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Abstract

In Structural Health Monitoring, non-harmonic periodic hidden covariate

typically arises when an observed structural response depends on unobserved

external effects such as temperature or loading. This paper addresses this

challenge by proposing a new extension to Bayesian Dynamic Linear Models

(BDLMs) for handling situations where non-harmonic periodic hidden covari-

ates may influence the observed responses of structures. The potential of the

new approach is illustrated on the data recorded on a dam in Canada. A

model employing the proposed approach is compared to another that only uses

a superposition of harmonic hidden components available from the existing

BDLMs. The comparative study shows that the proposed approach succeeds

in estimating hidden covariates and has a better predictive performance than

the existing method using a superposition of harmonic hidden components.
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1. Introduction

Structural Health Monitoring (SHM) is a key part in ensuring the long-term

sustainability of our ageing structures. The SHM consists in providing the

structure’s health and conditions during its life service using instrumentation-

based monitoring [1, 2]. The measured quantities being interpreted are

commonly displacements and acceleration, that is, observed structural re-

sponses. The important aspect in the SHM is to early detect changes in

the structural behavior by interpreting the observed structural responses in

order to provide infrastructure maintenance in time. As a matter of fact, the

observed structural responses are commonly dependent on the environmental

and operational conditions, i.e. external effects, such as temperature, traffic

load, wind, and humidity [3, 4, 5]. In the context of SHM, an unobserved

external effect is defined as a hidden covariate. In most cases, the hidden

covariate is regrouped in two main categories: harmonic and non-harmonic

hidden covariates. Fig. 1a and b present an example of a harmonic signal and

of a non-harmonic signal but periodic, respectively. In the scope of this paper,

we focus on the non-harmonic periodic hidden covariates. Non-harmonic

periodic covariates are common when analyzing the behavior of structures,

for example, the effect of water temperature in the field of dam engineering

[6, 7, 8] or the effect of traffic load in the field of bridge engineering [9]. For

the anomalous detection [10, 11, 12], a well separation of the changes due to

the external effects and structural behavior is essential to reduce the false

alarms.

The current factor limiting widespread SHM applications is the lack of

generic data-interpretation methods that can be employed at low cost, for
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Fig. 1. The sine-like signal in (a) is harmonic and can already be handled by the BDLM

method whether or not this component is observed. The signal in (b) is not harmonic.

This case can only be handled by the BDLM method if the component is directly observed.

any structures. For the context of SHM applications where data is acquired

periodically over a long time period, Goulet [13] proposed to address this

challenge by building on the work done in the fields of Machine Learning

in what is known as State-Space Models [14], in Applied Statistics what is

known as Bayesian Dynamic Linear Models (BDLMs) [15, 16, 17], and in

Control theory in what is known as the Kalman filter [18]. This methodology

consists in employing the BDLMs to decompose the time series recorded on

structures into a set of generic hidden components, each described by one or

more hidden state variables. The set of available components includes, for

example, a local level component to model the baseline response of structures,

a local trend component to model the rate of change, a periodic component to

model the periodic external effects, an autoregressive component to describe

time-dependent model approximation errors, and a regression component to

include the effect of an observed covariate on the structural response.

The BDLMs can handle harmonic covariates such as the effect of temper-
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ature on the structural response. Moreover, this can be achieved whether

or not the temperature is observed. However, one limitation of BDLMs is

that it is unable to handle non-harmonic periodic covariates unless they are

directly observed. The requirement that non-harmonic periodic covariates

must be directly observed is a difficult constraint for SHM applications where

the covariates is often non-harmonic yet, observations are seldom available.

