
Journal of Machine Learning Research 23 (2022) 1-33 Submitted 7/21; Revised 12/21; Published 1/22

Analytically Tractable Hidden-States Inference
in Bayesian Neural Networks

Luong-Ha Nguyen∗ luongha.nguyen@gmail.com
James-A. Goulet∗ james.goulet@polymtl.ca
Department of Civil Engineering, Polytechnique Montréal, Montréal, Canada

Editor: Philipp Hennig

Abstract
With few exceptions, neural networks have been relying on backpropagation and gradient
descent as the inference engine in order to learn the model parameters, because closed-form
Bayesian inference for neural networks has been considered to be intractable. In this
paper, we show how we can leverage the tractable approximate Gaussian inference’s (TAGI)
capabilities to infer hidden states, rather than only using it for inferring the network’s
parameters. One novel aspect is that it allows inferring hidden states through the imposition
of constraints designed to achieve specific objectives, as illustrated through three examples:
(1) the generation of adversarial-attack examples, (2) the usage of a neural network as a
black-box optimization method, and (3) the application of inference on continuous-action
reinforcement learning. In these three examples, the constrains are in (1), a target label
chosen to fool a neural network, and in (2&3) the derivative of the network with respect
to its input that is set to zero in order to infer the optimal input values that are either
maximizing or minimizing it. These applications showcase how tasks that were previously
reserved to gradient-based optimization approaches can now be approached with analytically
tractable inference.
Keywords: Bayesian, neural networks, TAGI, Gaussian inference, approximate inference,
adversarial attack, optimization, reinforcement learning

1. Introduction

With few exceptions, neural networks have been relying on backpropagation (Rumelhart
et al., 1986) and gradient descent as the inference engine in order to learn the model
parameters. In such a case, the inference can be seen as approximating the posterior by a
point solution minimizing a loss function. In addition to learning the model parameters, one
may be interested in inferring the values of hidden states in a neural network. Note that
we are not interested here in cases such as variational auto-encoders (Kingma and Welling,
2014), or in generative adversarial networks (Goodfellow et al., 2014; Chen et al., 2016)
where dedicated latent variables are added; we are rather interested in inferring the value of
hidden states from single observation instances. A first example is the case of adversarial
attacks (AA), where images can be tailored in order to fool a neural network into performing
incorrect classifications with high certainty (Goodfellow et al., 2015). In the context of
white-box AA, images that seem realistic for a human observer, are generated by inferring

∗. Equal contribution

©2022 Luong-Ha Nguyen And James-A. Goulet.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v23/21-0758.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v23/21-0758.html

Nguyen and Goulet

perturbations that can be added to the input layer of a neural network in order to fool
it. A second example of hidden state inference involves the definition of policy networks
in reinforcement learning (RL) with methods such as advanced actor critic (A2C) (Mnih
et al., 2016) and proximal policy optimization (PPO) (Schulman et al., 2017). For such
cases, current methods relying on backpropagation use gradient ascent in order to infer the
optimal actions that are maximizing an action-value function (Sutton and Barto, 2018).

The closed-form Bayesian inference for neural networks has long been considered to
be intractable, both in terms of its parameters (Goodfellow et al., 2016) or hidden states
(Ardizzone et al., 2019; Kruse et al., 2021). Recently, the tractable approximate Gaussian
inference (TAGI) (Goulet et al., 2021) method was shown to either be on par or exceed the
performance of neural networks trained with backpropagation in fully connected architectures
(Goulet et al., 2021), for convolutional (CNN) and generative ones (Nguyen and Goulet,
2021b), as well as for deep reinforcement learning with categorical actions (Nguyen and
Goulet, 2021a). This paper shows how we can leverage TAGI’s probabilistic inference
capabilities to infer hidden states, rather than only using it for inferring the network’s
parameters. One novel aspect introduced is the capacity to infer hidden states through the
imposition of constraints designed to attain specific objectives, as illustrated in this paper
through three examples: (1) the generation of adversarial-attack examples, (2) the usage of
a neural network as a black-box optimization method, and (3) the application of inference
on continuous-action reinforcement learning. In these three examples, the constrains are
in (1), a target label chosen to fool a neural network, and in (2&3) the derivative of the
network with respect to its input that is set to zero in order to infer the optimal input values
that are either maximizing or minimizing it. The paper is organized such that before diving
in the theory and examples for these applications in Sections 3-5, Section 2 reviews the
theory behind TAGI. Our goal throughout this paper is to demonstrate that a paradigm
other than gradient-based optimization is possible through analytical inference.

2. Tractable Approximate Gaussian Inference

In terms of notation, we use lower cases letter for deterministic variables, upper cases for
random variables, and bold fonts to denote either vector or matrices. Consider a feedforward
neural network (FNN) where the x ∈ RX is the input layer, z(j) ∈ RA(j) is the j-th layer of A(j)

hidden units, φ(·) is an activation function so that a(j) = φ(z(j)) ∈ RA(j) are the activation
units from the j-th hidden layer, z(O) ∈ R is the output unit, y ∈ R are the observations,
and where the parameters θ are the weights and biases defining the relationships between
layers.

TAGI (Goulet et al., 2021) assumes that the joint distribution between the observations
and a neural network’s parameters is approximated by a multivariate Gaussian distribution,

f

(
θ
y

)
= N

([
θ
y

]
;
[
µθ
µY

]
,

[
Σθ Σᵀ

Yθ

ΣYθ ΣY

])
,

2

Analytically Tractable Hidden-States Inference in Bayesian Neural Networks

so that the parameter inference can build upon the Gaussian conditional equation describing
the probability density function (PDF) of θ conditional on observations y,

f(θ|y) = N (θ;µθ|y,Σθ|y)
µθ|y = µθ + Σᵀ

YθΣ
−1
Y (y − µY)

Σθ|y = Σθ −Σᵀ
YθΣ

−1
Y ΣYθ.

The approach is inherently divided in two steps; first propagate uncertainties through
the network in order to obtain the joint PDFs between the quantities to be updated (that is,
neural network’s parameters and hidden state units) and the observations, and then update
these quantities using the Gaussian conditional equations. The first key operation to be
considered is the propagation of uncertainty from the activation units A(j) ∼ N (µ(j)

A ,Σ(j)
A)

of a hidden layer j to a hidden unit Z(j+1)
i on the subsequent layer j + 1

Z
(j+1)
i =

A∑
k=1

W
(j)
i,k A

(j)
k +B

(j)
i , (1)

where W (j)
i,k are weights and B(j)

i bias parameters that are modelled by Gaussian random
variables. In order to maintain the analytical tractability of Equation 1, TAGI approximates
the product of any pair of weight and activation unit by a Gaussian random variable
WA ≈ N (µWA, σ2

WA), for which the exact moments are computed analytically using Gaussian
multiplicative approximation (GMA), see Appendix B.2 for details. The second key operation
is the propagation of uncertainty through non-linear activation functions

A
(j+1)
i = φ

(
Z

(j+1)
i

)
, (2)

where, in order to maintain the analytical tractability, TAGI locally linearize φ(·) at the
expected value of the hidden units µ(j+1)

Zi
. Maintaining the computational tractability of

equations 1 and 2 requires assuming diagonal covariance structures for the hidden units
among a same layer Σ(j)

Z , and for the parameters Σθ.
The update step, that is, Gaussian conditional inference step, is performed using a

recursive layer-wise procedure; Using the short-hand notation {θ+,Z+} ≡ {θ(j+1),Z(j+1)}
and {θ,Z} ≡ {θ(j),Z(j)}, the posteriors for the parameters and hidden states are computed
following

f(Z|y) = N (z;µZ|y,ΣZ|y)

µZ|y = µZ + JZ
(
µZ+|y − µZ+

)
ΣZ|y = ΣZ + JZ

(
ΣZ+|y −ΣZ+

)
Jᵀ
Z

JZ = ΣZZ+Σ−1
Z+ ,

f(θ|y) = N (θ;µθ|y,Σθ|y)

µθ|y = µθ + Jθ
(
µZ+|y − µZ+

)
Σθ|y = Σθ + Jθ

(
ΣZ+|y −ΣZ+

)
Jᵀ
θ

Jθ = ΣθZ+Σ−1
Z+ .

(3)

Note that the layer-wise recursive procedure defined in equations 3 only requires the storage
of the joint prior PDFs for pairs of subsequent hidden layers and pairs of hidden layers and
the parameters directly connecting into them. This allows maintaining the computational
tractability of the uncertainty propagation and inference steps which scale linearly with

3

Nguyen and Goulet

respect to the number of weight parameters. Despite the approximations mentioned above,
TAGI was shown to match the performance of FNN trained with backpropagation for
regression and classification benchmarks.

The fundamental mathematical operations in convolutional neural networks (that is, ad-
ditions, multiplications and non-linear activations) are no different from those in feedforward
neural networks (Nguyen and Goulet, 2021b). Therefore, the mathematical formulation
presented in §2 for defining the joint PDF for observations and parameters in FNN can be
readily employed in deep convolutional architectures, with the minor addition of a pooling and
noise decay formulation. Existing methods such as the stochastic max pooling introduced by
Peters and Welling (2018) can be directly be applied with TAGI. In addition to this method,
Nguyen and Goulet (2021b) have adapted an average pooling approach to the context of
TAGI, where, as its name indicates, the output is the average of the activation units in the
pooling kernel. For a K-elements pooling kernel, the output Gaussian random variable is
defined as

Apool = 1
K(A1 +A2 + · · ·+AK). (4)

Moreover, in the original TAGI formulation for FNN, the observation errors v standard
deviation parameters σV were considered to be constant during the training. However,
throughout empirical experimentation with CNNs, we noticed that the performance was
improved when using a decay equation

σeV = η · σe−1
V , (5)

where e is the current epoch and η ∈ (0, 1] is the decay factor hyperparameter that needs to
be learned outside of the TAGI analytic inference procedure. This approach is similar to
what is done in standard deep neural networks trained with backpropagation where noise
is added to the gradient with a decay schedule (Neelakantan et al., 2015). In the case of
gradient-based learning, this noise consists in discrete samples added to the gradient itself
whereas for TAGI, it consists in additional variance on the output layer so that the update
during the inference step will put more weight on the prior rather than on the likelihood,
with this effect diminishing with time.

