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Abstract

The early detection of anomalies associated with changes in the behavior of structures
is important for ensuring their serviceability and safety. Identifying anomalies from
monitoring data is prone to false and missed alarms due to the uncertain nature of
the infrastructure responses’ dependency on external factors such as temperature and
loading. Existing anomaly detection strategies typically rely on univariate threshold
values and disregard the planning horizon in the context of decision making. This
paper proposes an anomaly detection framework that combines the interpretability of
existing Bayesian dynamic linear models, a particular form of state-space models, with
the long-term planning ability of reinforcement learning. The new framework provides
(a) reinforcement learning formalism for anomaly detection in Bayesian dynamic linear
models, (b) a method for simulating anomalies with respect to its height, duration,
and time of occurrence, and (c) a method for quantifying anomaly detectability. The
potential of the new framework is demonstrated on monitoring data collected on a
bridge in Canada. The results show that the framework is able to detect real anomalies
that were known to have occurred, as well as synthetic anomalies.

Keywords: Anomaly detection, reinforcement learning, Bayesian dynamic linear models, state-space

models, decision-making, structural health monitoring, false alarm, bridge

1 Introduction

The deterioration of civil infrastructures such as bridges is responsible for important societal
expenses. Despite some improvements in infrastructure condition because of rehabilitation,
the average age of our infrastructure is increasing, and in many cases, it is approaching the
design limit or operational life-cycle [3, 7]. Using sensors enables monitoring the structural
condition as well as the occurrence of anomalies; this task is referred to as structural health
monitoring (SHM). It provides information for decision makers in order to support the
operation, maintenance, and the replacement of civil structures. In this paper, we focus
on long-term infrastructure monitoring where an anomaly is defined as a change in the
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structural behavior. The objective of the anomaly detection is to identify these changes
early while avoiding false alarms. Despite the fact that sensing technologies have become
cheaper and broadly available, interpreting time series data remains a challenge. Many
methods from the field of statistics and machine learning have been developed, in order to
detect anomalies in time series data. Although there is not a unified accepted categories for
anomaly detection strategies [29], Yu & Sun [41] classified these strategies into statistical-
based and machine learning-based methods. Statistical approaches build a parametric [1, 6]
or a non-parametric [21, 39] statistical model from the training dataset, and test the newly
collected data against the model in order to identify whether the test dataset fit the model
or not. Both types of statistical models requires a predefined distribution representing
the normal condition, which is not often available for SHM data. Machine learning-based
approaches often rely on building a classification or a clustering model [4,11,19,23]. However,
when a model is built, it cannot be continuously adapted as new data are collected. In
addition, anomalies in infrastructures are rare events, and yet in many cases, these methods
require labels for the structural conditions (e.g. normal and abnormal) [4, 5, 8, 12]. Another
common limitation of the above-mentioned approaches is that identifying anomalies from
the changes in behavior is prone to outliers, especially for methods relying on the hypothesis
testing [9]. A common approach to quantify the performance of the anomaly detection
method is to use a metric that quantifies the true and false anomaly detections [29]: a
true detection consist in correctly identifying an anomaly when it occurs. In contrast, a
false detection, i.e., false alarm, occurs when the anomaly detection method incorrectly
identifies the presence of an anomaly. The reader is referred to [14] for a detailed review
of the available metrics based on the true detection and false alarm rates. In addition,
Ahmad et al. [2] proposed the Numenta Anomaly Benchmark (NAB) scoring system in
order to account for the early anomaly detections. In general, an effective anomaly de-
tection method is the one that results in metrics indicating a high early true detection
rate, while keeping a low false alarm rate. However, these metrics do not account for the
anomaly characteristics such as height, duration and time of occurrence. Therefore, the
anomaly detectability method cannot be quantified with respect to the nature of the anomaly.

As pointed by Pimentel et al. [29], another class of anomaly detection strategy relies
on the state-space models (SSM). These models decompose the observations into the su-
perposition of some hidden states that evolve through time. A common SSM for anomaly
detection that address the limitations of above-mentioned methods is the Kalman filter and
its generalization with the Switching Kalman Filter (SKF) [16]. In the context of SHM,
Goulet [17] and Goulet & Koo [18] employed a particular SSM, called Bayesian Dynamic
Linear Models (BDLM). A BDLM consists in empirical models allowing to decompose
structural responses into the superposition of reversible and irreversible behaviors. The
reversible behaviors are due to external effects such as temperature and loading, whereas
the irreversible ones are the result of changes in the structure itself. Nguyen & Goulet [25]
have introduced an anomaly detection method based on the combination of the SKF and
BDLM. The SKF-based BDLM uses the probability of regime switching as an indication of
a possible anomaly and does not require labeled training data with respect to the condition
of the structure. In this regard, BDLM considers two different dynamics for the normal
and abnormal regime of the structure, where the switching between the two dynamics is
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characterized probabilistically. A key advantage of this approach is that these dynamics
explicitly quantify normal and abnormal regime kinematics. Therefore, it is possible to
evaluate the performance of the anomaly detection method with respect to the anomaly
characteristics. Nguyen & Goulet [26] have extended the BDLM method for real-time
anomaly detection using Rao-Blackwellized Particle Filtering (RBPF) enabling to identify
the probability of the abnormal regime as new data arrive. The main limitation of making
decisions solely based on the probability of the abnormal regime is that it is prone to
false or missed alarms, especially for low probability events; it is possible that during
the decision making, we face situations for which the probability of abnormal regime is
low, while the underlying irreversible responses indicate a possible switch between two
regimes, and vice versa. Therefore, there is a need for leveraging information from both
irreversible responses and the probability of regime switching for robust SHM anomaly
detection. Another limitation is that such a decision making process does not incorporate
long-term planning considerations. For instance, there can be a situation for which the
initial change in probability at a given time is not due to an anomaly, and the decision
maker needs to delay the decision making until more data are available.

Reinforcement Learning (RL) [33, 34] is a sub-field of the Artificial Intelligence (AI)
enabling the decision maker, called the agent, to make decisions by taking actions in an
environment. RL is formulated via Markov decision process (MDP) for which at each
time step, the agent interacts with its environment by taking actions that influence the
environment’s state. Accordingly, the environment gives a feedback in the form of a reward,
a signal indicating whether the agent takes beneficial actions. The agent continues learning
by interacting with the environment until it learns the optimal actions for the environment’s
states. The key advantage of RL is that it considers the long term effects of the actions
by maximizing the overall discounted reward during its interactions with the environment.
Despite this advantage, there are few researchers that have employed RL in the field of
anomaly detection, where the agent makes decisions regarding the presence of an anomaly.
Huang et al. [20] and Yu & Sun [41] respectively proposed a value-based and policy-based
forward RL anomaly detection methods based on Deep Reinforcement Learning (DRL),
where the objective is to learn the optimal actions, given the reward function values. Oh
& Iyengar [28] used an inverse RL method for the task of anomaly detection, where the
objective is to determine the underlying reward function, and subsequently the agent
preference, from a sample of optimal actions. The above-mentioned researchers have showed
the advantages of both forward and inverse RL for anomaly detection on various time series.
However, the employed time series do not consist in explicit SHM data that are collected
on the civil infrastructures. Also, their methods were only applied directly to time series
data (i.e., environment) without considering the external effects and the kinematics of the
underlying true responses. In addition, the performance metrics for the anomaly detection
method do not account for the anomaly characteristics.