In the field of dam engineering, a common approach employed to interpret

SHM data is the Hydrostatic-Seasonal-Time (HST) method. This method has

been employed in many case studies [19, 20, 21, 22] to interpret displacement,

pressure, and flow-rate observations. The main idea of HST is to separate

the observations into reversible (hydrostatic and seasonal) and irreversible

components. Classic HST formulations cannot handle the situation where

the observations depends on non-harmonic periodic covariates [8]. Similar

methods such as Hydrostatic-Temperature-Time (HTT) [6, 23] and HST-Grad

[8] employs directly the observed external effects such as concrete and water

temperatures for addressing this limitation. When those data are not available,

a superposition of harmonic functions can be employed for building in the

non-harmonic periodic covariates [24]. The limitation is that it requires a large

number of harmonic functions when it comes to the complex non-harmonic

periodic covariates.

Another alternative to HST-Grad is Neural Networks (NN) that have

shown its potential on interpreting the dam-displacement data in several

applications [25, 26, 27, 28]. NN method consists in building the function

that links the displacement to time-dependent covariates such as temperature

and water level by a succession of interconnected hidden layers. However,

4



these methods are typically difficult to interpret and requires a large amount

of data points. To tackle these limitations, Salazar et al. [29, 30, 31] have

proposed a novel approach employed Boosted Regression Trees (BRTs) for

analyzing the dam responses. Moreover, according to the authors the BRTs

has better predictive performance than the HST and NN methods.

Although all above methods can handle non-harmonic periodic covariates

using its data-recorded on the dam, they are limited in comparison with

BDLM because they are based on the theory of linear regression analysis

[32]. Despite having played a key historic role, linear regression is not up

to the state-of-the-art approaches in the field of machine learning [14, 33].

The key limitation of linear regression is that it does not distinguish between

interpolating between observed data and extrapolating beyond observations.

Linear regression is also known to be sensitive to outliers, prone to overfitting,

and unable to handle auto-correlation which is omnipresent in time-series

data [14].

This paper proposes a new extension to the existing BDLMs for handling

situations where hidden non-harmonic periodic covariates may influence the

observed responses of structures. The paper is separated into three main

parts. The first part presents a summary of existing the BDLM formulation.

The second part describes the approach proposed to enable the estimation

of hidden non-harmonic periodic covariates. The final part illustrates the

potential of the new approach on data recorded on a dam located in Canada.
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2. Bayesian Dynamic Linear Models

This section presents a summary of the mathematical formulation em-

ployed by Bayesian Dynamic Linear Models (BDLMs) [13]. A BDLM is

defined by its observation and transition equations which are defined as

yt = Ctxt + vt,


yt ∼ N (E[yt], cov[yt])

xt ∼ N (µt,Σt)

vt ∼ N (0,Rt)

(1)

xt = Atxt−1 + wt,
{

wt ∼ N (0,Qt). (2)

yt is the observations at the time t ∈ (1 : T ) and xt describes hidden state

variables that they are not directly observed. Observations are modeled over

time as a function of hidden state variables xt, an observation matrix Ct, and

a Gaussian measurement error vt with mean zero and covariance matrix Rt.

The transition of hidden state variables xt between time steps are defined by

the transition matrix At and a Gaussian model error wt with mean zero and

covariance matrix Qt. The main strength of BDLMs for SHM applications is

the capacity to model a variety number of structural responses from a limited

set of generic hidden components such as basis levels, local trends, periodic

components and regression components. See Goulet [13] and West & Harrison

[17] for the full description of generic hidden components.

In BDLMs, the hidden state variables xt at a time t are estimated using

observations y1:t and the Kalman filter (KF) algorithm. This algorithm is an

iterative two-steps mathematical process that estimates the posterior mean

vector µt|t and covariance matrix Σt|t so that
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Prediction step

p(xt|y1:t−1) = N (xt;µt|t−1,Σt|t−1) Prior state estimate

µt|t−1 , Atµt−1|t−1 Prior expected value

Σt|t−1 , AtΣt−1|t−1A
ᵀ
t + Qt Prior covariance

Measurement step

p(xt|y1:t) = N (xt;µt|t,Σt|t) Posterior state estimate

µt|t = µt|t−1 + Ktrt Posterior expected value

Σt|t = (I−KtCt)Σt|t−1 Posterior covariance

rt , yt − ŷt Innovation vector

ŷt , E[yt|y1:t−1] = Ctµt|t−1 Predicted observations vector

Kt , Σt|t−1C
ᵀ
tG
−1
t Kalman gain matrix

Gt , CtΣt|t−1C
ᵀ
t + Rt Innovation covariance matrix.