In the experimental setups explored so far, the inference capacity of TAGI was employed
to learn the neural network parameters whereas the updated knowledge regarding the hidden
units is discarded each time new training observations become available. In the current
setup, we are not only interested in using TAGI to infer the network’s parameters, but also
the hidden units at specific location within the network. The appeal of TAGI is that it can
inherently do so, without requiring any modifications to its formulation. In the following
subsections, we will present how the novel inference capacity from the TAGI method can be
leveraged in order to provide new solutions to existing challenges such as adversarial-attack
generation, black-box optimization, and continuous-action reinforcement learning.

3. Adversarial Attack through Inference

In the first example, we are interested in white-box adversarial attacks (Akhtar and Mian,
2018) where we have access to the network structure and its parameters. Current white-box
attacks are typically formulated as an optimization problem where one uses gradient descent

4

Analytically Tractable Hidden-States Inference in Bayesian Neural Networks

and backpropagation in order to find optimal perturbations to be applied on the input layer
in order to fool the network into making wrongful classifications.

With TAGI, the generation of adversarial-attack images can be done analytically, without
relying on an optimization process. We start with the assumption that we have a pre-trained
neural network; Then, from a deterministic target image x of size M× N, for which we want
to obtain a corrupt label, we define the prior knowledge on the input layer by the mean
vector corresponding to the deterministic image µX = x ∈ RM×N, and a diagonal covariance
ΣX = σ2

X · I. Here, the amount of change that TAGI will apply on the original image during
the inference procedure is controlled by the input layer’s standard deviation parameter σX ,
an hyperparameter that need to be tuned in order to reflect the amount of change desired
in the original image. This prior knowledge about the target image is propagated forward
through the network analogously to the procedure presented in §2. The adversarial attack
is then perform in the inference step where we use the target label ỹ chosen for the attack
as an observation on the output layer. After performing the inference step analogously to
the procedure presented in §2, the initial image defined by its updated mean vector µX|ỹ
and covariance ΣX|ỹ is now modified in order to trigger the class ỹ. In order to improve the
quality of the attack, the process is repeated recursively over multiple iterations, where the
inferred values {µ(i)

X|ỹ,Σ
(i)
X|ỹ} at iteration i are used as the prior’s hyper-parameters at the

next iteration i+ 1.
We compare the performance of TAGI with EADL1 (Chen et al., 2018), PGDL2 (Madry

et al., 2017), and CWL2 (Carlini and Wagner, 2017) on the MNIST (LeCun et al., 1998) and
CIFAR10 (Krizhevsky et al., 2009) data sets. We employ the same network architectures
for all approaches and the details of these architectures are presented in Appendix A. For
TAGI, we set σX = 0.03 with a maximal number of epochs E = 100. The hyperparameter
σX was defined through experimentation as it lead to successful yet almost unnoticeable
attacks across all the datatasets tested. For the gradient-based approaches, we use the
implementation from Ding et al. (2019). The hyper-parameter values are provided in
Table ??. Figure 6 presents adversarial examples generated from TAGI, EADL1, and CWL2
approaches and the examples obtained using the PGDL2 approach are presented in Appendix
A.1.3. From a visual standpoint the adversarial attacks generated with TAGI are on par
with EADL1, CWL2 and PGDL2.

Table 1 compares the error rates obtained for each method: without attack, with targeted
attacks where a specific class is seeked, and with non-targeted attacks where the goal is
simply to fool the network. These results obtained for convolutional architectures confirm
that TAGI can, without relying on an optimization scheme, infer adversarial-attack examples
that are visually indistinguishable from the original and that match the performance of
existing approaches.

4. Optimization through Inference

This section presents how we can leverage TAGI’s inference capabilities to find the local
maxima or minima of a function. Take for example a feedforward neural network used for
approximating a function g(·) such that z(O) = g(x;θ), where x ∈ R is a vector of covariates,
z(O) ∈ R is the neural network output, and θ is a vector of parameters defining the weights
w and biases b from the neural network. Figure 2 presents an example of a directed acyclic

5

Nguyen and Goulet

0 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6

7
8
9

(a) MNIST-TAGI

0 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6
7
8
9

(b) CIFAR10-TAGI

0 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6
7
8
9

(c) MNIST-EADL1

0 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6
7
8
9

(d) CIFAR10-EADL1

0 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6
7
8
9

(e) MNIST-CWL2

0 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6
7
8
9

(f) CIFAR10-CWL2

Figure 1: Examples of images subjected to adversarial attacks with different target labels ỹ.
Columns represent the different target labels ỹ and rows are the true label images.

6

Analytically Tractable Hidden-States Inference in Bayesian Neural Networks

Error Rate [%]

Data set Model Method No attack Targeted attack Non-targeted attack

MNIST 2 conv.

TAGI 0.64 99.8 99.9
EADL1 0.62 100 100
PGDL2 0.62 96.9 97.5
CWL2 0.62 99.2 99.2

CIFAR10 3 conv.

TAGI 22 99.6 99.9
EADL1 22 100 100
PGDL2 22 100 100
CWL2 22 100 100

Table 1: Quantitative performance evaluation of TAGI’s adversarial attacks on MNIST and
CIFAR10.

x

z1

z2

...

zA

a1

a2

...

aA

z(O)

z(O) = g(x;θ) = (w(1))ᵀa + b(O) (Output variable)
a = φ(z) (Activation units)
z = w(0)x+ b(1) (Hidden units)
x ∈ R (Input covariate)
θ = {w(0),w(1), b(1), b(O)} (Weight and bias parameters)

Figure 2: Graphical representation of a single hidden-layer neural network with one input x
and one output z(O).

graph (DAG) describing the dependency between the different components of such a FNN
having a single layer of hidden units z ∈ RA.

One feature of neural networks is that when its parameters θ are known and the activation
functions are differentiable up to the n-th order, we have access to both g(x;θ) as well as
its derivatives gn(x;θ). For instance, the first derivative of the network illustrated in Figure
2 is express using the chain rule of derivation as

z′(O) = g1(x;θ) = dz(O)

da

da

dz

dz

dx
=
(
w(1) � φ′(z)

)ᵀ
w(0),

and because this relation only involves summation and product operations, we can directly
use TAGI’s forward uncertainty propagation method presented in §2 in order to compute
the covariance cov(Z ′(O),X). The details regarding the analytical calculation of partial
derivatives’ expected values, variances, and covariances using TAGI are presented in Appendix
B for the general case z′(O) = g1(x;θ).

In the context of an optimization problem, the goal is to identify the input x that
either maximizes or minimizes z(O), at which location the first derivative of the func-
tion approximation is equal to zero, that is, g1(x;θ) = z′(O) = 0. Using the same infer-
ence procedure presented in §2, we can infer analytically the probability density function
f(x|z′(O) = 0) = N (x;µX|z′ ,ΣX|z′). For that purpose, we first define the prior knowledge
for the vector of covariates x so that X ∼ N (x;µX ,ΣX). Then, analogously to the update

7

Nguyen and Goulet

step in Equation 3, the expected value µX|z′ and variance ΣX|z′ are computed following

µX|z′ = µX −Σᵀ
Z
′(O)X

(
σ

(O)
Z′

)−2
µ

(O)
Z′

ΣX|z′ = ΣX −Σᵀ
Z
′(O)X

(
σ

(O)
Z′

)−2
ΣZ

′(O)X ,

(6)

where the expected value E[Z ′(O)] = µ
(O)
Z′ , variance var[Z ′(O)] = (σ(O)

Z′)2, and covariance
ΣZ′(O)X = cov(Z ′(O),X) are obtained using the forward propagation of uncertainty defined
for TAGI. In order to ensure that the inferred values for x correspond to either a minimum
or a maximum, we need to rely on the sign of the first derivative to control the direction
of the expected value update step. Moreover, in order to prevent a wrongly learn sign for
ΣZ′(O)X from interfering with the sign of the gradient µ(O)

Z′ , the expected value in Equation 6
is thus reformulated as

µX|z′ = µX + α · sign
(
µ

(O)
Z′

) ∣∣∣∣Σᵀ
Z′(O)X

(
σ

(O)
Z′

)−2
µ

(O)
Z′

∣∣∣∣ , (7)

where α = 1 when seeking a maximum, and α = −1 for a minimum.
In order to seek the location where the derivative is equal to zero, we repeat the inference

multiple times where the inferred values {µ(i)
X|z′ ,Σ

(i)
X|z′} at iteration i are used as the prior’s

hyper-parameters at the next iteration i+ 1. The algorithm 1 presents an example of the
implementation for the optimization of a function using TAGI’s inference capacity.

Algorithm 1: Optimization of a function using TAGI
1 Define a neural network g(x;θ);
2 Initialize σV , the prior for θ and for the covariates X;
3 Given a data set D = {xi, yi} ,∀i = {1, 2, . . . , D};
4 for epoch = 1 : E do
5 for i = 1 : D do
6 Compute the prediction for a given input xi;
7

{
µY , σ

2
Y

}
= g (xi;θ);

8 Update µθ|D, Σθ|D using TAGI;
9 Compute the partial derivative of g (x;θ) w.r.t. x;

10 Update µX|z′ , ΣX|z′ using Equation 7;

We illustrate the inference-based optimization scheme on a 1D toy problem for y =
x3 − 3x + v as depicted in Figure 3a, where the observation errors V ∼ N (0, 0.12). The
function approximation obtained using TAGI is presented in Figure 3b and its derivative in
Figure 3c. We use this toy problem to illustrate how we use the derivative constraint α in
order to reach either the local maximum at x = −1 or the local minimum at x = +1.

