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Abstract

Detecting changes in structural behaviour, i.e. anomalies over time is an important
aspect in structural safety analysis. The amount of data collected from civil structures
keeps expanding over years while there is a lack of data-interpretation methodology
capable of reliably detecting anomalies without being adversely affected by false alarms.
This paper proposes an anomaly detection method that combines the existing Bayesian
Dynamic Linear Models framework with the Switching Kalman Filter theory. The
potential of the new method is illustrated on the displacement data recorded on a dam
in Canada. The results show that the approach succeeded in capturing the anomalies
caused by refection work without triggering any false alarms. It also provided the
specific information about the dam’s health and conditions. This anomaly detection
method offers an effective data-analysis tool for Structural Health Monitoring.

Keywords: Anomaly Detection, Bayesian, Dynamic Linear Models, Switch Kalman Filter, Struc-

tural Health Monitoring, False Alarm, Dam.

1 Introduction

Around the world, civil structures are in poor condition [1,2]. As early as in the 1970s many
structures have been monitored to improve the understanding of their behaviour [3,4]. This
research field is known as Structural Health Monitoring (SHM). Quantities monitored on a
structure are typically displacements, strains, inclination or accelerations [5, 6]. Sensing
technology has evolved over the last decades and is now cheap and widely available. The
hardware developments led to an increase in the amount of available data. In this paper, we
focus on long-term condition SHM. Many methodologies from the field of applied statistics
and machine learning [7,8] have been proposed for interpreting the time-series data in order
to deduce valuable insights based on these data.

A first key aspect limiting the applicability of SHM is that there is currently a lack
of data-interpretation methodology capable of reliably detecting anomalies in time series
without also being adversely affected by false alarms. An anomaly is defined here as a change
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in the behaviour of a structure. A second key aspect is that in order to be financially viable
for practical applications, data-interpretation methods must be easily transferable from one
structure to another and from one measurement type to another. This second aspect is
mandatory if the objective is to deploy SHM systems across populations of structures. A
third key aspect is that no training sets with labeled conditions (normal and abnormal) are
available.

Existing Regression Methods (RMs) for SHM model the dependence between observed
structural responses and time-dependent covariates such as temperature and loading. In
the field of dam engineering, the most common regression method is the HST (Hydrostatic,
Seasonal, Time) method [9–11] and analogue derivations [12–14] that have been applied to
interpret dam behaviour through displacement, pressure, and flow-rate data. In addition
to the HST, Neural Network [15], Support Vector Machines [16, 17], Boosted Regression
Trees [18] and others [19,20] are used for the same purpose. The first drawback of these
RMs is that once the model is built using a training set, it stops evolving as new data is
collected. The second drawback is that anomaly detection is based on a hypothesis-testing
procedure. A probability density function of the error between observation and the model
prediction is identified for the training set and then employed to detect anomalies. The
presence of the anomalies is tested based on the distance between the training set and
test-set confidence regions. This procedure tends to be prone to false alarms in the presence
of outliers.

Contrary to common RMs, State Space Models (SSMs) continue learning from the
new data after the training set. In the SSMs, the structural responses are modelled by
the superposition of hidden states that are not directly observed. An example for the
SSMs is Autoregressive Models (ARs) that are employed to classify damage scenarios on
experimental data for the IASC–ASCE benchmark a four-storey frame structure, the Z24
bridge in Switzerland and the Malaysia–Singapore Second Link bridge [21]. The ARs are
also applied to damage detection on the Steel-Quake structure at the Joint Research Center
in Ispra (Italy) [22]. The limited predictive capacity of ARs hinders their widespread
applicability. Other dynamic modelling methods based on Kalman Filter variants [23,24]
are used to identify changes in the modal parameters such as the stiffness and damping
for detecting anomalies. Such as typically require detailed information about a structure,
which is not suited for a widespread deployment across thousands of bridges and dams that
are all different from one to another.

Bayesian Dynamic Linear Models (BDLMs) [25] based on the SSMs have shown to be a
promising solution in order to address the above limitations. The idea behind BDLM is
that the observed structural observation is decomposed into a set of hidden components.
The generic hidden components can be among others, a Local Level to describe the baseline
response of structures, a Periodic Component to describe periodic effects such as temperature,
an Autoregressive Component to capture time-dependent model approximation errors. In
the BDLM, the rate of changes in the evolution of the Local Level is characterized by a
Local Trend. If any changes occur in the Local Trend, a Local Acceleration component
must be added to model its rate of change. The key challenge here is that in its current
form, the BDLM can only model behaviour of structures under stationary, i.e. normal
conditions. In order to detect the occurrence of anomalies, it needs to be extended to
operate in non-stationary, i.e. abnormal, conditions.
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This paper proposes an anomaly detection method that combines the existing BDLM
with the Switching Kalman Filter (SKF) theory [26]. In the field of machine learning, the
SKF is used in many case studies [27–29] for handling non-stationary conditions. The key
features of the approach proposed is that:

• It enables early anomaly detection

• It is robust towards false alarms in real operation condition

• It does not require labeled training data with normal and abnormal conditions.