The Kalman filter algorithm uses the Kalman gain Kt to weight the informa-

tion coming from observations yt, in comparison with the information coming

from prior knowledge.

The model matrices {At,Ct,Qt,Rt} contain several parameters P that

need to be estimated. A common approach for this task is to employ Maximum

Likelihood Estimation (MLE). Maximum likelihood estimates are obtained by

maximizing the joint prior probability of observations with the hypothesis

that observations y1:T are independent of each other so that

p(y1:T |P) =
T∏
t=1

p(yt|y1:t−1,P). (3)
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For the purpose of improving the numerical stability, one can sum the natural

logarithm of the marginal prior probability of observations so that Eq. (3) is

rewritten as

ln p(y1:T |P) =
T∑
t=1

ln p(yt|y1:t−1,P)

=
T∑
t=1

ln
[
N (yt; Ctµt|t−1,Rt + CtΣt|t−1C

ᵀ
t )
] (4)

Eq. (4) is called the log-likelihood function. Optimal parameters P∗ are

identified by maximizing Eq. (4) using convex optimization algorithms. The

maximization approach employed in this paper is the Newton-Raphson algo-

rithm [32].

3. Methodology for Estimating Hidden Non-harmonic Covariates

When observed, covariates affecting the responses of structures, e.g. tem-

perature or loading can be included as a regressor in a Bayesian Dynamic

Linear Model (BDLM). One approach to include the effect of these observed

covariates is to employ a Dynamic Regression Component (DRC) [17]. In

the DRC, the dynamic regression coefficient is treated as an unknown state

variable xDRt , whose temporal evolution follows a random walk. This random

walk is parameterized by a transition matrix ADR
t = 1, and by a transition co-

variance matrix QDR
t = (σDR)2. For σDR = 0, the dynamic regression coefficient

xDRt is assumed to be stationary in time, for σDR > 0, the dynamic regression

coefficient xDRt is assumed to be changing over time (non-stationary). The

regressor, i.e. the observed covariate yDRt , is placed directly in the observation

matrix so that CDR
t = yDRt .
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The new methodology proposes to build on the dynamic regression com-

ponent formulation in order to provide a method capable of handling hidden,

yet non-harmonic covariates. For this case, the block component matrices are

ADR
t = 1, CDR

t = h(t,D), QDR
t = (σDR)2.

In this new formulation, observation matrix CDR
t is replaced by the hidden

response function h(D, t). The function h(D, t) consists in a cubic spline [34]

capable of interpolating hidden covariate values at any time stamps. Fig. 2

presents an example of a hidden response function h(D, t). h(D, t) depends

ts1 t1 t2 t3 t4 t5 ts2 ths2
h5

h4

h3

h2
hs1,h1

h t

Spline fit Master points Slave points Fixed points

Reference period

Fitting period

Fig. 2. Example spline fitted using master and slave control points defined over three

sub-segments that are separated by the vertical symmetry lines.

on the time t as well as on a set of D master control points D = {(ti, hi), ∀i =

1 : D}, where hi ∈ [−1, 1] is the normalized hidden covariate value (NHCV)

and ti is the time stamp corresponding to hi. Note that the amplitude of the

hidden covariates that influence on the structural responses, is defined not

by h(D, t) but by the dynamic regression coefficient xDRt . The methodology

can take advantage of the periodicity of the studied phenomenon in order
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to identify only (ti, hi) for master control points that are defined over the