Table 2 presents the optimal location µX|z′ found by TAGI depending on the starting
location µ0X and whether or not a derivative constraint α is employed. Note that for all

8

Analytically Tractable Hidden-States Inference in Bayesian Neural Networks

−2 −1 0 1 2
−2

−1

0

1

2

x

y

x3 − 3x
Training set

(a) Function & training data

−2 −1 0 1 2

−2

−1

0

1

2

x

y

E[Z(O)]

E[Z(O)]± 3σ

Truth: x3 − 3x

(b) TAGI function approximation

−2 −1 0 1 2
−4

0

4

8

12

x

y
′

E[Z ′(O)]
E[Z ′(O)]± 3σ

Truth: 3x2 − 3

(c) TAGI derivative

−2 −1 0 1 2
−0.02

0.00

0.02

x
co

v(
Z
′ (O

) ,
X
)

TAGI
Theoretical

(d) TAGI derivative covariance

Figure 3: A 1D optimization problem where we show how from training data (a) we can
approximate the underlying function (b) as well as its derivative (c). In (d) we compare the
theoretical derivative’s covariance and the one learned with TAGI.

cases, the initial input variance is set to σX = 0.01 and we performed 100 epochs for a total
computational time of 18 seconds. The results show that when no derivative constraint α
is employed, the optimal value reached correspond to either a maximum or a minimum,
depending on the starting location µ0X . More specifically, the inference will lead to the
maximum or minimum associated within the region where the sign of the covariance is the
same as for the starting location µ0X , as depicted in Figure 3d. A positive derivative constrain

µ0X α
Update
equation µX|z′

0.25 N/A Eq. 6 0.965
−0.25 N/A Eq. 6 −0.992

0.25 +1 Eq. 7 −0.993
−0.25 +1 Eq. 7 −0.992

0.25 −1 Eq. 7 0.965
−0.25 −1 Eq. 7 0.965

Table 2: Comparison of the optimal values obtained µX|z′ depending on the starting location
µ0X and whether or not a derivative constraint α is employed.

9

Nguyen and Goulet

α leads to the local minimum whether starting in a region having a positive or negative
covariance. On the other hand, a negative constrain leads to the local maximum. Note that
whether or not we use a derivative constrain α, TAGI will fail to infer the local maximum at
x = −1 while starting at a value such as x = 1.9, because the sign of the covariance estimated
using TAGI is incorrect so that the optimal location inferred will be pushed beyond the
value x = +2. This example illustrates a limitation of TAGI’s inference-based optimization
scheme where, like for gradient-based approaches, the starting location µ0X matters.

Although this optimization problem is trivial as it involves only one dimension, it
showcases how the inference capability of TAGI can be leveraged in order to solve optimization
tasks. The next section will build on that capacity in order to tackle continuous-actions
reinforcement learning problems which involves optimization in higher-dimensional spaces.

5. Continuous-Actions RL through Inference

This section presents how to perform continuous-actions reinforcement learning (RL) by
leveraging hidden-state inference. For both categorical and continuous actions RL frameworks,
an agent’s goal is to maximize the expected value conditional on an action a. For categorical
actions, this can be achieved through the explicit evaluation of the expected value for each
action and the selection of the optimal one. In the case of continuous actions, it is not
possible nor desirable to evaluate the expected value associated with all possible actions;
one thus face a continuous optimization problem. In deep-RL methods such as advanced
actor critic (A2C) (Mnih et al., 2016) and proximal policy optimization (PPO) (Schulman
et al., 2017), this optimization is tackled using gradient ascent approaches. Here, we rely
instead on the method presented in §4 to identify the optimal action through inference.

For typical RL problems, the environment’s state at a time t and t+ 1 are {s, s′} ∈ RN2 ,
and the expected utility conditional on the actions a ∈ RA and states s is defined by the
action-value function q(s,a) ∈ R1. Figure 4a presents the directed acyclic graph describing
the interconnectivity in a neural network capable of modelling a policy network, that is, the
dependency between the actions a and the states s. Figure 4b presents a similar graph for
a value network modelling the dependency between the action-value function q, and the
actions a and states s. Figure 4c presents the combination of the value and policy networks
from (a) and (b) in a single network that is analogous to the temporal-difference learning
framework by Nguyen and Goulet (2021a), where {s,a} are the states and action at a time
t and {s′,a′} the states and action at a time t+ 1. In this graph, the nodes that have been
doubled represent the states s and s′ which are both evaluated in a network sharing the
same parameters in order to learn from the observation equation

q(s,a) = r(s) + γq(s′,a′) + σV ε, (8)

where ε is a realization from a standard-normal random variable, r(s) is the reward function,
and γ is the discount factor.

One particularity in the graph from Figure 4c is that the actions {a,a′} are deterministic
inputs (red nodes), as the specific actions at a time t are sampled from their current posterior
predictive distribution. The red arrows outline the flow of information during the inference
procedure for the components belonging to the value network. Note that the policy network
cannot be updated directly because the flow of information in Figure 4c is broken by the

10

Analytically Tractable Hidden-States Inference in Bayesian Neural Networks

s z(1) z(2) aθ(0) θ(1) θ(a)

(a) Neural network DAG for the policy network
s

a

z(3) z(4) qθ(2) θ(3) θ(q)

(b) Neural network DAG for the value network

s z(1) z(2)

s′ z(1) z(2)

q

σV ε

q′

a z(3) z(4)

a′ z(3) z(4)

r

θ(0) θ(1) θ(a) θ(2)
θ(3) θ(q)

θ(q)

(c) Neural network DAG for the framework combining the policy and the value networks

s z(1) z(2)

q

a z(3) z(4)θ(0) θ(1) θ(a) θ(2)
θ(3) θ(q)

∂q
∂a = 0

σV ε

(d) Inference for the policy network

Figure 4: Graphical representation of a neural network structure for temporal-difference
Q-policy learning for continuous actions.

knowledge of the actions. The component belonging to the policy network are thus updated
separately as depicted in Figure 4d, where the prior for the actions a is computed from the
policy network so that

a = w(a)z(2) + b(a) + σV ε, (9)

and where the inference for the actions uses the constrain on the derivative a : ∂q
∂a = 0,

as proposed in §4. Algorithm 2 details an example of implementation for the on-policy
reinforcement learning in the context of TAGI.

We compare the performance of the TAGI-based on-policy TD reinforcement learning
framework for continuous actions with the Proximal Policy Optimization (PPO) (Schulman
et al., 2017), Advanced Actor Critic (A2C) (Mnih et al., 2016), Actor Critic using Kronecker-
Factored Trust Region (ACKTR)(Wu et al., 2017), and Trust Region Policy Optimization
(TRPO) (Schulman et al., 2015). We perform this comparison on the half-cheetah and in-
verted pendulum problems from the Mujoco environment (Todorov et al., 2012) implemented
in OpenAI Gym (Brockman et al., 2016).

For the TAGI-based approach, the Q-value network uses a FNN with three hidden layers
of 128 units. The policy network employs a FNN with two hidden layers of 128 units. The
standard deviation σV in Equation 8 and 9 is initialized at 2 and is decayed each 1024 steps
with a decaying factor of 0.9999. The minimal standard deviation is σmin

V = 0.3. These
hyperparameters were set expirementally in order to offer a good performance for both
environments. For the backpropagation-based approach, we use the same model architecture

11

Nguyen and Goulet

Algorithm 2: Continuous-action reinforcement learning with TAGI
1 Define policy network P

(
s; θP

)
, value network Q

(
s,a; θQ

)
;

2 Initialize θP , θQ, σV , horizon H, memory R to capacity H
3 steps = 0;
4 for episode = 1 : E do
5 Reset environment s1;
6 for t = 1 : T do
7 steps = steps + 1;

8
{
µA

t ,ΣA
t

}
= P

(
st; θP

)
;

9 at : At ∼ N (µA
t ,ΣA

t);
10 st+1, rt = enviroment(at);
11 Store {st,at, rt} in R;
12 if steps mod H == 0 then
13

{
µA

t+1,Σ
A
t+1
}

= P
(
st+1; θP

)
;

14 at+1 : At+1 ∼ N (µA
t+1,Σ

A
t+1);

15
{
µQ

t+1, (σ
Q
t+1)2

}
= Q

(
st+1,at+1; θQ

)
;

16 Take H samples of {s,a, r} from R;

17 µY
H = µQ

t+1;σY
H = σQ

t+1;

18 for j = H− 1 : 1 do
19 µY

j = rj + γµY
j+1; (σY

j)2 = γ2(σY
j+1)2 + σ2

V ;

20 Update θQ using TAGI;

21 Update θP using TAGI and Algorithm 1 with the constraint ∂q
∂a = 0;

22 Initialize memory R to capacity H;

for both the policy and value networks as well as the hyper-parameter values from OpenAI
baselines (Dhariwal et al., 2017). During training, all methods except PPO uses a single
epoch while PPO employs ten. Figure 5 shows the average reward over 100 episodes with
respect to the number of steps for both environments.

Table 3 presents the average reward over the last 100 episodes for both environments.
Although PPO initially learns faster, the final results show that TAGI outperforms PPO,
A2C, and TRPO on both experiments, whereas ACKTR is on par with TAGI in one
experiment. In addition, TAGI requires fewer hyper-parameters than other methods. Note
that the goal of this experiment is to demonstrate how can inference be leveraged for solving

Method

Experiment TAGI A2C ACKTR PPO TRPO

HalfCheetah-v2 1934 ± 131 722 ± 331 700 ± 151 1649 ± 48 1519 ± 478
InvertedPendulim-v2 983 ± 30 467 ± 34 996 ± 6 887 ± 42 756 ± 346

Table 3: Average reward over the last 100 episodes of five random runs for the half-cheetah
and inverted pendulum experiments.

12

Analytically Tractable Hidden-States Inference in Bayesian Neural Networks

0 0.5 1 1.5 2
−500

0

500

1,000

1,500

2,000

Number of steps (M)

Av
er

ag
e

re
w

ar
d

PPO A2C ACKTR TRPO TAGI

(a) HalfCheetah-v2

0 0.5 1 1.5 20

500

1,000

Number of steps (M)

Av
er

ag
e

re
w

ar
d

PPO A2C ACKTR TRPO TAGI

(b) InvertedPendulum-v2

Figure 5: Comparison of the average reward over 100 episodes of five random runs for two
millions time steps. (TAGI: Tractable Approximate Gaussian Inference; PPO: Proximal Policy Optimization;
A2C: Advanced Actor Critic; ACKTR: Actor Critic using Kronecker-Factored Trust Region; TRPO: Trust Region
Policy Optimization.)

existing problems with a novel approach; The application of TAGI to RL problems is in its
early days and it is foreseeable that if more time is invested in exploring new architectures
and network configurations, the framework could further exceed the current performance.