To the best of the authors’ knowledge, this is the first time that RL is combined
with BDLM in order to address the existing limitations of the anomaly detection in SHM
time series data by: (i) explicitly detecting anomalies within the underlying irreversible
behavior of the structure, (ii) considering the long term effect of detecting anomalies, and
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(iii) accounting for the anomaly characteristics to evaluate performance and detectability
capacity of the anomaly detection method. In Section 2 we introduce the BDLM theory for
building empirical models for both normal and abnormal structural conditions. Section 3
presents the formalism of anomaly detection in the context of RL and the method for
simulating the environment. Section 4 presents the Q-learning approach [34] that is
employed in order to train the agent. Section 5 presents the Anomaly Detection (AD)
framework proposed in this paper, along with the methods for quantifying the anomaly
detectability capacity. Section 6 illustrates the potential of the framework in order to detect
known and unknown anomalies on elongation data recorded on a bridge located in Canada.
In addition, this section explores the factors influencing the anomaly detectability capacity
of several agents.

2 Empirical model estimation

At time t, the vector of Y observations yt = [y1 y2 · · · yY]ᵀ is decomposed into the hidden
state vector xt = [x1 x2 · · · xX]ᵀ, which contains X hidden state variables representing
reversible and irreversible behaviors. Here, we use BDLM in order to model the system
dynamics and estimate the hidden state variables, recursively [17, 25]. The evolution of
hidden state variables over time is expressed by the linear transition model

xt+1 = At+1xt + wt+1, wt+1 ∼ N (w; 0,Qt+1), (1)

in which At+1 is the transition matrix and Qt+1 is the process noise. The observation
model

yt+1 = Ct+1xt+1 + vt+1, vt+1 ∼ N (v; 0,Rt+1) (2)

is described by the observation matrix Ct+1 and the observation covariance Rt+1. Fur-
thermore, M = {At+1,Ct+1,Qt+1,Rt+1} is a model matrices set parametrized by P , a set
of unknown parameters that is estimated using the observations. A complete review of
BDLM and the choices of the hidden state variables and corresponding model matrices are
provided by Goulet [17].

2.1 Stationary and non-stationary regimes

In this study, we employ a local level baseline hidden state variable xLL in order to describe
the irreversible response of a structure. The rate of the change in the baseline is the
trend hidden state variable xLT. We define the stationary regime as a regime for which the
statistical properties of the trend do not vary over time, i.e. a locally constant trend [17,18].
In contrast, a non-stationary regime refers to the situation in which the trend is not locally
constant. We use the rate of the change in the trend, i.e. the acceleration hidden state
variable xLA, for modelling the non-stationary regimes. Therefore, we can choose two
sets of model matrices Ms and Mns which respectively model the stationary (s) and
non-stationary (ns) regimes. The BDLM process can be summarized by{

µt+1|t+1,Σt+1|t+1, π
ns
t+1|t+1

}
= BDLM(µt|t,Σt|t, π

ns
t|t,y,Ms,Mns), (3)
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where, µt|t ≡ E[xt|y1:t] and Σt|t ≡ cov[xt|y1:t] respectively are the expected value vector and
covariance matrix of the hidden states vector at time t, conditional on y1:t ≡ {y1,y2, · · · ,yt},
a set of observations for the times from t = 1 up to t. Furthermore, πnst|t is the probability of
the non-stationary regime at time t, given all the data up to time t. Note that the subscript

t|t changes to t+1|t+1 whenever we are interested in times ranging from 1 up to t+ 1.

2.2 Anomaly detection

An anomaly refers to a change of regime from stationary to non-stationary for which
the regime switches from a locally constant trend to a locally constant acceleration. The
stationary and non-stationary regimes represent respectively the normal and abnormal state
of the structure. Therefore, the objective of anomaly detection is to automatically identify
the transitions from a stationary regime to a non-stationary one, and vice versa.
Figure 1 presents an example of the application of the BDLM to identify the probability of
the non-stationary regime. It illustrates the baseline hidden state variable xLL, i.e. local
level, the locally constant trend xLT, locally constant acceleration xLA, and the probability of
the non-stationary regime πns for elongation data (E) collected on a bridge. Data description
and the detailed empirical model estimation are presented in §6. The timestamps with
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Figure 1: Illustration of the hidden state variable estimation and the probability of non-
stationary regime. xLL, xLT, and xLA respectively are the local level, locally constant trend,
and locally constant acceleration hidden state variables corresponding to the elongation
measurement on a bridge. πns is the probability of the non-stationary regime.

high probabilities of regime switching within the year 2011 correctly indicates the presence
of an anomaly, which in this case is due to the structural interventions. We can see the
effect of the anomaly on the underlying responses during the year 2011. Note that after
the intervention, BDLM identifies a return to the stationary regime. However, using only
the probability of the non-stationary regime is prone to false alarms: there are situations
where the probability of the non-stationary regime is not zero, but we do not know whether
the changes in underlying responses correspond to an anomaly or not. For instance, the
probabilities of the non-stationary regime during February 2007 and October 2009 are not
zero, although the corresponding trends are not as high as the ones occurring between May
and October 2011. Therefore, the probability of a non-stationary regime is not a perfect
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indication of an anomaly in these situation. The following sections present how an anomaly
detection framework can tackle these situations by training an RL agent in a simulated
environment that takes into account the additional information regarding the trend.

3 Anomaly detection in the context of RL

Making decisions regarding the presence of an anomaly requires incorporating the infor-
mation both from the irreversible responses and the probability of non-stationary regime.
For simplicity, in this study we rely on the expected value of the local trend µLTt and the
probability of non-stationary regime πnst as the environment’s state. This section frames
the anomaly detection in the context of RL and presents the simulated environment’s state
mimicking the underlying behavior of the structure.

3.1 Anomaly detection

At time t, the environment’s state vector st = [µLTt πnst ]ᵀ ∈ S consists in the mean value
of the local trend hidden state variable and the probability of the non-stationary regime.
The vector st is obtained from the BDLM process and represents the environment that the
agent interacts with. Figure 2 shows an example of a continuous environment’s state space
S for which the solid and dashed lines represent the evolution of the vector st over time.
An episode Z = {s1, s2, · · · } is defined as a set of environment’s state vectors for con-
secutive time steps. Any episode such as the one depicted by the solid line is ini-
tialized at s1, at which time it follows a stationary regime. At time t = ts, when
an anomaly happens, the regime switches from stationary to non-stationary. At time
t = te, te > ts, the regime switches back to stationary. For the agent, anomaly detection
refers to making an optimal decision at time t in the form of taking an optimal action
at ∈ A = {a0 trigger an alarm, a1 not trigger an alarm}, according to the possible presence
of an anomaly. Therefore, for the non-stationary regime, i.e., t ∈ (ts, te), the agent’s optimal
action is to only trigger an alarm once, such as the one shown by the red dotted circle, and
as close as possible to time t = ts. On the other hand, when the regime is stationary, that
is for t /∈ (ts, te), the agent’s optimal action is to not trigger an alarm.