The paper is organized as follows. The Section 2 presents a summary of the SKF theory.
The Section 3 describes the methodology for anomaly detection. The section 4 illustrates
the potential of the new approach on displacement data recorded on a dam located in
Canada.

2 Switching Kalman Filter

This section presents the mathematical formulations for the combination of existing Bayesian
Dynamic Linear Model with the Switching Kalman Filter. A BDLM is defined by the
following linear equations:

Observation equation

yt = Ctxt + vt,


yt ∼ N (E[yt], cov[yt])

xt ∼ N (µt,Σt)

vt ∼ N (0,Rt)

(1)

Transition equation

xt = Atxt−1 + wt,
{

wt ∼ N (0,Qt), (2)

where yt is the observation vector at the time t ∈ (1 : T ), Ct is the observation matrix
, xt is the hidden state variables that they are not directly observed, vt is the Gaussian
measurement error with mean zero and covariance matrix Rt, At is the transition matrix,
and wt is the Gaussian model error with mean zero and covariance matrix Qt. Equations
1 and 2 estimated using the Kalman Filter [30]. The specificity of BDLM is to build
model matrices At,Ct,Qt,Rt using a pre-defined sub-component structure [25]. The SKF
enables to model the different states of a system, each having its own set of model matrix
by estimating, over time steps, the probability of multiple model classes. Following the
notation from Murphy [26], the SKF algorithm is divided into the filter and collapse steps.

SKF-Filter step

The SKF-Filter step is equivalent to the Kalman filter employed for the existing BDLM.
However, the notation for Kalman filter (KF) algorithm needs to be adapted to include the
Markov-switching variable st ∈ {1, 2, . . . , S}, each one corresponding to a distinct filtering
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model defined by its model matrices. The Markov-switching variables at time t and t− 1
are respectively st−1 = i and st = j. The superscript inside the parentheses i(j) is employed
to denote the current state j at the time t given the state i at time t− 1. For the SKF, the
prediction and measurement steps from the Kalman filter (KF) algorithm are rewritten as

KF-Prediction step

p
(
x
i(j)
t |y1:t−1

)
= N

(
x
i(j)
t ;µ

i(j)
t|t−1,Σ

i(j)
t|t−1

)
Prior state estimate

µ
i(j)
t|t−1 , A

i(j)
t µit−1|t−1 Prior expected value

Σ
i(j)
t|t−1 , A

i(j)
t Σi

t−1|t−1

(
A
i(j)
t

)ᵀ
+ Q

i(j)
t Prior covariance

KF-Measurement step

p
(
x
i(j)
t |y1:t

)
= N

(
x
i(j)
t|t ;µ

i(j)
t|t ,Σ

i(j)
t|t

)
Posterior state estimate

µ
i(j)
t|t = µ

i(j)
t|t−1 + K

i(j)
t r

i(j)
t Posterior expected value

Σ
i(j)
t|t =

(
I−K

i(j)
t C

i(j)
t

)
Σ
i(j)
t|t−1 Posterior covariance

r
i(j)
t , yt − ŷ

i(j)
t Innovation vector

ŷ
i(j)
t , E[yt|y1:t−1] = C

i(j)
t µ

i(j)
t|t−1 Predicted observations vector

K
i(j)
t , Σ

i(j)
t|t−1

(
C
i(j)
t

)ᵀ (
G
i(j)
t

)−1
Kalman gain matrix

G
i(j)
t , C

i(j)
t Σ

i(j)
t|t−1

(
C
i(j)
t

)ᵀ
+ R

i(j)
t Innovation covariance matrix.

The Kalman gain matrix K
i(j)
t represents the relative importance of the innovation vector

r
i(j)
t with regard to the prior expected value µ

i,(j)
t|t−1 ≡ E[x

i(j)
t |y1:t−1]. The model uncertainty

is described by the model error covariance matrix Q
i(j)
t which depends on the state i at

time t− 1 and the state j at time t. For the case where there is no state transition between
t− 1 and t, model classes are assumed to be dependent upon the arrival state j at time t

so that Q
i(j)
t = Qj

t . If between time steps t− 1 and t there is a transition from one state to

another, the matrix Q
i(j)
t needs to be identified i.e Q

i(j)
t 6= Qj

t . For common cases, matrices
defining the transition and observation models are only dependent on the arrival state j at
time t,

A
i(j)
t = Aj

t , C
i(j)
t = Cj

t , R
i(j)
t = Rj

t .