6. Conclusion

TAGI provides a novel capacity to perform inference in neural networks. Its application to
adversarial attacks, optimization, and continuous-action reinforcement learning showcases
how these tasks, which previously relied on gradient-based optimization methods, can now
be approached with analytically tractable inference. The applications presented in this paper
are only a subset from the variety of problems that can take advantage of inference, either
through the adaptation of existing architectures or through the development of new ones.

Acknowledgments

The first author was financially supported by research grants from Hydro-Quebec/IREQ,
and the Natural Sciences and Engineering Research Council of Canada (NSERC). We would
like to thank Magali Goulet and Prof. Mélina Mailhot for having reviewed the equations
employed for computing the derivatives.

Appendix A. Model Architecture and Hyper-parameters

This appendix contains the specifications for each model architecture in the experiment
section. D refers to a layer depth; W refers to a layer width; H refers to the layer height
in case of convolutional or pooling layers; K refers to the kernel size; P refers to the
convolutional kernel padding; S refers to the convolution stride; φ refers to the activation
function type; ReLU refers to rectified linear unit;

13

Nguyen and Goulet

Hyper-parameters EADL1 PGDL2 CWL2

learning rate 0.01 - 0.01
binary search steps 9 9
number of steps 300 300 300
initial constrain 0.001 0.001
clip min 0 0 0
clip max 1 1 1
ε 3 - -
attack step size 0.1 - -

Table 4: Hyper-parameters for the gradient-based adversarial attacks applied to the MNIST
and CIFAR10.

A.1 Adversarial Attack

For the classification tasks trained with backpropagation, we employ the same training setup
for both data sets in which the learning rate is 0.003, the number of epochs is 50, the batch
size is 64, and the optimizer is Adam.

A.1.1 MNIST

A.1.2 Cifar10

A.1.3 Additional Results

A.2 Optimization

Layer D ×W ×H K ×K P S φ

Input 1× 28× 28 - - - -
Convolutional 32× 27× 27 4× 4 1 1 ReLU
Pooling 32× 13× 13 3× 3 0 2 -
Convolutional 64× 9× 9 5× 5 0 1 ReLU
Pooling 64× 4× 4 3× 3 0 2 -
Fully connected 150× 1× 1 - - - ReLU
Output 11× 1× 1 - - - -

Table 5: Configuration details for the CNN applied to the MNIST adversarial attack.

14

Analytically Tractable Hidden-States Inference in Bayesian Neural Networks

Layer D ×W ×H K ×K P S φ

Input 3× 32× 32 - - - -
Convolutional 32× 32× 32 5× 5 2 1 ReLU
Batch normalization - - - -
Pooling 32× 16× 16 3× 3 1 2 -
Convolutional 32× 16× 16 5× 5 2 1 ReLU
Batch normalization - - - -
Average pooling 32× 8× 8 3× 3 1 2 -
Convolutional 64× 8× 8 5× 5 2 1 ReLU
Batch normalization - - - -
Average pooling 64× 4× 4 3× 3 1 2 -
Fully connected 64× 1× 1 - - - ReLU
Output 11× 1× 1 - - - -

Table 6: Configuration details for the CNN applied to the Cifar10 adversarial attack.

A.3 Continuous-Action Reinforcement Learning

For the half-cheatah environment, the number of states Ns is 17 and the number of actions
Na is 6. For the inverted pendulum environment, the number of states Ns is 4 and the
number of actions Na is 1.

0 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6
7
8
9

(a) MNIST-PGDL2

0 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6
7
8
9

(b) CIFAR10-PGDL2

Figure 6: Examples of images subjected to adversarial attacks with different target labels ỹ.
Columns represent the different target labels ỹ and rows are the true label images.

15

Nguyen and Goulet

Layer D ×W ×H K ×K P S φ

Input 1× 1× 1 - - - -
Fully connected 64× 1× 1 - - - Tanh
Fully connected 64× 1× 1 - - - ReLU
Output 1× 1× 1 - - - -

Table 7: Configuration details for the feedforward neural network applied to 1D example.

Layer D ×W ×H K ×K P S φ

Input Ns × 1× 1 - - - -
Fully connected 128× 1× 1 - - - ReLU
Fully connected 128× 1× 1 - - - ReLU
Output Na × 1× 1 - - - Tanh

Table 8: Configuration details for the policy network. Ns is the number of states; Na is the
number of actions.

Appendix B. Partial Derivative in TAGI Neural Networks

B.1 TAGI Neural Networks

In a feedforward neural network, the hidden state at a given layer l + 1 is defined as

Z
(l+1)
i =

∑
k

W
(l)
ik φ(Z(l)

k) +B
(l)
i , ∀i ∈ [1, A(l+1)], ∀k ∈ [1, A(l)],∀l ∈ [1, L] (10)

where φ(.) is the activation function, {W,B} are the unkown parameters of the neural
network, that is, weight and bias, A(l), is the number of hidden units in layer l and L is the
number of hidden layers. We define the activation unit A = φ(Z). In the context of TAGI,

Layer D ×W ×H K ×K P S φ

Input Ns × 1× 1 - - - -
Fully connected 128× 1× 1 - - - Tanh
Fully connected 128× 1× 1 - - - ReLU
Fully connected 128× 1× 1 - - - ReLU
Output 1× 1× 1 - - - -

Table 9: Configuration details for the Q-value network. Ns is the number of states.

16

Analytically Tractable Hidden-States Inference in Bayesian Neural Networks

Method # Hyperparameter Value

TAGI

1 Horizon 1024
2 Initial standard deviation for the value function (σV) 2
3 Decay factor (η) 0.9999
4 Minimal standard deviation for the value function (σmin

V) 0.3
5 Batch size 16
6 Number of epochs 1
7 Discount (γ) 0.99

Table 10: Hyper-parameters for half-cheetah and inverted pendulum problems.

Z,W , and B are assumed to be Gaussian random variables and

W
(l)
ik ⊥⊥ W

(m)
np ⊥⊥ B(l)

i ⊥⊥ B
(m)
n , ∀m ∈ [1, L], ∀n ∈ [1, A(m+1)],∀p ∈ [1, A(m)]

Z
(l−1)
t ⊥⊥ Z

(l+1)
i , ∀t ∈ [1, A(l−1)]

Z
(l)
k ⊥⊥ Z

(l)
q , ∀q ∈ [1, A(l)] and k 6= q

Z
(l)
k ⊥⊥ W

(l)
ik ⊥⊥ B

(l)
i .

(11)

In addition, we apply the locally linearized activation function φ̃(.) to the hidden state in
order to obtain the probability density function for the output of φ(.) so that

φ(Z(l)
k) = J

(l)
k

(
Z

(l)
k − E

[
Z

(l)
k

])
+ φ

(
E
[
Z

(l)
k

])
, (12)

where J (l)
k = ∇zφ

(
E
[
Z

(l)
k

])
.

B.2 Gaussian Multiplication Approximation (GMA)

Assuming X = [X1 . . . X4]ᵀ are Gaussian random variables, the GMA formulation had been
defined by Goulet et al. (2021) as

E[X1X2]=µ1µ2 + cov(X1, X2), (13)

cov(X3, X1X2)=cov(X1,X3)µ2+cov(X2,X3)µ1, (14)

cov(X1X2, X3X4)=cov(X1, X3)cov(X2, X4) (15)
+cov(X1, X4)cov(X2, X3)
+cov(X1, X3)µ2µ4 + cov(X1, X4)µ2µ3

+cov(X2, X3)µ1µ4 + cov(X2, X4)µ1µ3,

var(X1X2) = σ2
1σ

2
2 + cov(X1, X2)2 (16)

+2cov(X1, X2)µ1µ2 + σ2
1µ

2
2 + σ2

2µ
2
1.

17

Nguyen and Goulet

Z
(0)
1

Z
(0)
2

Z
(0)
3

Z
(0)
4

A
(0)
1

A
(0)
2

A
(0)
3

A
(0)
4

Z
(1)
1

Z
(1)
2

Z
(1)
3

A
(1)
1

A
(1)
2

A
(1)
3

Z
(2)
1

Z
(2)
2

A
(2)
2

A
(2)
3

Z
(3)
1 A

(3)
1

B(0)

B(1)

B(2)

φ

φ

φ

φ

W (0)11

W
(0)
12

W
(0

)
13

W
(0

)
14

W
(0)21

W (0)22

W
(0)
23

W
(0

)
24

W
(0)31

W
(0)32

W (0)33

W
(0)
34

φ

φ

φ

W (1)
11

W
(1

)
12

W
(1

)
13

W
(1)21

W (1)22

W
(1)
23

φ

φ

W
(2)11

W
(2

)
12

φ

Figure 7: Ilustration of parameters θ = {W,B}, hidden states Z, and activation units A
associated with a four-layer feedforward neural network.

B.3 Partial Derivative Formulations for A Simple Feedforward Neural Network

This section presents the first-order partial derivative formulations for a feedforward neural
network (FNN) of four layers in the context of TAGI. Note that building on this work the
formulation for higher order derivatives can be found in Goulet (2021). Figure 7 presents
the details of the interconnectivity of the variables associated with a four-layer FNN, Figure
8 describes the partial derivative diagram for the four-layer FNN presented in Figure 7, and
Figure 9 shows the partial derivative diagram associated with the parameters and hidden
states. The partial derivative diagram allow computing the partial derivative of either a
hidden state or an activation unit at any layers with respect to either the hidden state or
activation unit from the previous layers. For example, the partial derivative of the first
activation unit of layer three, that is, A(3)

1 with respect to the first hidden state of layer one,
that is, Z(1)

1 is the sum of the product of the partial derivatives of two branches relating to
this partial derivative, which are identified using the partial derivative diagram in Figure 9.
Figure 10 illustrates the computations of this partial derivative.