In Figure 2, the reward r(st, at) ∈ R is a function of the environment’s state st and
of the agent’s action at indicating whether the agent takes desirable actions during the
agent-environment interactions [27, 38]. Its value depends on whether the action results in
a false (at = a1, ∀t < ts) or delayed (at = a0,∀t > ts) triggering of an alarm, and rightfully
not triggering an alarm, i.e., at = a0, ∀t /∈ (ts, te). In this manuscript, the terms delayed
alarm and missed alarm are interchangeable for times t > ts. A policy π : S → A is defined
as a map from the environment’s state space to the action space describing the action to be
taken by the agent given the environment’s state. For a given policy π, the value of taking
the action a in the environment’s state s is denoted by the action-value function qπ(s, a).
The action-value function is formally defined as

qπ(st, at) = Eπ [Rt|st, at] , (4)

where, the return Rt =
∑∞

t=1 γ
t−1rt(st, at) depends on the current and future reward values,

and γ ∈ (0, 1] is the discount factor quantifying how much of the future reward values
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Figure 2: Illustration of the episodes Z and environment’s state vector st = [µLTt πnst ]ᵀ ∈ S
for which the agent triggers an alarm at time t during the non-stationary regime. The
curves inside the environment represent different realizations. One of them (solid line) is
highlighted to explain the nomenclature; sts and ste are respectively associated with the
start and end time of the non-stationary regime. The red dashed circle indicates the time
for which the agent triggers the alarm. The optimal action is corresponding to trigger the
alarm as close as possible to the time t = ts.

are discounted in comparison with the current one. Equation 4 states that the value of a
state-action pair (st, at) at time t is the expected return of the agent that starts from the
environment’s state st and takes the action at, and takes the future actions by following the
policy π [35]. In this setup, the anomaly detection can be regarded as a sequential decision
making problem in the context of RL, where the objective is to maximize the expected return
and subsequently the action-value function. Therefore, the anomaly detection problem is
governed by the execution of the optimal policy π∗ defined by

π∗(s) = arg max
at∈A

qπ∗(st, at), (5)

= arg max
at∈A

Eπ∗

[ ∞∑
t=1

γt−1rt(st, at)|st, at
]
.

The RL-based anomaly detection has two advantages. First, the policy depends on the
environment’s state s, which consists in the information from both the trend hidden
state variable and the probability of the non-stationary regime. This addresses the issues
regarding the decision making solely based on the probability of the non-stationary regime
as explained in §2.2. Second, in Equation 5, evaluating the action-values depends on the
current and future reward values. This implies that the the decision making considers
the long-term effect of taking actions. Therefore, maximizing the accumulated discounted
rewards implicitly results in maximizing the anomaly detectability, while minimizing the
number of false and delayed alarms.

3.2 Simulated environment’s state space

For SHM applications, the agent-environment interaction should mimic the underlying
infrastructure behavior in the presence of various anomalies. Training the agent to detect
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anomalies solely based on the observed structural responses cannot address this challenge
because anomalies are rare events in the context of infrastructure monitoring. Therefore,
we simulate the environment’s state using a stochastic empirical model of the structural
responses and a stochastic anomaly function.

3.2.1 Anomaly Function

We model an anomaly as a switch from a stationary to a non-stationary regime as described
in §2.2. In order to simulate such a transition, we define the anomaly function representing
a change in the trend using a continuous logistic function

fa(t;J ) =
ha
|ha|
· |ha|+ 2εa

1 + e−k(t−tc)
, (6)

in which the steepness k is governed by

k =
2

wa
ln

( |ha|
εa

+ 1

)
. (7)

BDLMs represent the kinematics of time series via a local level, a locally constant trend,
and a locally constant acceleration component. Also, the transition from a locally constant
trend to a locally constant acceleration (i.e., anomaly) results in a drift on the local level
responses over the time. The logistic function is an infinitely differentiable function over
its entire domain and have exact closed-form derivatives and integrals. Hence, choosing
the logistic function for modelling the changes in the trend allows evaluating its derivative
and integral, which determines the kinematics of the anomaly function; this property
allows merging the anomaly function with hidden state variables as explained in §3.2.2. In
addition, the logistic function parameters are associated with the non-stationary regime
characteristics: in Equation 6, J = {ha, wa, tc} is a set of random variables describing
the stochastic characteristics of the non-stationary regime. It consists in the height ha,
duration wa, and center tc of the anomaly function. The user-defined anomaly tolerance εa
is the minimum magnitude corresponding to the time for which the non-stationary regime
starts, i.e. fa(ts) = εa. Figure 3 illustrates three different anomaly realizations with the
same height ha > 0 and different centers and durations such that w1

a < w2
a < w3

a. Hatched
regions on the horizontal axis indicate the out-of-domain values, which are discarded. For
the anomaly function shown by a solid line, the non-stationary duration wa is centerd at
time tc and is associated with the start time ts = tc − wa/2 and end time te = tc + wa/2.
Anomaly function values corresponding to the start and end time of the non-stationary
duration are εa and ha + εa, respectively. The shaded area indicates the anomaly tolerance
for which the the regime is considered to be stationary. For the cases where |ha| < εa or
ha = 0, we assume that there is no anomaly, i.e., fa(t) = 0, ∀t. The anomaly function
magnitude |fa(t)| ∈ (0, |ha|+ 2εa) approaches 0 as t tends to −∞. Therefore, at time t1, the
anomaly function introduces an error of magnitude |fa(t1)|, which must satisfy |fa(t1)| < ε.
Here, ε is a user-defined tolerance. In order to start episodes with a stationary regime as
described in §3, we accept anomaly realizations for which ts ≥ t1 + w0, where w0 > 0 is the
number of initial time steps without anomaly.
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Figure 3: Illustration of an anomaly function fa(t;J ) with ha > 0. The curves represent
three anomaly realizations with the same height h1a = h2a = h3a = ha and anomaly tolerance
ε1a = ε2a = ε3a = εa, and different durations such that w1

a < w2
a < w3

a. One of them (solid line)
is highlighted to explain the nomenclature. The non-stationary regime is centered at time
tc for which ts,e = tc ∓ wa/2.

3.2.2 Simulated environment’s state

The process of simulating the environment’s state involves simulating abnormal structural
responses y sim and employing them in Equation 3 in order to estimate hidden state variables
and regime probabilities. To this end, we add the anomaly function values fa(t;J ) and
corresponding derivative d

dt fa(t;J ), and integral
∫
fa(t;J ) dt to the associated hidden

states variables’ expected values µobs
t|t corresponding to the trend, acceleration, and baseline

responses. By employing the observation model as described in §3, the simulation of new
structural responses is summarized by

y sim = SIM(µobs
t|t , fa(t;J ),Σobs

t|t ,Ms,obs), (8)

where, the superscripts obs and sim refer to the quantities that are respectively obtained
from the observed and simulated structural responses. Note that we use the model matrix
Ms,obs associated with the stationary regime to simulate structural responses. Finally,
the environment’s state is estimated analogously to the BDLM process expressed in Equa-
tion 3, but using simulated structural response ysim

t and model matricesMs,obs andMns,obs.

Figure 4 shows ten simulated responses on the bridge as described in §6. In each figure,
the solid thick red line is the observations y obs, while the black lines are the simulated
responses y sim. The vertical dashed line illustrates the number of time steps without
anomaly, i.e. w0. The table in Figure 4 depicts the parameters used to generate systematic
anomalies: the height ha ∼ N (ha; 0, σ2ha) is sampled from a normal distribution with
mean zero and the standard deviation σha . The duration wa ∼ lnN (wa;λwa , ζ

2
wa

) ∈ R+

is sampled from a log-normal distribution parameterized in the log-space by the mean
λwa = lnµwa − ζ2/2 and variance ζ2 = ln[1 + (σwa/µwa)2]. Here, µwa and σwa respectively
are the mean and standard deviation of the non-stationary regime duration. The center of
the non-stationary regime corresponds to the time tc ∼ U(tc; t1, tT), which is sampled from a
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uniform distribution. In Figure 4, εa,min is the minimum required anomaly function value at
time ts. Selecting the distributions and corresponding parameters for generating anomalies
depend on the requirements of anomaly detection with respect to the prior knowledge
about the anomaly heights and durations. Figure 4 is an example of simulated responses,
where the anomaly heights and durations follow a normal and log-normal distribution.
However, in many cases such prior knowledge does not exist and it is suggested to use
uniform distribution to generate anomalies. In addition, the parameters of the distribution
depend on the expected anomalies on the structure. For instance, we have a knowledge
about a particular anomaly on the bridge as shown in Figure 1 due to interventions. Such
a knowledge helps defining the bounds of the uniform distribution for the anomaly function
stochastic characteristics J . Table 3 in Appendix B shows the distributions and parameters
explored in this work. As it is explained in §6, the bounds for the anomaly heights are
defined such that the agent is trained for lower and higher anomaly heights compared with
the one obtained from the intervention.