domain (1) having a duration corresponding to half a period, and (2) bounded

at each end by symmetry planes. Note that if no symmetry planes exist, the

same method applies except that the number of control points increases. The

NHCVs hs1 and hs2 for time stamps corresponding to the symmetry planes,

ts1 and ts2, are fixed at either −1 or 1. Time stamps ti for the master control

points are uniformly spaced between ts1 and ts2. Over one half-period before

and after the symmetry planes, slave control points are defined in order to

constrain the spline slope for the fixed points (ts1, hs1) and (ts2, hs2). Slave

control points are replicates of the master points defined using the symmetry

condition with respect to either ts1 or ts2. Although the spline is fitted over

the fitting period including the entire set of slave and master control points,

only a portion having a length of one period is employed. This sub-selection is

called reference period. An example of spline fitted using a set of five control

points D = {(ti, hi),∀i = 1 : 5} is presented in Fig. 2. Master control points

are represented by plus signs, slave points by crosses, and fixed points by

asterisks. Vertical dashed lines represent symmetry planes with respect to

time. In this example, there are five NHCVs {h1, · · · , h5} that needs to be

estimated from data. Once NHCVs have been estimated using data, the

hidden response h(D, t) is generalized for any time stamps t by extracting the

spline value corresponding to any day of the year within the reference period.

In practical applications, the NHCVs hi are unknown and need to be

estimated indirectly from observations of a structure’s behavior. For that

purpose, these NHCVs are added to the set of parameters P to be estimated

by maximizing the log-likelihood function in Eq. (4).
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4. Case-Study: A Dam in Canada

The potential of the new approach for handling the hidden non-harmonic

covariates is illustrated on the displacement data recorded on gravity dam

located in Canada. Fig. 3 shows the location of the sensor which is found on

the west bank of the dam. This sensor employs an inverted pendulum system

for monitoring the displacements of the gravity dam along three orthogonal

directions. The X-direction points toward the West Bank, the Y-direction

follows the water flow and the Z-direction points upward.

Downstream

Dam displacement
along the x-axis

West bank

Z
X

Y

Uptream

East bank

Fig. 3. Location plan of sensors deployed across the structure to monitor the dam’s

behavior.

4.1. Data Description

This paper studies the horizontal dam displacement data along the X-

direction measured using an inverted pendulum over a period of five years.

Engineers responsible for the dam instrumentation have estimated the obser-

vation error standard deviation to be approximately 0.3 mm. The complete
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dataset is presented in Fig. 4. In addition to the linear trend, the data displays

02-12 04-03 05-06 06-09 07-12−12.97

−6.52

−0.07

Time [YY-MM]

D
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m
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[m
m
]-
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Fig. 4. The X-direction displacement collected over the period of five years.

a yearly seasonal pattern where displacements are maximal during winter

months and minimal during summer. The key aspect here is that the seasonal

effect is non-harmonic; the evolution of displacement during the winter is

slower than during the summer. The hypothesis for this behavior is that the

structure’s response depends not only on the air temperature but also on the

water temperature that is known to follow a non-harmonic pattern where

in winter months, the temperature stabilizes despite the air temperature

dropping below -20◦C. The issue here is that no data is available from 2002

to 2007 in order to employ water temperature as regressor in BDLM.

In addition to the hidden non-harmonic covariate, another challenge is

the non-uniformity of time-step recordings. Fig. 5 presents the time-step

variation for the entire dataset duration. This challenge is addressed by

defining parameters as a function of the time-step length. For that purpose,

the reference time step length is defined as 24 hours.
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Fig. 5. Time-step size is presented in a log space for the dataset duration. Note that most

of displacement data are recorded for a period of a 24 hours, which time-steps can vary in

the range between 6 hours to 36 days.

4.2. Hidden Covariate Construction

From the raw displacement-data presented Fig. 4, it is estimated that the

reference period of hidden covariates is 365 days and that the two fixed points

corresponding to symmetry planes are located at the 50th end 232.5th day of

each year. A set of 5 control points D = {(ti, hi), ∀i = 1 : 5} is defined where

ti are uniformly spaced within the interval (50, 232.5). The slave points are

defined using the symmetry planes. Fig. 6 presents the hidden component

constructed for the entire dataset using spline values defined over the reference

period. In this figure, the position of normalized hidden covariate values

{h1, · · · , h5} are estimated using the training data.