B.3.1 Partial Derivative ∂A
(3)
1

∂Z
(2)
1

This section presents the calculations of the partial derivative of A(3)
1 with respect to Z(2)

1 .
Figure 11 shows the branch from the partial derivative diagram (Figure 9), that corresponds
to this partial derivative. This partial derivative is defined as

18

Analytically Tractable Hidden-States Inference in Bayesian Neural Networks

a
(3)
1

z
(3)
1

∂
A

(3)
1

∂
Z

(3)
1

A
(2)
1

A
(2)
2

∂
Z

(3)
1

∂
A

(2)
1

∂
Z

(3)
1

∂
A

(2)
2

Z
(2)
1

Z
(2)
2

∂
A

(2)
1

∂
Z

(2)
1

∂
A

(2)
2

∂
Z

(2)
2

A
(1)
1

A
(1)
2

A
(1)
3

∂
Z

(2)
1

∂
A

(1)
1

∂
Z

(2)
1

∂
A

(1)
2

∂
Z

(2)
1

∂
A

(1)
3

Z
(1)
1

Z
(1)
2

Z
(1)
3

∂
A

(1)
1

∂
Z

(1)
1

∂
A

(1)
2

∂
Z

(1)
2

∂
A

(1)
3

∂
Z

(1)
3

A
(1)
1

A
(1)
2

A
(1)
3

∂
Z

(2)
2

∂
A

(1)
1

∂
Z

(2)
2

∂
A

(1)
2

∂
Z

(2)
2

∂
A

(1)
3

Z
(1)
1

Z
(1)
2

Z
(1)
3

∂
A

(1)
1

∂
Z

(1)
1

∂
A

(1)
2

∂
Z

(1)
2

∂
A

(1)
3

∂
Z

(1)
3

A
(0)
1

A
(0)
2

A
(0)
3

A
(0)
4

∂
Z

(1)
1

∂
A

(0)
1

∂
Z

(1)
1

∂
A

(0)
2

∂
Z

(1)
1

∂
A

(0)
3

∂
Z

(1)
1

∂
A

(0)
4

Z
(0)
1

Z
(0)
2

Z
(0)
3

Z
(0)
4

∂
A

(0)
1

∂
Z

(0)
1

∂
A

(0)
2

∂
Z

(0)
2

∂
A

(0)
3

∂
Z

(0)
3

∂
A

(0)
4

∂
Z

(0)
4

A
(0)
1

A
(0)
2

A
(0)
3

A
(0)
4

∂
Z

(1)
2

∂
A

(0)
1

∂
Z

(1)
2

∂
A

(0)
2

∂
Z

(1)
2

∂
A

(0)
3

∂
Z

(1)
2

∂
A

(0)
4

Z
(0)
1

Z
(0)
2

Z
(0)
3

Z
(0)
4

∂
A

(0)
1

∂
Z

(0)
1

∂
A

(0)
2

∂
Z

(0)
2

∂
A

(0)
3

∂
Z

(0)
3

∂
A

(0)
4

∂
Z

(0)
4

A
(0)
1

A
(0)
2

A
(0)
3

A
(0)
4

∂
Z

(1)
3

∂
A

(0)
1

∂
Z

(1)
3

∂
A

(0)
2

∂
Z

(1)
3

∂
A

(0)
3

∂
Z

(1)
3

∂
A

(0)
4

Z
(0)
1

Z
(0)
2

Z
(0)
3

Z
(0)
4

∂
A

(0)
1

∂
Z

(0)
1

∂
A

(0)
2

∂
Z

(0)
2

∂
A

(0)
3

∂
Z

(0)
3

∂
A

(0)
4

∂
Z

(0)
4

A
(0)
1

A
(0)
2

A
(0)
3

A
(0)
4

∂
Z

(1)
1

∂
A

(0)
1

∂
Z

(1)
1

∂
A

(0)
2

∂
Z

(1)
1

∂
A

(0)
3

∂
Z

(1)
1

∂
A

(0)
4

Z
(0)
1

Z
(0)
2

Z
(0)
3

Z
(0)
4

∂
A

(0)
1

∂
Z

(0)
1

∂
A

(0)
2

∂
Z

(0)
2

∂
A

(0)
3

∂
Z

(0)
3

∂
A

(0)
4

∂
Z

(0)
4

A
(0)
1

A
(0)
2

A
(0)
3

A
(0)
4

∂
Z

(1)
2

∂
A

(0)
1

∂
Z

(1)
2

∂
A

(0)
2

∂
Z

(1)
2

∂
A

(0)
3

∂
Z

(1)
2

∂
A

(0)
4

Z
(0)
1

Z
(0)
2

Z
(0)
3

Z
(0)
4

∂
A

(0)
1

∂
Z

(0)
1

∂
A

(0)
2

∂
Z

(0)
2

∂
A

(0)
3

∂
Z

(0)
3

∂
A

(0)
4

∂
Z

(0)
4

A
(0)
1

A
(0)
2

A
(0)
3

A
(0)
4

∂
Z

(1)
3

∂
A

(0)
1

∂
Z

(1)
3

∂
A

(0)
2

∂
Z

(1)
3

∂
A

(0)
3

∂
Z

(1)
3

∂
A

(0)
4

Z
(0)
1

Z
(0)
2

Z
(0)
3

Z
(0)
4

∂
A

(0)
1

∂
Z

(0)
1

∂
A

(0)
2

∂
Z

(0)
2

∂
A

(0)
3

∂
Z

(0)
3

∂
A

(0)
4

∂
Z

(0)
4

Figure 8: Illustration of partial derivative diagram for a four-layer feedforward neural
network.

19

Nguyen and Goulet

A
(3)
1

Z
(3)
1

φ
′(Z

(3)
1

)

A
(2)
1

A
(2)
2

W
(2)
11

W
(2)
12

Z
(2)
1

Z
(2)
2

φ
′(Z

(2)
1

)
φ
′(Z

(2)
2

)

A
(1)
1

A
(1)
2

A
(1)
3

W
(1)
11

W
(1)
12

W
(1)
13

Z
(1)
1

Z
(1)
2

Z
(1)
3

φ
′(Z

(1)
1

)
φ
′(Z

(1)
2

)
φ
′(Z

(1)
3

)

A
(1)
1

A
(1)
2

A
(1)
3

W
(1)
21

W
(1)
22

W
(1)
23

Z
(1)
1

Z
(1)
2

Z
(1)
3

φ
′(Z

(1)
1

)
φ
′(Z

(1)
2

)
φ
′(Z

(1)
3

)

A
(0)
1

A
(0)
2

A
(0)
3

A
(0)
4

W
(0)
11

W
(0)
12

W
(0)
13

W
(0)
14

Z
(0)
1

Z
(0)
2

Z
(0)
3

Z
(0)
4

φ
′(Z

(0)
1

)
φ
′(Z

(0)
2

)
φ
′(Z

(0)
3

)
φ
′(Z

(0)
4

)

A
(0)
1

A
(0)
2

A
(0)
3

A
(0)
4

W
(0)
21

W
(0)
22

W
(0)
23

W
(0)
24

Z
(0)
1

Z
(0)
2

Z
(0)
3

Z
(0)
4

φ
′(Z

(0)
1

)
φ
′(Z

(0)
2

)
φ
′(Z

(0)
3

)
φ
′(Z

(0)
4

)

A
(0)
1

A
(0)
2

A
(0)
3

A
(0)
4

W
(0)
31

W
(0)
32

W
(0)
33

W
(0)
34

Z
(0)
1

Z
(0)
2

Z
(0)
3

Z
(0)
4

φ
′(Z

(0)
1

)
φ
′(Z

(0)
2

)
φ
′(Z

(0)
3

)
φ
′(Z

(0)
4

)

A
(0)
1

A
(0)
2

A
(0)
3

A
(0)
4

W
(0)
11

W
(0)
12

W
(0)
13

W
(0)
14

Z
(0)
1

Z
(0)
2

Z
(0)
3

Z
(0)
4

φ
′(Z

(0)
1

)φ
′(Z

(0)
2

)
φ
′(Z

(0)
3

)
φ
′(Z

(0)
4

)

A
(0)
1

A
(0)
2

A
(0)
3

A
(0)
4

W
(0)
21

W
(0)
22

W
(0)
23

W
(0)
24

Z
(0)
1

Z
(0)
2

Z
(0)
3

Z
(0)
4

φ
′(Z

(0)
1

)
φ
′(Z

(0)
2

)
φ
′(Z

(0)
3

)
φ
′(Z

(0)
4

)

A
(0)
1

A
(0)
2

A
(0)
3

A
(0)
4

W
(0)
31

W
(0)
32

W
(0)
33

W
(0)
34

Z
(0)
1

Z
(0)
2

Z
(0)
3

Z
(0)
4

φ
′(Z

(0)
1

)
φ
′(Z

(0)
2

)
φ
′(Z

(0)
3

)
φ
′(Z

(0)
4

)

Figure 9: Illustration of partial derivative diagram associated with the parameters and
hidden states for a four-layer feedforward neural network.

20

Analytically Tractable Hidden-States Inference in Bayesian Neural Networks

A
(3)
1 Z

(3)
1 A

(2)
1 Z

(2)
1 A

(1)
1 Z

(1)
1

A
(3)
1 Z

(3)
1 A

(2)
1 Z

(2)
1 A

(1)
1 Z

(1)
1

∂A
(3)
1

∂Z
(1)
1

= φ(Z(3)
1)W (2)

11 φ
′(Z(2)

1)W (1)
11 φ

′(Z(1)
1) + φ(Z(3)

1)W (2)
12 φ

′(Z(2)
2)W (1)

21 φ
′(Z(1)

1)

φ′(Z(3)
1) W

(2)
11 φ′(Z(2)

1) W
(1)
11 φ′(Z(1)

1)

φ′(Z(3)
1) W

(2)
12 φ′(Z(2)

2) W
(1)
21 φ′(Z(1)

1)

Figure 10: Illustration of the partial derivative of A(3)
1 with respect to Z(1)

1 .

a
(3)
1 Z

(3)
1 A

(2)
1 Z

(2)
1

φ′(Z(3)
1) W

(2)
11 φ′(Z(2)

1)

Figure 11: Illustration of a branch of the partial derivative of A(3)
1 with respect to Z(2)

1 .