07-01 08-01 08-06 09-12 11-05 12-11
−1

0

1

E
lo

ng
at

io
n,

[m
m

] w0 yE, simt yE, obs
t

07-01 08-06 09-12 11-05 12-11
−20

0

20
30

Time [YY-MM]

Te
m

pe
ra

tu
re

,[
◦ C

] yT, simt yT, obs
t

Parameter Value Unit

σha 1× 10−4 [mm/day]
µwa 60 day
σwa 30 day
εa,min 1× 10−4 [mm/day]
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Figure 4: Illustration of the comparison between 10 simulated anomalous structural responses
y sim and observations y obs for elongation and temperature measurements. The height ha ∼
N (ha; 0, σ2ha) is sampled from a normal distribution, the duration wa ∼ lnN (wa, λwa , ζ

2
wa

)
is sampled from a log-normal distribution parameterized in the log-space, and w0 indicates
the number of time steps without anomaly during the simulation. The stationary regime
model matrix Ms,obs for generating time series is provided in Appendix A.

Figure 5a illustrates the estimated local trend mean values and the probability of the
non-stationary regime for the same ten simulated structural responses as shown in Figure 4.
The vertical dash-dotted lines and shaded areas correspond respectively to the center of the
anomalies and their duration. Figure 5b shows simulated environment’s states consisting
in 500 episodes for which 60% of them are abnormal. The anomaly kinematics represent
only a random damage state, which differs from the normal and abnormal states of the
structure as described in §2, because they do not consist in the reversible and irreversible
structural responses. The simulation procedure models the normal and abnormal state
of the structure for a given anomaly realization considering that the anomaly kinematics
interfere with the structural responses kinematics. The result presented in Figure 5a is
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Figure 5: Simulation of 500 episodes for which 60% of them are anomalous: (a) illustration
of 10 selected anomalous episodes for which the locally constant trend and probability of
non-stationary regime are shown. The vertical dash-dotted line and shaded area respectively
indicates the center and duration of the anomaly, and (b) illustration of the environment’s
state space S.

an example of such a procedure. However, it shows that relying only on the probability
of non-stationary regimes to detect anomalies is prone to false alarms as discussed in §2.2
because there are many timestamps for which the probability of non-stationary regimes
are not zero, yet there is no anomaly. In addition, we do not have the prior knowledge
about the occurrence of the anomalies. The RL-based anomaly detection copes with this
issue by not only incorporating the trend hidden state variable along with the probability
of the non-stationary regime, but also it takes the action of triggering the alarm based on
the immediate reward and the future accumulated discounted ones; such a RL framework
respects the state-of-the-art for sequential decision making [35].

4 Q-Learning

The tabular Q-learning approach [38] allows evaluating the action-values in Equation 5
with a model-free methods from which the agent can learn the optimal policies without
having access to the transition probability between the environment’s states [22, 27]. This
section presents the Q-learning methodology for the discretized environment’s state space.

4.1 Discretized environment’s state space

We use tabular reinforcement learning to train the agent in a discretized environments state
space Ŝ. Let dm×n : S → Ŝ be a discretization map from the continuous environment’s
state space S into the discretized one Ŝ with a grid size m × n . Figure 6 shows the
same environment’s state space depicted in Figure 2 which has been discretized with a
grid size of 5× 4. The shaded areas indicate the discretized regions visited by the agent
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during an episode Z, and the diamonds show the centers of these regions. Two successive
continuous environment’s states st and st+1 are shown by solid circles. The corresponding
discretized states are respectively ŝt = d(st) and ŝt+1 = d(st+1), which are shown by darker
shaded areas. In the discretized setup, the task of RL is to find the optimal policy for the

ŝt

ŝt+1
st

st+1Z

µLT

π
n
s

Figure 6: Mapping the continuous environment’s state st = [µLTt πnst ]ᵀ ∈ S into discretized
one ŝt ∈ Ŝ for two successive times t and t+ 1 during an episode Z. The shaded areas and
diamonds marks indicate the discretized regions and their centers visited by the agent.

discretized regions in order to obtain the optimal policy for the whole environment. To
this end, the agent interacts with the environment through several episodes. Here, each
episode includes T time steps and at the end time of each episode, for that t = T, the agent
cannot select further action to determine the next state. Consequently, at time t = T− 1,
the agent-environment interaction is terminated and restarted with another episode such
as the ones depicted in Figure 2 by dashed lines. In general, the grid size depends on
the problem in hand. Using a coarse grid may result in poor policies for the discretized
environment’s states. Therefore, the grid needs to be fine enough to ensure the convergence
of the Q-values [15]. On the other hand, increasing the grid size, increases the number of
states and the subsequent memory allocations during the learning; this results in a slower
learning as well as the necessity of a larger number of simulated data to train the agent as
it is the case for any tabular Q-learning method. In this paper, the grid size is selected via
trial-and-error procedure to find a tradeoff between the above-mentioned issues.

4.2 Q-Learning formalism

For a given discretized environment’s state space Ŝ, Q-learning is formalized by the updating
equation

Q(ŝt, at)← Q(ŝt, at) + αt

[
r(st, at) + γ max

at+1

Q(ŝt+1, at+1)−Q(ŝt, at)

]
, (9)

where the Q-values Q(ŝ, a) directly approximate the action-values regardless of the policy [35].
At each time step, the optimal action-value qπ∗(ŝ) = maxa∈AQ(ŝ, a) is selected from the
maximum Q-values associated with the possible actions. In Equation 9, the learning rate is
defined by

αt ≡ α(N1:t(ŝt, at); cα) =
cα

cα + N1:t(ŝt, at)
, (10)
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where N1:t(ŝt, at) is the number of times a state-action pair has been visited up to time t,
and cα ∈ R+ is the learning rate constant. Note that in Equation 9, unlike the Q-values,
the reward function r(st, at) value depends on the continuous state st. The learning rate
function must be formulated such that

∑∞
t=1 αt =∞ and

∑∞
t=1 α

2
t <∞, so the Q-values

converge to the optimal action-values when the total number of interactions approaches
infinity [33]. Therefore, the optimal policy can be obtained from the converged Q-values as

π∗(ŝ) = arg max
a∈A

Q(ŝ, a). (11)

Here, the Q-values are considered as converged when the expected Q-values over all the
visited states for K consecutive episodes satisfies the convergence error ratio

δz:z+K ≡
∣∣Eŝ[Qz+k(ŝ)]− Eŝ[Qz(ŝ)]

∣∣∣∣Eŝ [Qz(ŝ)]
∣∣ ≤ δ0, ∀k = {1, 2, · · · , K}, (12)

where δ0 is a user-defined convergency tolerance and Qz(ŝ) is calculated at time T− 1 from
the episode z. The subscript ŝ indicates that the expected value is computed over all the
visited states.