4.3. Model Comparison

This section examines the performance of the new approach for handling

the hidden covariates. For this purpose, a model employing the new approach

is compared to another model that uses a superposition of harmonic hidden

components available from the existing BDLMs. The 1st model employing

the proposed method is called model-DR, where the DR stands for dynamic
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Fig. 6. The hidden component for the entire dataset

regression. In the model-DR, the observations are decomposed into a vector

of four hidden components : a local level, a local trend, a dynamic regression

component, and an autoregressive component. The 2nd model is denoted by

model-S, where S stands for superposition. The vector of hidden components

for the model-S is the same as for the model-DR, except the dynamic regression

component is replaced by two harmonic hidden components with a period of

365 and 180 days. Here, the vectors of hidden state variables corresponding

to model-DR and model-S are respectively,

DR :

{
xt = [ xD,LLt︸︷︷︸

local level

, xD,LTt︸︷︷︸
local trend

, xD,DRt︸︷︷︸
dynamic regression

, xD,ARt︸︷︷︸
autoregressive

]ᵀ

S :

{
xt = [ xD,LLt︸︷︷︸

local level

, xD,LTt︸︷︷︸
local trend

, xT1,S1, xT1,S2︸ ︷︷ ︸
cycle, p=365 days

, xT2,S1, xT2,S2︸ ︷︷ ︸
cycle, p=180 days

, xD,ARt︸︷︷︸
autoregressive

]ᵀ.

(5)

Complete model matrices are presented in Appendix A.
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4.3.1. Parameter calibration

The unknown parameters to be estimated for model-DR and model-S are

regrouped in two following sets:

DR :

{
P = {φD,AR, σD,LT, σD,AR, h1, h2, h3, h4, h5}

S :

{
P = {φD,AR, σD,LT, σD,AR},

(6)

where the autocorrelation coefficient ; φD,AR ∈ (0, 1), the normalized hidden

covariate values; hi ∈ [−1, 1] ∀i = 1 : 5, the local trend standard deviation;

σD,LT ∈ R+, and the autocorrelation standard deviation; σD,AR ∈ R+. Based on

the available information about the dam instrumentation, the observation

error standard deviation is fixed to σD,R = 0.3 mm. Note that the displacement

data are collected over a period of five years for a total of approximately

1700 data points. The unknown model parameters are estimated using a

training period of four years (1359 data points). Initial values for all state

variables have been defined using engineering heuristics. Hence the means

and covariances of state variables at the time t = 0 are

DR :

µ0 = [−4,−2.8× 10−3,−1.3, 0]

Σ0 = diag([0.25, 10−8, 4, 0.02508])

S :

µ0 = [−4,−2.8× 10−3,−1,−1,−1,−1, 0]

Σ0 = diag([0.25, 10−8, 25, 25, 25, 25, 0.02508]),

where the ordering of initial states is the same as Eq. (5). Note that the initial

state of the AR process is defined as µD,AR
0 = 0, ΣD,AR

0 = σD,AR

(1−φD,AR)2 according to

its stationary property [35]. The initial parameter values are estimated using
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engineering heuristics

DR :

{
P0 = {0.991, 6.19× 10−7, 0.0212,−0.95,−0.8,−0.33, 0.3, 0.7}

S :

{
P0 = {0.991, 6.19× 10−7, 0.0212}.

The convergence of the optimization procedure is reached when the log-

likelihood between two consecutive loops satisfies log-likelihoodi−1 < log-likelihoodi∣∣log-likelihoodi − log-likelihoodi−1
∣∣ ≤ 10−7 ×

∣∣log-likelihoodi−1
∣∣ ,

where i corresponds to ith optimization loop. The optimal parameter values

found for the two models are

DR :

{
P∗ = {0.993, 1.304× 10−7, 0.028,−0.987,−0.898,−0.435, 0.286, 0.790}

S :

{
P∗ = {0.989, 7.664× 10−8, 0.029},

where the ordering of each parameter remains identical as in Eq. (6). The

log-likelihood values of model-DR and model-S in the training period are

respectively 252.2 and 236.9.