∂A
(3)
1

∂Z
(2)
1

= φ′(Z(3)
1)W (2)

11 φ
′(Z(2)

1). (17)

In the context of TAGI, the weights W and hidden states Z are Gaussian random variables,
therefore, ∂A

(3)
1

∂Z
(2)
1

is also approximated by a Gaussian PDF. The expected value is computed
using Equation 13 and 11,

E
[
∂A

(3)
1

∂Z
(2)
1

]
= E

[
φ′(Z(3)

1)W (2)
11 φ

′(Z(2)
1)

]
= E

[
φ′(Z(3)

1)
]
E
[
W

(2)
11 φ

′(Z(2)
1)

]
+ cov

(
φ′(Z(3)

1),W (2)
11 φ

′(Z(2)
1)

)
,

(18)

where

E
[
W

(2)
11 φ

′(Z(2)
1)

]
= E

[
W

(2)
11

]
E
[
φ′(Z(2)

1)
]

+
���

���
���

��:0
cov

(
W

(2)
11 , φ

′(Z(2)
1)

)
.︸ ︷︷ ︸

Eq. 11

(19)

cov
(
φ′(Z(3)

1), W (2)
11 φ

′(Z(2)
1)

)
= cov

(
φ′(Z(3)

1), W (2)
11

)
E
[
φ′(Z(2)

1)
]

+ cov
(
φ′(Z(3)

1), φ′(Z(2)
1)

)
E
[
W

(2)
11

]
.

(20)

Note that the computations for the covariance cov
(
φ′(Z(3)

1), W (2)
11

)
and cov

(
φ′(Z(3)

1), φ′(Z(2)
1)

)
depend on the type of the activation function φ(.) being used for this layer (see §B.5). The

21

Nguyen and Goulet

variance is computed using Equation 16, 11, 19, and 18,

var
(
φ′(Z(3)

1)W (2)
11 φ

′(Z(2)
1)

)
= var

(
φ′(Z(3)

1)
)
var

(
W

(2)
11 φ

′(Z(2)
1)

)
+ cov

(
φ′(Z(3)

1),W (2)
11 φ

′(Z(2)
1)

)2

+ 2cov
(
φ′(Z(3)

1),W (2)
11 φ

′(Z(2)
1)

)
× E

[
W

(2)
11

]
E
[
W

(2)
11 φ

′(Z(2)
1)

]
+ var

(
φ′(Z(3)

1)
)
E
[
W

(2)
11 φ

′(Z(2)
1)

]2
+ var

(
W

(2)
11 φ

′(Z(2)
1)

)
E
[
φ′(Z(3)

1)
]2
,

(21)

where

var
(
W

(2)
11 φ

′(Z(2)
1)

)
= var

(
W

(2)
11

)
var

(
φ′(Z(2)

1)
)

+
���

���
���

��:0
cov

(
W

(2)
11 , φ

′(Z(2)
1)

)2

︸ ︷︷ ︸
Eq. 11

+ 2
���

���
���

��: 0

cov
(
W

(2)
11 , φ

′(Z(2)
1)

)
E
[
W

(2)
11

]
E
[
φ′(Z(2)

1)
]

+ var
(
W

(2)
11

)
E
[
φ′(Z(2)

1)
]2

+ var
(
φ′(Z(2)

1)
)
E
[
W

(2)
11

]2
= var

(
W

(2)
11

)
var

(
φ′(Z(2)

1)
)

+ var
(
W

(2)
11

)
E
[
φ′(Z(2)

1)
]2

+ var
(
φ′(Z(2)

1)
)
E
[
W

(2)
11

]2
.

(22)

B.3.2 Partial Derivative ∂A
(3)
1

∂Z
(1)
1

This section presents the calculations of the partial derivative of A(3)
1 with respect to Z(1)

1 .
According to the partial derivative diagram, there are two branches relating to this partial
derivative. The partial derivative is a sum of the product of partial derivatives on these
two branches. The rest of this section only presents the computations for one of these two
branches (Figure 12). This partial derivative is defined following

∂A
(3)
1

∂Z
(1)
1

= φ′(Z(3)
1)W (2)

11 φ
′(Z(2)

1)W (1)
11 φ

′(Z(1)
1). (23)

A
(3)
1 Z

(3)
1 A

(2)
1 Z

(2)
1 A

(1)
1 Z

(1)
1

φ′(Z(3)
1) W

(2)
11 φ′(Z(2)

1) W
(1)
11 φ′(Z(1)

1)

Figure 12: Illustration of a branch of partial derivative of A(3)
1 with respect to Z(1)

1 .

22

Analytically Tractable Hidden-States Inference in Bayesian Neural Networks

The expected value is computed using Equation 13, 14, 11 and 18,

E
[
∂A

(3)
1

∂Z
(1)
1

]
= E

[
φ′(Z(3)

1)W (2)
11 φ

′(Z(2)
1)W (1)

11 φ
′(Z(1)

1)
]

= E
[
φ′(Z(3)

1)W (2)
11 φ

′(Z(2)
1)

]
E
[
W

(1)
11 φ

′(Z(1)
1)

]
+ cov

(
φ′(Z(3)

1)W (2)
11 φ

′(Z(2)
1), W (1)

11 φ
′(Z(1)

1)
)
,

(24)

where

E
[
W

(1)
11 φ

′(Z(1)
1)

]
= E

[
W

(1)
11

]
E
[
φ′(Z(1)

1)
]

+
���

���
���

��:0
cov

(
W

(1)
11 , φ

′(Z(1)
1)

)
, (25)

cov
(
φ′(Z(3)

1)W (2)
11 φ

′(Z(2)
1), W (1)

11 φ
′(Z(1)

1)
)

=
���

���
���

���
���: 0

cov
(
φ′(Z(3)

1), W (1)
11 φ

′(Z(1)
1)

)
E
[
W

(2)
11 φ

′(Z(2)
1)

]
+ cov

(
W

(2)
11 φ

′(Z(2)
1), W (1)

11 φ
′(Z(1)

1)
)
E
[
φ′(Z(3)

1)
]

=
{
cov

(
φ′(Z(2)

1), W (1)
11 φ

′(Z(1)
1)

)
E
[
W

(2)
11

]

+
���

���
���

���
�: 0

cov
(
W

(2)
11 , W

(1)
11 φ

′(Z(1)
1)

)
E
[
φ′(Z(2)

1)
]}

E
[
φ′(Z(3)

1)
]

= cov
(
φ′(Z(2)

1), W (1)
11 φ

′(Z(1)
1)

)
E
[
W

(2)
11

]
E
[
φ′(Z(3)

1)
]
,

cov
(
φ′(Z(2)

1), W (1)
11 φ

′(Z(1)
1)

)
= cov

(
φ′(Z(2)

1), W (1)
11

)
E
[
φ′(Z(1)

1)
]

+ cov
(
φ′(Z(2)

1), φ′(Z(1)
1)

)
E
[
W

(1)
11

]
.

(26)

23

Nguyen and Goulet

The variance is computed using Equation 16, 18, 21, 25, and 26,

var
(
∂A

(3)
1

∂Z
(1)
1

)
= var

(
φ′(Z(3)

1)W (2)
11 φ

′(Z(2)
1)W (1)

11 φ
′(Z(1)

1)
)

= var
(
φ′(Z(3)

1)W (2)
11 φ

′(Z(2)
1)

)
var

(
W

(1)
11 φ

′(Z(1)
1)

)
+ cov

(
φ′(Z(3)

1)W (2)
11 φ

′(Z(2)
1), W (1)

11 φ
′(Z(1)

1)
)2

+ 2cov
(
φ′(Z(3)

1)W (2)
11 φ

′(Z(2)
1), W (1)

11 φ
′(Z(1)

1)
)

E
[
φ′(Z(3)

1)W (2)
11 φ

′(Z(2)
1)

]
E
[
W

(1)
11 φ

′(Z(1)
1)

]
+ var

(
φ′(Z(3)

1)W (2)
11 φ

′(Z(2)
1)

)
E
[
W

(1)
11 φ

′(Z(1)
1)

]2
+ var

(
W

(1)
11 φ

′(Z(1)
1)

)
E
[
φ′(Z(3)

1)W (2)
11 φ

′(Z(2)
1)

]2
.

(27)

The same above steps are repeated for the second branch in order to complete the calculation
of the partial derivative of A(3)

1 with respect to Z(1)
1 .

B.3.3 Partial Derivative ∂A
(3)
1

∂Z
(0)
1

This section presents the calculations of the partial derivative of A(3)
1 with respect to Z(0)

1 .
From the partial derivative diagram (Figure 9), we identify six branches relating to this
partial derivative. Therefore, the partial derivative is equal to the sum of the product of
partial derivatives on these six branches. Figure 13 shows the details for one of six branches.
The partial derivative relating to this branch is defined following

∂A
(3)
1

∂Z
(0)
1

= φ′(Z(3)
1)W (2)

11 φ
′(Z(2)

1)W (1)
11 φ

′(Z(1)
1)W (0)

11 φ
′(Z(0)

1). (28)

The expected value is computed using Equation 13, 11 and 24,

E
[
∂A

(3)
1

∂Z
(0)
1

]
= E

[
φ′(Z(3)

1)W (2)
11 φ

′(Z(2)
1)W (1)

11 φ
′(Z(1)

1)W (0)
11 φ

′(Z(0)
1)

]
= E

[
φ′(Z(3)

1)W (2)
11 φ

′(Z(2)
1)W (1)

11 φ
′(Z(1)

1)
]
E
[
W

(0)
11 φ

′(Z(0)
1)

]
+ cov

(
φ′(Z(3)

1)W (2)
11 φ

′(Z(2)
1)W (1)

11 φ
′(Z(1)

1), W (0)
11 φ

′(Z(0)
1)

)
,

(29)

A
(3)
1 Z

(3)
1 A

(2)
1 Z

(2)
1 A

(1)
1 Z

(1)
1 A

(0)
1 Z

(0)
1

φ′(Z(3)
1) W

(2)
11 φ′(Z(2)

1) W
(1)
11 φ′(Z(1)

1) W
(0)
11 φ′(Z(0)

1)

Figure 13: Illustration of a branch of the partial derivative of A(3)
1 with respect to Z(0)

1 .