According to Equation 9, the agent can take two possible actions at ∈ A at each time
step t during the training in order to update the corresponding Q-value. In this study,
the action selection follows the ε-greedy algorithm [40]; at time t, the agent explores the
environment by selecting the action randomly with the probability εt ∈ (0, 1) and exploits
it by selecting the action from the current policy with the probability 1− εt. We define an
iteration-dependent exploration function as

εt ≡ ε(N1:t(ŝt); cε) =
cε

cε + N1:t(ŝt)
, (13)

where N1:t(st) = N1:t(ŝt, a
0)+N1:t(ŝt, a

1) is the number of times a state has been visited up to
time t regardless of the selected actions, and cε ∈ R+ is the exploration constant. To select
the action at at time t, we draw a sample ut ∼ U(ut; 0, 1) from a uniform distribution, and
compare it with the corresponding exploration probability εt. The agent action selection is
expressed as

at =

{
Random selection from A, ut ∼ U(ut; 0, 1) ≤ εt
maxa∈AQ(ŝt, at), Otherwise

. (14)

4.3 Reward Function

The reward function represents a feedback from the environment determining whether the
agent should be encouraged or discouraged for the action it takes [10]. The reward function
r(st, at) for an episode Z takes the form of a confusion matrix as shown in Table 1. Reward
values are based on the comparison between the optimal action and the actions taken by
the agent up to time t. Note that for each episode, the optimal action to be taken is known
from the anomaly simulation process and corresponding non-stationary regime timestamps
as described in §3.2.
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In Table 1, the true positive reward rTP and true negative reward rTN are corresponding
to the environment’s states where the agent correctly selects the optimal action. On the
other hand, the false positive (false alarm) reward rFP and false negative (delayed or missed
alarm) reward rFN are associated with an incorrect action taken by the agent.

Table 1: Reward function’s confusion matrix for the actions a0 and a1.

Agent action
Optimal action

a0 a1

a0 rTP rFP

a1 rFN rTN

In general, true positive and negative reward values are greater than the false positive
and negative ones such that rTN, rTP > 0 and rFP, rFN < 0. The delayed reward rFN =
−η|fa(t;J ) − fa(ts;J )|, t > ts, depends on the anomaly function fa(t;J ) such that the
agent is discouraged incrementally as it delays triggering a rightful alarm. η is the false
negative factor with a [η] = [Time/Length] enabling the user to control the reward value
and ensuring that the resulting rFN has the same dimension as of the other rewards.

5 Anomaly detection framework

The methods presented in previous sections are assembled into an anomaly detection
framework applicable for full-scale infrastructure monitoring. The framework is illustrated
in Figure 7 which consists in three stages identified by the dashed boxes. In the first
two stages, the AD employs the empirical model of the structure to simulate the episodes
consisting in stationary and non-stationary regimes as described in §3.2. In the third stage,
the framework uses RL in order to learn the optimal policy as described in §4. In Figure 7,
Stage I builds an empirical model from the structural responses yobs and the user-defined
generic components associated with stationary and non-stationary regimes. The generic
components involve model matrices Ms,obs and Mns,obs as described in §2. In this stage,
BDLM uses the structural responses and model matrices to estimate the hidden state
variables mean vector µobs

t|t and covariance matrix Σobs
t|t , as well as the model parameters P∗.

In Stage II, the goal is to simulate new episodes from simulated structural responses y sim

as described in §3.2. To this end, structural responses are simulated from the stationary
model matrix Ms,obs, the stochastic anomaly function fa(t;J ), and estimated hidden
state variables mean vector and covariance matrix obtained from the Stage I. Afterwards,
BDLM uses both the model matrices and simulated structural responses to establish new
environment’s states. The goal of the last stage is to train the Q-learning agent through
episodes Z ∈ S in order to detect anomalies as explained in §4.2. In Stage III, two
termination criteria are defined to restart the agent-environment interaction with a new
episode by simulating new structural responses from Stage II. The first criterion, t < tT − 1,
is related to end time of each episode as described in §4.1, and the second one, at = a0, is
related to the action taken by the agent such that whenever it triggers an alarm the episode
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Figure 7: Illustration of the anomaly detection framework in the state-space model, which
consists in three stages corresponding to the empirical model estimation (Stage I), systematic
anomaly generation (Stage II), and Q-learning (Stage II).

is terminated.

5.1 Anomaly detectability quantification

We quantify the anomaly detectability capacity of the agent within two quantities: (i)
the probability of rightfully detecting anomalies, and (ii) the annual rate of false alarms.
Table 2 summarizes the four expected situations according to the agent’s optimal policy
π∗(s) = a ∈ A for the environment’s state s ∈ S during an episode Z. Only testing an agent

Table 2: Agent detection terminology.

Decision Agent optimal policy π∗(s)

true positive (TP) a0, t ≥ ts
false negative (FN) a1, t ≥ ts
true negative (TN) a1, t < ts
false positive (FP) a0, t < ts

only against real structural responses is not representative of the anomaly detectability
capacity because anomalies are rare events. To overcome this issue, we simulate a test
environment’s state space Stest with labeled anomalies and test the agent against this newly
unseen space.

5.1.1 Probability of true positive detection

The evaluation of the probability of true positive detection is a binary classification problem
between TP and FN detections. The covariates are the anomaly height absolute value
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|ha| and number of time steps after the beginning of the non-stationary regime Nt>ts , i.e.,
anomaly detection duration. For a test environment’s state space Stest, a set of D instances
is defined by

D = {Dx,Dy} = {(xi, yi),∀i ∈ {1 : D}}, (15)

where, xi = [|ha| Nt>ts ]ᵀ and yi ∈ {−1 : FN,+1 : TP}, are respectively the covariates vector
and binary classes. Note that in establishing D, the policy after triggering an alarm remains
triggering an alarm. We employ a Gaussian Process Classification (GPC) approach in order
to perform the classification [32]. In this regard, the classification for the covariates vector
is modelled by a Gaussian process g : x → y. GPC is parameterized by θ = [σG `1 `2]

ᵀ,
an unknown vector consisting in the process noise σG, and square exponential correlation
function length-scales `1 and `2. Once the unknown vector of parameters is estimated from
D, the probability of true positive detection Pr(Y = +1 : TP|x,θ∗), conditional on the
prediction covariates vector x∗ is available. The probability of false negative, conditional on
the prediction covariates vector Pr(Y = −1 : FN|x,θ∗) = 1− Pr(Y = +1 : TP|x,θ∗). The
reader is referred to Rasmussen & Williams [32] for a future explanations regarding GPC.

5.1.2 Annual false positive detection rate

The evaluation of the annual false positive detection rate RFP encompasses the testing of
the agent against a test environment’s state space Stest for which all the episodes contains
no anomaly, and counting the number of false positive detections #FP. For a total number
of time steps in the environment’s state space # time steps, and the average of the number
of time steps per year # time steps/year, the annual false positive detection rate is obtained
by

RFP =
#FP×# time steps/year

# time steps
. (16)

6 Case study

This section applies the AD framework described in §5 on the data collected on a bridge
located in Canada. The data are acquired over a period of 6 years (292 time steps) and the
observation vector yobs

t = [yEt , y
T
t ]

ᵀ consists in the elongation (E) and air temperature (T)
data as shown in Figure 8. The average time step length for the data is 7 days. The shaded
area indicates the occurrence of an intervention on the structure during the year 2011. We
can identify a yearly periodic pattern in elongation dataset, which can be explained by its
dependence on the air temperature.