4.3.2. Results and discussion

The BDLM framework employs the filtering algorithm and the set of

parameters obtained in the training period to separate the observations into

its hidden components. Fig. 7 and Fig. 8 present the hidden components for

the entire dataset for model-DR and model-S, respectively. The solid black

line represents the mean values µ and its ±σ standard deviation interval

is represented by the shaded region. It is noticed that the local levels in
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Fig. 7. Expected values µt|t and uncertainty bound µt|t ± σt|t for hidden components of

the model-DR.
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Fig. 8. Expected values µt|t and uncertainty bound µt|t ± σt|t for hidden components of

the model-S.
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Fig. 7(a) and Fig. 8(a) show a drift where the rate of change is approximately

to −1.03 mm/year. The autoregresive components presented in Fig. 7(d) and

Fig. 8(e) are stationary as expected because the autocorrelation coefficient has

been constrained to the interval (0, 1). The dynamic regression component

shown in Fig. 7(c) is nearly constant over time. It means that the dynamic

regression coefficient xDRt defined in Section 3 is unchanged over time. Note

that the standard deviation for state variables decreases over time because

the effect of imperfect initial condition vanishes as more and more data are

observed.

The predictive performance of models are compared on the basis of their

log-likelihood value obtained using a test set. Note that the data in the test

set has not been employed to calibrate the parameters P. Table 1 presents

the log-likelihood estimates for the training and the test set for model-DR and

model-S. The model-DR has a log-likelihood value for the test set that is 21.1%

Table 1. Comparison of log-likelihood estimates for the model-DR using the novel approach

proposed in this paper and the model-S that uses a superposition of harmonic components.

Log-likelihood, ln p(y1:T |P∗)

Model Calibration set Test set

Years 1–4 5th year

model-DR 252.3 64.3

model-S 236.9 53.1

greater than model-S while the computational time for the Kalman filter for
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model-DR is 2.9 sec versus 1.2 sec for model-S. This confirms the superior

predictive capacity of the model-DR which employs the methodology proposed

in this paper. This justifies that the model-DR outperforms the model-S

in separating the effect of the environmental conditions on the structural

behavior. This improvement is expected to help with anomaly detection,

where the distinguishing the changes caused by the environmental conditions

and the structural behavior is a key part for reducing the false alarms. Note

that although the computational time for the model-DR is approximately 2.5

times slower than the model-S, the computational time required for five years

of dataset is negligible in comparison with the sampling period (= 24 hours).

The comparative study shows the potential of the proposed method for

handling the non-harmonic periodic covariate that influence on the the ob-

served structural response. One current limitation is that the reference period

presented in Section 3, needs to be pre-defined for an effective performance.

The treatment of the reference period as an unknown parameter to be inferred

from data will be a subject for the future research.

4.4. Number of Master Control Points

The effect of the control point on the predictive capacity is studied by

generating three models with 3, 5, and 7 control points. Table 2 shows that

the relative change of the log-likelihood values for the test set with 3 and 7

control points compared to 5 control points are 1.4 % and 0.3 %, respectively.

Note that the relative change is evaluated using the following formulation

RCp =

∣∣log-likelihoodp − log-likelihood5

∣∣
|log-likelihood5|

× 100,
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Table 2. Comparison of log-likelihood estimates using different number of control points

in the model-DR.

Log-likelihood, ln p(y1:T |P∗)

Number of Calibration set Test set Relative

control points Years 1− 4 5th year change

3 250.6 63.4 1.4 %

5 252.3 64.3 −
7 253.0 64.1 0.3 %

where log-likelihoodp refers to the log-likelihood value of p control points.

The difference between model-DR with 3, 7, and 5 control points is negligible.