24

Analytically Tractable Hidden-States Inference in Bayesian Neural Networks

where

E
[
W

(0)
11 φ

′(Z(0)
1)

]
= E

[
W

(0)
11

]
E
[
φ′(Z(0)

0)
]

+
���

���
���

��:0
cov

(
W

(1)
11 , φ

′(Z(0)
1)

)
, (30)

cov
(
φ′(Z(3)

1)W (2)
11 φ

′(Z(2)
1)W (1)

11 φ
′(Z(1)

1), W (0)
11 φ

′(Z(0)
1)

)

=

���
���

���
���

���
���

���: 0

cov
(
φ′(Z(3)

1)W (2)
11 φ

′(Z(2)
1), W (0)

11 φ
′(Z(0)

1)
)

× E
[
W

(0)
11 φ

′(Z(0)
1)

]
+ cov

(
W

(1)
11 φ

′(Z(1)
1), W (0)

11 φ
′(Z(0)

1)
)

× E
[
φ′(Z(3)

1)W (2)
11 φ

′(Z(2)
1)

]
= cov

(
φ′(Z(1)

1), W (0)
11 φ

′(Z(0)
1)

)
× E

[
W

(1)
11

]
E
[
φ′(Z(3)

1)W (2)
11 φ

′(Z(2)
1)

]
︸ ︷︷ ︸

Eq. (18)

cov
(
φ′(Z(1)

1), W (0)
11 φ

′(Z(0)
1)

)
= cov

(
φ′(Z(1)

1), W (0)
11

)
E
[
φ′(Z(0)

1)
]

+ cov
(
φ′(Z(1)

1), φ′(Z(0)
1)

)
E
[
W

(0)
11

]
.

(31)

The variance is computed using Equation 16, 24, 27, 30 and 31,

var
(
∂A

(3)
1

∂Z
(0)
1

)
= var

(
φ′(Z(3)

1)W (2)
11 φ

′(Z(2)
1)W (1)

11 φ
′(Z(1)

1)W (0)
11 φ

′(Z(0)
1)

)
= var

(
φ′(Z(3)

1)W (2)
11 φ

′(Z(2)
1)W (1)

11 φ
′(Z(1)

1)
)
var

(
W

(0)
11 φ

′(Z(0)
1)

)
+ cov

(
φ′(Z(3)

1)W (2)
11 φ

′(Z(2)
1)W (1)

11 φ
′(Z(1)

1), W (0)
11 φ

′(Z(0)
1)

)2

+ 2cov
(
φ′(Z(3)

1)W (2)
11 φ

′(Z(2)
1)W (1)

11 φ
′(Z(1)

1), W (0)
11 φ

′(Z(0)
1)

)
× E

[
φ′(Z(3)

1)W (2)
11 φ

′(Z(2)
1)W (1)

11 φ
′(Z(1)

1)
]
E
[
W

(0)
11 φ

′(Z(0)
1)

]
+ var

(
φ′(Z(3)

1)W (2)
11 φ

′(Z(2)
1)W (1)

11 φ
′(Z(1)

1)
)
E
[
W

(0)
11 φ

′(Z(0)
1)

]2
+ var

(
W

(0)
11 φ

′(Z(0)
1)

)
E
[
φ′(Z(3)

1)W (2)
11 φ

′(Z(2)
1)W (1)

11 φ
′(Z(1)

1)
]2
.

(32)

The same calculations are repeated for the five remaining branches in order to obtain the
partial derivative of A(3)

1 with respect to Z(0)
1 .

25

Nguyen and Goulet

B.3.4 Covariance between ∂A
(3)
1

∂Z
(0)
1

and Z
(0)
1

This section presents the calculations of the covariance for the partial derivative ∂A
(3)
1

∂Z
(0)
1

and

Z
(0)
1 . The following calculations correspond to the branch illustrated in Figure 13,

cov
(
∂A

(3)
1

∂Z
(0)
1
, Z

(0)
1

)

= cov
(
φ′(Z(3)

1)W (2)
11 φ

′(Z(2)
1)W (1)

11 φ
′(Z(1)

1)W (0)
11 φ

′(Z(0)
1), Z(0)

1

)
= cov

(
φ′(Z(3)

1)W (2)
11 φ

′(Z(2)
1)W (1)

11 φ
′(Z(1)

1), Z(0)
1

)
E
[
W

(0)
11 φ

′(Z(0)
1)

]
︸ ︷︷ ︸

Eq. (30)

+ cov
(
W

(0)
11 φ

′(Z(0)
1), Z(0)

1

)
E
[
φ′(Z(3)

1)W (2)
11 φ

′(Z(2)
1)W (1)

11 φ
′(Z(1)

1)
]

︸ ︷︷ ︸
Eq. (24)

,

(33)

where
cov

(
φ′(Z(3)

1)W (2)
11 φ

′(Z(2)
1)W (1)

11 φ
′(Z(1)

1), Z(0)
1

)
=
���

���
��

���
���

���: 0

cov
(
φ′(Z(3)

1)W (2)
11 φ

′(Z(2)
1), Z(0)

1

)
E
[
W

(1)
11 φ

′(Z(1)
1)

]
+ cov

(
W

(1)
11 φ

′(Z(1)
1), Z(0)

1

)
E
[
φ′(Z(3)

1)W (2)
11 φ

′(Z(2)
1)

]
=
{
���

���
���:

0
cov

(
W

(1)
11 , Z

(0)
1

)
E
[
φ′(Z(1)

1)
]

+ cov
(
φ′(Z(1)

1), Z(0)
1

)
E
[
W

(1)
11

]}
E
[
φ′(Z(3)

1)W (2)
11 φ

′(Z(2)
1)

]
= cov

(
φ′(Z(1)

1), Z(0)
1

)
E
[
W

(1)
11

]
E
[
φ′(Z(3)

1)W (2)
11 φ

′(Z(2)
1)

]
︸ ︷︷ ︸

Eq. (18)

(34)

cov
(
W

(0)
11 φ

′(Z(0)
1), Z(0)

1

)
=
���

���
���:

0
cov

(
W

(0)
11 , Z

(0)
1

)
E
[
φ′(Z(0)

1)
]

+ cov
(
φ′(Z(0)

1), Z(0)
1

)
E
[
W

(0)
11)

]
.

(35)

Note that the formulations for cov
(
φ′(Z(1)

1), Z(0)
1

)
and cov

(
φ′(Z(0)

1), Z(0)
1

)
are provided in

§B.5. As mentioned in §B.3.3, there are six branches relating to ∂A
(3)
1

∂Z
(0)
1

. Therefore, we apply

the same calculations for the five remaining branches. The final covariance between ∂A
(3)
1

∂Z
(0)
1

and Z(0)
1 is equal to the sum of the covariance of these branches.

26

Analytically Tractable Hidden-States Inference in Bayesian Neural Networks

A(L) Z(L) A(L−1) Z(L−1) · · · A(l+1) Z(l+1) A(l) Z(l)X(L) Y (L−1) X(L−1) Y (L−2) Y (l+1) X(l+1) Y (l) X(l)

Figure 14: Illustration of a branch in the partial derivative diagram.

B.4 Generalization

This section presents the generalized formulations for a branch of the partial derivative
diagram for a feedforward neural networks relating to the partial derivative of an activation
unit at layer L, that is, A(L) with respect to a hidden state at layer l, that is, Z(l). Figure 14
shows a branch of the partial derivative diagram for a FNN.

B.4.1 Partial Derivative

∂a(L)

∂z(l) = X(L)Y (L−1)X(L−1). · · · Y (l+1)X(l+1)Y (l)X(l) (36)

The expected value is computed following

E
[
∂a(L)

∂z(l)

]
= E

[
X(L)Y (L−1)X(L−1) · · · Y (l+1)X(l+1)

]
︸ ︷︷ ︸

E
[
∂a(L)

∂z(l+1)

] E
[
Y (l)

]
E
[
X(l)

]

+ cov
(
X(L)Y (L−1)X(L−1) · · · Y (l+1)X(l+1), Y (l)X(l)

)
,

(37)

where

cov
(
X(L)Y (L−1)X(L−1) · · · Y (l+1)X(l+1), Y (l)X(l)

)
=
{
cov

(
X(l+1), Y (l)

)
E
[
X(l)

]
+ cov

(
X(l+1), X(l)

)
E
[
Y (l)

]}
× E

[
Y (l+1)

]
E
[
X(L)Y (L−1)X(L−1)

]
︸ ︷︷ ︸

E
[
∂a(L)

∂z(L−1)

] .

(38)

27

Nguyen and Goulet

The variance is computed following

var
(
∂a(L)

∂z(l)

)
= var

(
X(L)Y (L−1)X(L−1) · · · Y (l+1)X(l+1)

)
︸ ︷︷ ︸

var
(

∂a(L)

∂z(l+1)

) var
(
Y (l)X(l)

)

+ cov
(
X(L)Y (L−1)X(L−1) · · · Y (l+1)X(l+1), Y (l)X(l)

)2

+ 2cov
(
X(L)Y (L−1)X(L−1) · · · Y (l+1)X(l+1), Y (l)X(l)

)
× E

[
X(L)Y (L−1)X(L−1) · · · Y (l+1)X(l+1)

]
︸ ︷︷ ︸

E
[
∂a(L)

∂z(l+1)

] E
[
Y (l)

]
E
[
X(l)

]

+ var
(
X(L)Y (L−1)X(L−1) · · · Y (l+1)X(l+1)

)
E
[
Y (l)

]2
E
[
X(l)

]2
+ var

(
Y (l)X(l)

)
E
[
X(L)Y (L−1)X(L−1) · · · Y (l+1)X(l+1)

]2
.

(39)

B.4.2 Covariance between Partial Derivative and Hidden State

cov
(
∂a(L)

∂z(l) , z
(l)
)

= cov
(
X(l+1), z(l)

)
E
[
Y (l+1)

]
E
[
Y (l)

]
E
[
X(l)

]
E
[
X(L)Y (L−1)X(L−1)

]
︸ ︷︷ ︸

E
[
∂a(L)

∂z(L−1)

]
+ cov

(
X(l), z(l)

)
E
[
Y (l)

]
E
[
X(L)Y (L−1)X(L−1) · · · Y (l+1)X(l+1)

]
︸ ︷︷ ︸

E
[
∂a(L)

∂z(l+1)

] .

(40)

B.5 Activation Function

B.5.1 Tanh(Z)

The derivative of the function φ(Z) = tanh(Z) with respect to the hidden state Z is written
as

φ′(Z) = dφ(z)
dz

= 1− φ(Z)2. (41)

The expected value of φ′(Z(l)
j) is computed using Equation 13 and 41

E [φ′(z)] = E
[
1− φ(Z(l)

j)2
]

= 1− E
[
φ
(
Z

(l)
j

)]2
− var

(
φ(Z(l)

j)
)
.