6.1 Empirical model estimation

Following Stage I of the ADD framework, we use two empirical models in order to represent
the stationary and non-stationary regimes of the elongation data and their dependency
on the temperature. The vector of hidden state variables xt for each empirical model is
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Figure 8: Elongation (E) and air temperature (T) measurements collected on a bridge over a
period of 6 years. The shaded area is corresponding to an intervention on the bridge during
the year 2011.

identical and follows

xt =

 xLA,E
t ; xKR,E

t ; xAR,E
t︸ ︷︷ ︸

elongation components

; xL,T
t ; xKR,T

t ; xAR,T
t︸ ︷︷ ︸

temperature components

 , (17)

where [ ; ] indicates the column-wise concatenation of the vectors and the additional su-
perscripts E and T indicates that the observations are respectively for elongation and
temperature. In Equation 17, the local acceleration vector xLA

t =
[
xLt , x

T
t , x

LA
t

]ᵀ
describes

a locally constant acceleration over a time step. It consists of three components acting
jointly: a level (L) component to represent the baseline of the structural behavior, a trend
(T) component to represent the rate of change of the baseline, and a local acceleration (LA)
component representing the acceleration over a time step. The kernel regression vector xKR

t

models the reversible periodic patterns for each observation [24]. Here, we use 10 hidden
control points for the kernel regression which results in the vector xKR

t =
[
xKRt,0 x

KR
t,1 · · · xKRt,10

]ᵀ
consisting in 10 hidden state variables. The auto-regressive component xAR

t = xARt models
the time-dependent residual term representing the effect of other phenomena that cannot be
modelled by the components employed. Note that, in order to differentiate the stationary
and non-stationary regimes, the corresponding row and column in the xLAt component model
matrices are set to be zero for all timestamps [25]. Appendix A provides the detailed model
matrices Ms and Mns. Moreover, the model parameters are

P =

 zs,s, zns,ns︸ ︷︷ ︸
regime transition

, σLT,E, σLA,E, σLTT,E, `KR,E, σKR,E0 , φAR,E, σAR,E, σEv︸ ︷︷ ︸
elongation, E

, (18)

βAR,E|T, βKR,E|T︸ ︷︷ ︸
dependency, E|T

, σLL,T, `KR,T, σKR,T0 , φAR,T, σAR,T, σTv︸ ︷︷ ︸
temperature, T

 ,
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where zi,i is transition probability among the regimes, σ ∈ R+ is the standard deviation of
the process noise for the corresponding component, `KR ∈ R+ is the kernel length, σ0 ∈ R+

is the standard deviation of the hidden periodic pattern, φAR ∈ (0, 1] is the auto-regressive
coefficient, and σv ∈ R+ is the observation standard deviation. Here, we assume that the
kernel period and the standard deviation for the hidden control points are respectively
365.2422 days and zero. In Equation 18, βAR,E|T ∈ R and βKR,E|T ∈ R are the regression
coefficients expressing the dependence between the elongation and the temperature. The
hidden state variables estimations and optimization of model parameters P∗ are carried out
by using openBDLM toolbox [13], and the corresponding values are reported in Appendix A.

6.2 Anomaly detection

Building the environment’s state space and training the RL agent involves using the model
matrices obtained from Stage I, realizations of the anomaly function from Stage II, and
training the agent in Stage III. The anomaly function’s stochastic characteristic set J for
the simulated environment’s state space as well as the agent configurations are presented in
Appendix B. The environment’s state space consists in µLTt ∈ (−0.06, 0.06) and πnst ∈ (0, 1).
The space is discretized with the non-uniform grid size of 100× 60 and we train the agent
for 600000 episodes, 90% of which contains an anomaly. The local trend mean values
µLTt are symmetrical with respect to the µLTt = 0. Therefore, the training of the agent is
carried out only for the absolute value of |µLTt | in order to remove the induced redundancies
corresponding to the equivalent state-action pairs [36]. Figure 9 shows the convergence
of the Q-values during the training. The black line is the expected optimal Q-values over
all visited states Eŝ[Q

∗(ŝ)], and the blue line is the mean of the convergence error ratio
δ̄i:i+10 for each ten consecutive episodes. The total elapsed time for the training of the
agent is approximately 22 hours using 24 Central Processing Unit (CPU) cores. Note that
the AD framework had to be implemented from the scratch, and it is currently not yet fully
optimized for computational efficiency.
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Figure 9: Convergence of the expected Q-values Eŝ [Q∗i (ŝ)] corresponding to the visited states,
and error ratio δ̄i:i+10 averaged on the each ten consecutive episodes. The agent is trained
for 600000 episodes results in the total number of 1.75× 108 possible agent-environment
interactions. The total elapsed time for the training of the agent is approximately 22 hours
using 24 CPU cores.

Figure 10 illustrates the agent optimal policy and policy post-processing applied on
the optimal policy. The red and blue regions are respectively corresponding to the actions
a0 trigger an alarm, and a1 not trigger an alarm. The areas without a dedicated colour
indicates the non-visited states. Figure 10a shows the agent optimal policy obtained from
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the training. As it is seen, the policies in the vicinity of the boundary of the two actions
are noisy. Q-values are smoothed and re-evaluated according to Equation 11, in order
to reduce the noise. Figure 10b shows the smoothed policy using the mean filter [37]
with a rectangle kernel size of (2 × NµLT + 1) × (2 × Nπns + 1). NµLT = 5 and Nπns = 1, are
respectively the number of discrete states in µLT and πns directions. Moreover, we use
k-nearest neighbour (k-NN), k = 10, in order to assign labels to the non-visited states.
The k-NN is directly applied on the policy after the smoothing process. Note that the
non-visited states correspond to the states with the large anomaly heights magnitudes.
In reality, such magnitudes are associated with extremely rare events such that using the
probability of the non-stationary regime is adequate to identify the anomalies. In addition,
one can use a variety of approaches for this task, such as Gaussian Process Regression
(GPR) [32]. Here, we decided to opt for the simplicity of the k-NN as it does not correspond
to a key aspect of the proposed method. Figure 10c shows the final policy of the RL agent.
Note that in Figure 10 , the states are shown up to |µLTt | ≤ 0.04, and for all the state with
|µLTt | > 0.04 the obtained policy is to not trigger the alarm.
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Figure 10: Illustration of the agent’s policy, which is mapped on the half of the discretized
environment’s state space (i.e., µLT > 0). The discretized environment states S̄ are shown
by the grey grid lines. The red and blue colours respectively are corresponding to the action
of triggering the alarm a0 and not triggering the alarm a1. The areas without a dedicated
colour indicate the non-visited states: (a) the agent’s optimal policy obtained from the
trained agent according to Equation 5, (b) the agent policy after smoothing the Q-values
using the mean filter with a kernel size of 11× 3 and re-evaluating the optimal policy, (c)
the agent policy after performing 10-NN extrapolation to assign labels to the non-visited
states.