In this case, the choice of using 5 control points is the most suited because its

predictive capacity is slightly greater than the remaining control points and

there is a computational gain in using 5 control points (5.87 mins) instead

of 7 control points (11.60 mins). In practice, the different sets of the control

point should be tested during the model development in order to ensure a

reliable estimation.

5. Conclusion

This paper proposes a new extension to Bayesian Dynamic Linear Mod-

els (BDLMs) for handling situations where hidden covariates influence the

observed responses of structures. The application of the new formulation
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to the data recorded on a full-scale dam shows that it is able to estimate

non-harmonic periodic hidden covariates. Its predictive performance is better

than the existing method using a superposition of harmonic hidden compo-

nents. Moreover, the computational time is negligible in comparison with

the sampling period. Because non-harmonic periodic hidden covariates are

common in the SHM application, this new extension to BDLMs opens the

way for new practical applications.

6. Appendix A

The transition matrix (At), the observation matrix (Ct), the observation

error covariance matrix (Rt), and the model error covariance matrix (Qt) for

model-DR and model-S are defined following

Model-DR

At = block diag

 1 ∆t

0 1

 , 1, φD,AR


Ct = [1, 0, h(t,D), 1]

Rt =
[
(σD,R)

2
]

Qt = block diag

(σD,LT)
2

 ∆t3

3

∆t2

2
∆t2

2
∆t

 , 0, (σD,AR)2
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Model-S

At = block diag

 1 ∆t

0 1

 ,
 cosωT1 sinωT1

− sinωT1 cosωT1

 ,
 cosωT2 sinωT2

− sinωT2 cosωT2

 , φD,AR


Ct = [1, 0, 1, 0, 1, 0, 1]

Rt =
[
(σD,R)

2
]

Qt = block diag

(σD,LT)
2

 ∆t3

3

∆t2

2
∆t2

2
∆t

 ,
 0 0

0 0

 ,
 0 0

0 0

 , (σD,AR)2
 ,

where ∆t is the time step at the time t.
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[6] P. Léger, M. Leclerc, Hydrostatic, temperature, time-displacement model

for concrete dams, Journal of engineering mechanics 133 (3) (2007)

267–277. doi:10.1061/(ASCE)0733-9399(2007)133:3(267).

[7] F. Salazar, M. Toledo, Discussion on “thermal displacements of con-

crete dams: Accounting for water temperature in statistical models”,

Engineering Structuresdoi:10.1016/j.engstruct.2015.08.001.

[8] M. Tatin, M. Briffaut, F. Dufour, A. Simon, J.-P. Fabre, Thermal

displacements of concrete dams: Accounting for water temperature

24

http://dx.doi.org/https://doi.org/10.1016/j.engstruct.2005.02.020
http://dx.doi.org/https://doi.org/10.1016/j.engstruct.2010.04.012
http://dx.doi.org/https://doi.org/10.1016/j.engstruct.2010.04.012
http://dx.doi.org/10.1007/s11803-010-0014-4
http://dx.doi.org/10.1007/s11803-010-0014-4
http://dx.doi.org/10.1061/(ASCE)0733-9399(2007)133:3(267)
http://dx.doi.org/10.1016/j.engstruct.2015.08.001


in statistical models, Engineering Structures 91 (2015) 26 – 39. doi:

10.1016/j.engstruct.2015.01.047.

[9] J.-A. Goulet, K. Koo, Empirical validation of bayesian dynamic lin-

ear models in the context of structural health monitoring, Journal of

Bridge Engineering 23 (2) (2018) 05017017. doi:10.1061/(ASCE)BE.

1943-5592.0001190.

[10] M. D. Spiridonakos, E. N. Chatzi, B. Sudret, Polynomial chaos expansion

models for the monitoring of structures under operational variability,

ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems,

Part A: Civil Engineering 2 (3) (2016) B4016003.

[11] S. Bogoevska, M. Spiridonakos, E. Chatzi, E. Dumova-Jovanoska,
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