(42)

28

Analytically Tractable Hidden-States Inference in Bayesian Neural Networks

The variance of φ′(Z(l)
j) is computed using Equation 16

var
(
φ′(Z(l)

j)
)

= var
(
1− φ(Z(l)

j)2
)

= var
(
φ(Z(l)

j)2
)

= 2 var
(
φ(Z(l)

j)
){

var
(
Z

(l)
j

)
+ 2E

[
φ(Z(l)

j)
]2}

.

(43)

The covariance between φ(Z(l+1)
i) and W (l)

ij is computed using Equation 14

cov
(
φ′(Z(l+1)

i), W (l)
ij

)
= cov

(
1− φ(Z(l+1)

i)2, W
(l)
ij

)
= −cov

(
φ(Z(l+1)

i)2, W
(l)
ij

)
= −2 cov

(
φ(Z(l+1)

i), W (l)
ij

)
E
[
φ(Z(l+1)

i)
]
.

(44)

Using Equation 10 and 12, Equation 44 is rewritten as

cov
(
φ′(Z(l+1)

i), W (l)
ij

)
= −2 cov

(
J

(l+1)
i (Z(l+1)

i − µ(l+1)
Zi

) + φ(µ(l+1)
Zi

), W (l)
ij

)
E
[
φ(Z(l+1)

i)
]

= −2 J (l+1)
i cov

(
Z

(l+1)
i ,W

(l)
ij

)
E
[
φ(Z(l+1)

i)
]

= −2 J (l+1)
i cov

(∑
k

W
(l)
ik φ(Z(l)

k) +B
(l)
i , W

(l)
ij

)
E
[
φ(Z(l+1)

i)
]

= −2 J (l+1)
i cov

(
W

(l)
ij ,W

(l)
ij

)
E
[
φ(Z(l)

i)
]
E
[
φ(Z(l+1)

i)
]
.

(45)

The covariance between φ′(Z(l+1)
j) and φ′(Z(l)

i) is obtained using Equation 15, 10, 11, and
12,

cov
(
φ′(Z(l+1)

i), φ′(Z(l)
j)
)

= cov
(
1− φ(Z(l+1)

i)2, 1− φ(Z(l)
j)2

)
= cov

(
φ(Z(l+1)

i)2, φ(Z(l)
j)2

)
= 2 cov

(
φ(Z(l+1)

i), φ(Z(l)
j)
)2

+ 4 cov
(
φ(Z(l+1)

i), φ(Z(l)
j)
)
E
[
φ(Z(l+1)

i)
]
E
[
φ(Z(l)

j)
]
,

(46)

29

Nguyen and Goulet

where

cov
(
φ(Z(l+1)

i), φ(Z(l)
j)
)

= J
(l+1)
i cov

(∑
k

W
(l)
ik φ(Z(l)

k) +B
(l)
i , φ(Z(l)

i)
)

= J
(l+1)
i cov

(
W

(l)
ij φ(Z(l)

j), φ(Z(l)
i)
)

= J
(l+1)
i cov

(
φ(Z(l)

j), φ(Z(l)
i)
)
E
[
W

(l)
ij

]

+ J
(l+1)
i

���
���

���
�: 0

cov
(
W

(l)
ij , φ(Z(l)

i)
)
E
[
φ(Z(l)

j)
]
.

(47)

The covariance between φ′(Z(l+1)
i) and Z(l)

j is computed using Equation 14, 10, 11, and 12,

cov
(
φ′(Z(l+1)

i), Z(l)
j

)
= cov

(
1− φ(Z(l+1)

i)2, Z
(l)
j

)
= −2 cov

(
φ(Z(l+1)

i), Z(l)
j

)
E
[
Z

(l)
j

]
= −2 J (l+1)

i cov
(∑

k

W
(l)
ik φ(Z(l)

k) +B
(l)
i , Z

(l)
j

)
E
[
Z

(l)
j

]
= −2 J (l+1)

i cov
(
W

(l)
ij φ(Z(l)

j), Z(l)
j

)
E
[
Z

(l)
j

]
= −2 J (l+1)

i cov
(
φ(Z(l)

j), Z(l)
j

)
E
[
W

(l)
ij

]
E
[
Z

(l)
j

]
− 2 J (l+1)

i ���
���

���: 0
cov

(
W

(l)
ij , Z

(l)
j

)
E
[
φ(Z(l)

j)
]
E
[
Z

(l)
j

]
= 2 J (l+1)

i J
(l)
j cov

(
Z

(l)
j , Z

(l)
j

)
E
[
W

(l)
ij

]
E
[
Z

(l)
j

]
.

(48)

The covariance between φ′(Z(l)
j) and Z(l)

j is computed using Equation 14

cov
(
φ′(Z(l)

j), Z(l)
j

)
= cov

(
1− φ(Z(l)

j)2, Z
(l)
j

)
= −2 cov

(
φ(Z(l)

j), Z(l)
j

)
E
[
φ(Z(l)

j)
]

= −2 J (l)
j cov

(
Z

(l)
j , Z

(l)
j

)
E
[
φ(Z(l)

j)
]
.

(49)

30

Analytically Tractable Hidden-States Inference in Bayesian Neural Networks

B.5.2 ReLU(Z)

The derivative of the function φ(Z) = ReLU(Z) with respect to the hidden state Z and its
covariance are formulated following

φ′(Z) =
{

1 if E [Z] > 0
0 if E [Z] ≤ 0.

E
[
φ′(Z(l)

j)
]

= 1

var
(
φ′(Z(l)

j)
)

= 0

cov
(
φ′(Z(l+1)

i), W (l)
ij

)
= 0

cov
(
φ′(Z(l+1)

i), φ′(Z(l)
j)
)

= 0

cov
(
φ′(Z(l+1)

i), Z(l)
j

)
= 0

cov
(
φ′(Z(l)

j), Z(l)
j

)
= 0.

(50)

References

N. Akhtar and A. Mian. Threat of adversarial attacks on deep learning in computer vision:
A survey. IEEE Access, 6:14410–14430, 2018.

L. Ardizzone, J. Kruse, C. Rother, and U. Köthe. Analyzing inverse problems with invertible
neural networks. In International Conference on Learning Representations (ICLR), 2019.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym. arXiv preprint arXiv:1606.01540, 2016.

N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks. In 2017
IEEE symposium on security and privacy (sp), pages 39–57. IEEE, 2017.

P.-Y. Chen, Y. Sharma, H. Zhang, J. Yi, and C.-J. Hsieh. Ead: elastic-net attacks to deep
neural networks via adversarial examples. In Thirty-second AAAI conference on artificial
intelligence, 2018.

X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel. Infogan:
Interpretable representation learning by information maximizing generative adversarial
nets. In Neural Information Processing Systems (NIPS), 2016.

P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor,
Y. Wu, and P. Zhokhov. Openai baselines. https://github.com/openai/baselines,
2017.

G. W. Ding, L. Wang, and X. Jin. AdverTorch v0.1: An adversarial robustness toolbox
based on pytorch. arXiv preprint arXiv:1902.07623, 2019.

31

https://github.com/openai/baselines

Nguyen and Goulet

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio. Generative adversarial nets. In Neural Information Processing Systems
(NIPS), volume 27, pages 2672–2680, 2014.

I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples.
In International Conference on Learning Representations (ICLR), 2015.

I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT Press, 2016.

J.-A. Goulet, L. H. Nguyen, and S. Amiri. Tractable approximate Gaussian inference for
Bayesian neural networks. Journal of Machine Learning Research, 22(20-1009):1–23, 2021.

M.-C. Goulet. Neural networks in insurance. Master’s thesis, Concordia University, July
2021.

D. P. Kingma and M. Welling. Auto-encoding variational Bayes. stat, 1050:1, 2014.

A. Krizhevsky et al. Learning multiple layers of features from tiny images. Master’s thesis,
University of Toronto, 2009.

J. Kruse, L. Ardizzone, C. Rother, and U. Köthe. Benchmarking invertible architectures on
inverse problems. arXiv, cs.LG2101.10763, 2021.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning models
resistant to adversarial attacks. Stat, 1050:9, 2017.

V. Mnih, Adria P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In International
conference on machine learning, pages 1928–1937. PMLR, 2016.

A. Neelakantan, L. Vilnis, Q.V. Le, I. Sutskever, L. Kaiser, K. Kurach, and J. Martens.
Adding gradient noise improves learning for very deep networks. CoRR, abs/1511.06807,
2015.

L. H. Nguyen and J.-A. Goulet. Analytically tractable Bayesian deep Q-learning. arXiv
preprint arXiv:2106.11086, 2021a.

L. H. Nguyen and J-A. Goulet. Analytically tractable inference in deep neural networks.
arXiv preprint arXiv:2103.05461, 2021b.

J.W.T Peters and M. Welling. Probabilistic binary neural networks. arXiv preprint
arXiv:1809.03368, 2018.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-
propagating errors. Nature, 323:533—536, 1986.

J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization.
In International conference on machine learning (ICML), pages 1889–1897. PMLR, 2015.

32

Analytically Tractable Hidden-States Inference in Bayesian Neural Networks

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347, 2017.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT Press, 2nd
edition, 2018.

E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5026–5033. IEEE, 2012.

Y. Wu, E. Mansimov, R. B. Grosse, S. Liao, and J. Ba. Scalable trust-region method for deep
reinforcement learning using kronecker-factored approximation. In Advances in neural
information processing systems, volume 30, pages 5279–5288, 2017.

33

	Introduction
	Tractable Approximate Gaussian Inference
	Adversarial Attack through Inference
	Optimization through Inference
	Continuous-Actions RL through Inference
	Conclusion
	Model Architecture and Hyper-parameters
	Adversarial Attack
	MNIST
	Cifar10
	Additional Results

	Optimization
	Continuous-Action Reinforcement Learning

	Partial Derivative in TAGI Neural Networks
	TAGI Neural Networks
	Gaussian Multiplication Approximation (GMA)
	Partial Derivative Formulations for A Simple Feedforward Neural Network
	Partial Derivative A1(3)Z1(2)
	Partial Derivative A1(3)Z1(1)
	Partial Derivative A1(3)Z1(0)
	Covariance between A1(3)Z1(0) and Z1(0)

	Generalization
	Partial Derivative
	Covariance between Partial Derivative and Hidden State

	Activation Function
	Tanh(Z)
	ReLU(Z)