In this study, we use the policies obtained from the smoothing and k-NN processes as
shown in Figure 10c, in order to detect anomalies on the bridge data as depicted in Figure 8.
Figure 11 illustrates the anomaly detection of the trained agent overlaid with the mean
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trend value and probability of the non-stationary regime obtained from BDLM as shown in
Figure 1. The solid circles on the time series indicate the time steps when the agent takes
the action of triggering an alarm. The shaded area indicates the known anomaly due to
an intervention, which is correctly identified by the agent. Moreover, the probability of
the non-stationary regime during October 2009 and February 2007 are greater than zero.
However, relying on this probability for decision making encounters two issues: (i) there
is no criterion available to determine the minimum probability of non-stationary regime
for which the changes in underlying responses correspond to an anomaly, and (ii) the long
term effects of the decision making is not considered. Therefore, the decision maker does
not know whether to trigger the alarm at a particular time step when the probability of
non-stationary regime is greater than zero, or to wait until more data becomes available
before taking the action of triggering an alarm. In contrast, the RL agent incorporates the
mean trend values as the additional information along with the probability of non-stationary
regime. In addition, it recognizes the long term effect of the decision making by using
the long term accumulated discounted rewards as presented in Equation 5. Therefore,
as it is seen in Figure 11, the agent triggers alarms in October 2009, while the action in
February 2007 is to not trigger any alarm. Another advantage of training the RL agent with
the anomaly function proposed in this paper is that the agent can generalize its anomaly
detectability for multiple anomalies. The anomaly function used during the training is a
shift in the trend value without returning to the same value when the non-stationary regime
ends. However, Figure 11a illustrates an example of a shift in the trend value which returns
to the same value after the intervention, and which can be rightfully identified by the agent.
In Figure 11, the source of the possible anomaly identified in October 2009 is unknown. In
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Figure 11: Illustration of the bridge anomaly detection obtained from the trained agent.
For better comparison, the time steps for which the agent triggers the alarm are indicated
with the red solid circles and overlaid with the (a) trend mean value and (b) probability of
non-stationary regime obtained from BDLM as depicted in Figure 1.

order to examine the robustness of the policy during this time, we introduce two additional
artificial anomalies as shown in Figure 12a. Each artificial anomaly f̄a(t;J ) consists in the
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superposition of the two anomaly functions presented in Equation 6, such that the regime
returns to the same baseline value. The two artificial anomalies are located before an after
the time stamps for which the agent triggers alarms according to Figure 11. The anomaly
heights are respectively 2.8× 10−3 and −4.2× 10−3 mm/day, and the duration for both is
120 days. The reason for selecting the former height is to mimic the similar hidden state
variables and regime switching probability as of the one that occurred on the bridge during
October 2009. The latter height is selected to generate anomalies with a non-stationary
regime probability πnst|t < 1 in the vicinity of the anomaly that occurred on the bridge
in the year 2011. Following the simulation procedure explained in §3.2.2, the simulated
structural response, trend mean value, and probability of non-stationary regime are shown
in Figures 12b-d. The agent correctly identifies the two additional artificial anomalies
apart from the the real ones. This confirms that the proposed AD framework is able to
detect low-magnitude of anomalies that are typically associated with small probabilities
of a non-stationary regime, such as the ones observed during October 2009 for which the
anomaly’s peak height is around 1 mm/year.

6.3 Quantifying anomaly detectability

We follow the procedure explained in §5.1 in order to quantify the anomaly detectability of
the RL agent. For evaluating the true positive anomaly detections, the test environment’s
state space Stest consists in 3000 episodes for which all the episodes contains an anomaly.
The anomaly function stochastic characteristics set J is provided in Appendix B. We use
the GPC [31] in order to build a model for Pr(Y = +1 : TP|x,θ). This model employs
the fully independent training conditional (FITC) approximation method [30] in order to
handle the large dataset size. In addition, in order to be able to employ GPC, we sample
from the original dataset such that the number of instances close to the time steps for which
the agent triggers alarms is larger than other time steps. Figure 13a shows the sampled
dataset used to build the classification. The red and blue dots respectively indicate the
true positive Dy = +1 and false negative Dy = −1 instances. Figure 13b illustrates the
probability of true positive anomaly detection, given the absolute value of anomaly heights
|ha| in mm/year, and the anomaly detection duration Nt>ts in month. The vertical dashed
line indicates the maximal anomaly height |htraina,max| = 0.73 mm/year used to train the RL
agent. We conclude that for the anomaly heights |ha| ∈ (0.5, 9.5) mm/year, the current
agent is able to rightfully detects anomalies with a probability Pr(Y = +1 : TP|x,θ) ≥ 0.9.

In Figure 13b, the hollow circle and diamond indicate the first time step when the agent
triggers an alarm for the two artificial anomalies as shown in Figure 12a. They correspond
to the true positive anomaly detection probability Pr(Y = +1 : TP|x∗) = 0.4. The agent
identifies the 1st and 2nd artificial anomalies, respectively with the anomaly detection
duration of 67 and 59 days. Furthermore, the annual rate of false positive detection is
evaluated from a distinct test environment with 3000 episodes containing no anomaly. The
current agent shows a false positive ratio of RFP = 0.109/year. This means that in the
context of continuous monitoring, the agent is expected to be able to detect anomalies
having the magnitude height |ha| ∈ (0.5, 9.5) with the probability ≥ 0.9, and to trigger
approximately one false alarm per ten years.
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Figure 12: Illustration of the anomaly detection in the presence of artificial anomalies along
with the intervention: (a) artificial anomalies with heights 2.8 × 10−3 and −4.2 × 10−3

mm/day, respectively applied before and after the intervention, (b) simulated structural
response following the procedure presented in §3.2.2, (c) points of triggering the alarm
(solid circles) by the trained agent overlaid with the trend mean value, and (d) points of
triggering the alarm (solid circles) by the trained agent overlaid with the probability of
non-stationary regime.

We further investigate the anomaly detectability capacity of different agents. Given
the same discretized environment and training episodes as employed previously, the main
factor affecting agent’s anomaly detectability capacity is the reward function values. To this
end, five additional agents are trained for different true positive and false positive reward
values. Figure 14 illustrates the policies for these agents. Note that, the superscript ∗ in
Figure 14d indicates the agent used in order to produce results in Figure 13. Figure 14a-c
are corresponding to the agents #1-3 for which we assign a small value for true positive
detection reward rTP = +2, while we decrease the penalty for false positive detections
rFP < 0. In contrast, Figure 14d-f are associated with the agents #4-6, for which we
use a small value for the false positive penalty rFP = −2, while we increase the true
positive reward values rTP > 0. In other words, agents #1-3 are penalized more for false
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Figure 13: Illustration of the anomaly detectability of the trained agent: (a) the sampled
dataset D for building the classification for which the red and blue dots respectively indicate
the true positive Dy = +1 and false negative Dy = −1 samples, and (b) the probability
of true positive detection Pr(Y = +1 : TP|x,θ) following the procedure presented in §5.1,
given the anomaly heigh and detection duration.

positive detections, while agents #4-6 receive more rewards for true positive detections.
Comparing Figures 14a-c reveals that by decreasing the penalty for false positive detections,
we increase the agent’s preference to trigger alarms for small values of mean trend value
and non-stationary regime probabilities. This behavior can be confirmed by the annual
rate of false positive RFP, which are respectively 0.005, 0.016, and 0.028 per year for the
agents #1-3; as the penalty for the false positive detections reduces, the annual rate of
false positive increases. Figures 14d-f display analogous behavior when the agents with
higher true positive detection reward prefer to trigger alarms for smaller value of mean
trend values and non-stationary regime probabilities. The annual rate of false positive
RFP for the agents #5 and #6 are respectively 42 and 49 per year, which correspond to
unacceptable false positive ratios.

