, x > u+l
2 ,

x, x = u+l
2 ,

− 1
Γ(α)

∫ x
1
α

0 tα−1e−tdt, x < u+l
2 .

(A.2)

Figure A.1 illustrates the transformation function o(·) with different n values. An example
of the space transformation with a specific n value is shown in Figure A.2.
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Figure A.1 Transformation function o(·) with different n values. Reproduced from [3].
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Figure A.2 Examples of state transformation using o(·) and o−1(·). Reproduced from [3].
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APPENDIX B KR TRAINING AND HYPERPARAMETERS FOR THE
SYNTHETIC DATA

The kernel regression (KR) model predicts the deterioration speed ẋ0 of a given element based
on the proximity of its attributes z to the defined reference points and the hyperplane defined
over them. The KR model in the SSM-KR framework iteratively learns the hyperplane
defined by µ̇z|T and Σ̇z|T using the following equations,

µ̇z|T = µ̇z + Jz

(
µ̇0|T − µ̇0|z

)
,

Σ̇z|T = Σ̇z + Jz

(
Σ̇0|T − Σ̇0|z

)
J⊺

z ,

Jz = Σ̇zA⊺
κΣ̇−1

0|z,

where µ̇z and Σ̇z define the prior for the hyperplane, µ̇0|z and Σ̇0|z are the mean and co-
variance of the deterioration speed at time t = 0 as predicted by Equation 2.3, µ̇0|T and
Σ̇0|T are the mean and covariance of the deterioration speed at time t = 0 obtained from the
Kalman smoother, and Aκ is the matrix containing the weight vectors associated with each
structural element ej

p, i.e. Aκ =
[
a1

1 · · · aj
p

]⊺
, where the weights defining aj

p are obtained from
Equation 2.4.

The KR model is trained using the radial basis function as the kernel function and M = 20
reference points [7]. The rest of the KR model’s hyperparameters are obtained following
gradient optimization and are shown in Table B.1. For more details regarding the training
of the KR model and its hyperparameters, refer to the work of Hamida and Goulet [7].

Table B.1 Optimal hyperparameter values of the KR model found using gradient optimiza-
tion.

Hyperparameter Value
l 0.2007

σW0 0.1469
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