Decreasing the false positive detection penalty, e.g., Figures 14a-c, or increasing the
true positive detection reward, e.g., Figures 14d-f, changes the triggering preference of the
agent towards smaller value of non-stationary regime probabilities at the cost of an increase
in the annual rate of false positive. Figure 15 illustrates the probability of true positive
detection for the anomaly height |ha| ∈ (0, 2) mm/year, corresponding to the agents #1-4.
The hollow circles and diamonds correspond to the detection of the two artificial anomalies
according to the agent #4 as shown in Figure 13b. The vertical dashed lines indicate the
maximum anomaly height used to train the RL agents. As the penalty for false positive
detections decreases, the agent tends to trigger alarms earlier, after the beginning of the
non-stationary regime for Nt>ts ≤ 5 months. Note how the probability of true positive
detections for the two artificial anomalies increases from 30% to 40% between the agents
#1 and #4.
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Figure 14: Policy comparison between different RL agents with respect to the reward
function values: (a-c) agents with a small value for true positive detection reward rTP = +2,
and an decreasing false positive detections penalties rFP < 0, and (d-f) agents with a small
false positive penalty rFP = −2, and an increasing true positive reward values rTP > 0.
Note that Agent #4∗ is the agent used in §6.

Figure 15 shows the number of months after the beginning of the non-stationary regime
for which the agent triggers an alarm with the probability 50% for an anomaly heigh
|ha| = 0.5 mm/year. Choosing proper reward values for the task of anomaly detection
is a tradeoff between how often it rightfully detects anomalies with a desirable anomaly
detection duration and probability, as well as the frequency of false positive detections.
Figure 16 compares the six agents regarding (i) the number of month required to reach a
probability of true positive detection of 50% for an anomaly height |ha| = 0.5 mm/year, and
(ii) the annual false positive ratio in logarithmic scale. Choosing among agents #1-4 is a
tradeoff between the time to detect anomalies and the false alarm rate. We identify that the
agent #1 is responsible for smaller annual false positive ratio compare with the agents #2-4,
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Figure 15: Comparison of the probability of true positive detection for the RL agents. The
vertical dashed lines indicate the maximum anomaly height used to train the RL agents.
The probability of true positive detections for the two artificial anomalies (hollow circles
and diamonds) increases from 30% to 40% between the agents #1 and #4.

while resulting in a delay of approximately one month in the anomaly detection duration
compared with agent #4. In contrast, the false positive ratios for the agents #5 and #6
are unacceptably high and they cannot detect anomalies within an acceptable time that is
useful for SHM. The main reason for the high false positive ratios regarding the agents #5
and #6 is due to the restart criterion during the training, for which the agent-environment
interaction stops whenever the action taken by the agent is to trigger an alarm. In other
words, agents #5 and #6 collect more negative rewards due to the high annual false positive
ratios, which reduces the probability of true positive detections.
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Figure 16: Illustration of the number of month required to reach a probability of true
positive detection of 50% for an anomaly height |ha| = 0.5 mm/year overlaid with the
annual false positive ratio. Selecting the agent with respect to the reward function values is
a tradeoff between the time to detect anomalies and the false alarm rate: the agent #1 is
responsible for smaller annual false positive ratio, while resulting in a delay of nearly one
month in the anomaly detection duration.
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7 Conclusion

This study proposes an anomaly detection framework that combines the decomposition
capacity of BDLM and long-term planning ability of RL. The BDLM is responsible for
decomposing structural responses into hidden states, while the RL agent incorporates
information from these hidden states in order to make decision based on the expected
accumulated discounted rewards. We demonstrate the application of this framework for
detecting anomalies on SHM data. Furthermore, the robustness of the framework is
examined using artificial anomalies mimicking the real structural responses. The results
show that the proposed framework succeeds in detecting anomalies that are small enough
to be relevant for real-life applications, while maintaining a tight control on false alarms.
This framework allows quantifying the anomaly detectability capacity according to the
probability of true positive detection, and the annual rate of false positive detection. The
investigation of several agents relying on different reward values reveals that the behavior of
the agent depends on the user expectation with respect to the tradeoff between the rightful
detection of anomalies and false alarm frequency.
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Appendix A

The model matrices {At,Ct,Qt,Rt} for the stationary and non-stationary model matrices
for the bridge case-study are defined following

Stationary model matrices Ms,obs
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t = block diag
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Non-stationary model matrices Mns,obs

Ans
t = block diag




1 ∆t
∆t2

2
0 1 ∆t

0 0 1

 ,
[

0 k̃KR,Et

0 I10×10

]
, φAR,E, 1,

[
0 k̃KR,Tt

0 I10×10

]
, φAR,T



Cns
t =

[
1 0 0 1 01×10 1 0 βKR,E|T 01×10 βAR,E|T

0 0 0 0 01×10 0 1 1 01×10 1

]

Rns
t = block diag

((
σEv
)2
,
(
σTv
)2)

Q
s(ns)
t = block diag



(
σLAw
)2 · ∆t5

20
0 0

0
(
σLTTw

)2 · ∆t3

3
0

0 0
(
σLAw
)2 ·∆t

 ,

(
σKR,Ew,0

)2
0

0
(
σKR,Ew,1

)2
· I10×10

 , (σAR,E)2 , (σLLw )2 ,

(
σKR,Tw,0

)2
0

0
(
σKR,Tw,1

)2
· I10×10

 , (σAR,T)2


Q
ns(ns)
t = block diag


(
σLAw
)2


∆t5

20

∆t4

8

∆t3

6

∆t4

8

∆t3

3

∆t2

2

∆t3

6

∆t2

2
∆t


,


(
σKR,Ew,0

)2
0

0
(
σKR,Ew,1

)2
· I10×10

 , (σAR,E)2 ,

(
σLLw
)2
,


(
σKR,Tw,0

)2
0

0
(
σKR,Tw,1

)2
· I10×10

 , (σAR,T)2


where k̃KRt = [k̃KRt,1, k̃
KR
t,2, · · · , k̃KRt,10] is the normalized kernel values and ∆t is the time step at

the time t.

31



KHAZAELI et al. (2021). Anomaly detection using state-space models and reinforcement learning.
Preprint submitted to Structural Control & Health Monitoring.

P∗ =

0.99590, 0.99912︸ ︷︷ ︸
regime transition

, 0, 7.33× 10−4, 0, 1.00, 0, 3.93× 10−1, 2.67× 10−2, 6.46× 10−5︸ ︷︷ ︸
elongation, E

,

3.66× 10−2, 4.14× 10−2︸ ︷︷ ︸
dependency, E|T
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temperature, T


Figure 17 illustrates the hidden state variable estimation using BDLM.
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Figure 17: Hidden state variables estimation for elongation and temperature observations:
(a) the kernel regression xKR0 and auto-regressive xAR hidden state variables for the elongation
observations, and (b) the local level xLL, kernel regression xKR0 , and auto-regressive xAR

hidden state variables for the temperature observations.

Appendix B

Table 3 shows the distributions and the parameters of the anomaly function stochastic
characteristic set J for training the agent. Here, we simulate the environment’s state for
the positive anomaly heights for the sake of computational efficiency. In Table 3, the upper
bound for the anomaly height during anomaly detectability quantification is 4× 10−2.

Table 4 depicts the agents’ configuration during the training. Agent #4 is the one used
in this paper for the bridge anomaly detection, and Q0 is the initial Q-value selected for all
the environment’s states.
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Table 3: Environment’s state space simulation parameters.

Parameter
Value

Unit
a b

ha ∼ U(ha; a, b) 1× 10−5 2× 10−3 [mm/day]

wa ∼ U(wa; a, b) 60 180 [day]

tc ∼ U(tc; a, b) Jan 1, 2007 Nov 11, 2012 [date]

w0 constant: 365 [day]
εa,min constant: 1× 10−6 [mm/day]
ε constant: 1× 10−7 [mm/day]

Table 4: Agent #4 configuration.

Parameter Value

rTP +4
rFP -2
rTN +2
η 2
cα 5
cε 5
Q0 35
γ 0.97
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