The Kalman filter algorithm described above is summarized in its short form as

(µ
i(j)
t|t ,Σ

i(j)
t|t ,L

i(j)
t ) = Filter(µjt−1|t−1,Σ

i
t−1|t−1,A

j
t ,C

j
t ,Q

i(j)
t ,Rj

t ) (3)
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where Li(j)t measures the likelihood that the state at time t− 1 was st−1 = i and that it

switches to st = j. The likelihood of such as switch Li(j)t is defined as

Li(j)t = p(yt|st = j, st−1 = i,y1:t−1)

= N (yt; C
j
t µ

i(j)
t|t−1, Rj

t + Σ
i(j)
t|t−1).

Note that the Filter step presented in Equation 3 can either be performed using the
Kalman method as presented above or using the UD filter [25]. The UD method is equivalent
to the Kalman method, yet it is numerically more stable [31].

SKF-Collapse step

The mean vector µjt|t ≡ E[xjt |y1:t] and covariance matrix Σj
t|t ≡ cov[xjt |y1:t] are computed by

collapsing the outputs from the filtering models according to their previous state probability,
likelihood and transition probabilities. In order to further describe the collapse step, we
introduce the notation

Pr(st−1 = i|y1:t−1) = πit−1|t−1 Previous state probability

Pr(st = j|st−1 = i) = Zi(j) Transition probability

Pr(st−1 = i, st = j|y1:t) = M
i(j)
t−1,t|t Joint probability

Pr(st−1 = i|st = j,y1:t) = W
i(j)
t−1|t State switching probability.

The joint probability of st = j and st−1 = i, given y1:t is evaluated as

M
i(j)
t−1,t|t =

Li(j)
t|t ·Z

i(j)·πi
t−1|t−1∑

i

∑
j L

i(j)
t|t ·Z

i(j)·πi
t−1|t−1

, (4)

The denominator of Equation 4 is a normalization constant ensuring that
∑

i

∑
j M

i(j)
t−1,t|t =

1. The marginal probability of st = j is obtained through marginalization following

πjt|t =
∑
i

M
i(j)
t−1,t|t. (5)

The collapsed mean vector µjt|t and covariance matrix Σj
t|t are defined as a Gaussian mixture

so that

W
i(j)
t−1|t =

M
i(j)
t−1,t|t

πj
t|t

µjt|t =
∑
i

µ
i(j)
t|t ·W

i(j)
t−1|t

m = µ
i(j)
t|t − µjt|t

Σj
t|t =

∑
i

[
W

i(j)
t−1|t · (Σ

i(j)
t|t + mmᵀ)

]
.

(6)
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The short-form notation for the collapse step is

(µjt|t,Σ
j
t|t, π

j
t|t) = Collapse(µ

i(j)
t|t ,Σ

i(j)
t|t ,W

i(j)
t−1|t).

An illustration of the SKF-filer and -collapse steps employed for describing the transition
between two possible models is presented in Figure 1. The goal is to evaluate the mean vector

Filter with
model 1

Filter with
model 2

Filter with
model 1

Filter with
model 2

µ1
t−1|t−1

Σ1
t−1|t−1

π1
t−1|t−1

µ2
t−1|t−1

Σ2
t−1|t−1

π2
t−1|t−1

µ
1(1)
t|t

Σ
1(1)
t|t

L1(1)
t|t

µ
1(2)
t|t

Σ
1(2)
t|t

L1(2)
t|t

µ
2(1)
t|t

Σ
2(1)
t|t

L2(1)
t|t

µ
2(2)
t|t

Σ
2(2)
t|t

L2(2)
t|t

Collapse

Collapse

µ1
t|t

Σ1
t|t

π1
t|t

µ2
t|t

Σ2
t|t

π2
t|t

time t− 1 time t

State 1

State 2

State 1

State 2

Figure 1: Illustration of the SKF algorithm for two states each having its own transition
model. (.) indicates the filtering model being used for computation.

µjt|t and the covariance matrix Σj
t|t for each model, j ∈ {1, 2} along with the probability

πjt|t of each model at the time t, given the same two models at time t − 1. When going
from t− 1 to t, there are four possibilities of transitions from a starting state st−1 = i to an

arrival state st = j, each leading to its own mean vector µ
i(j)
t|t , covariance matrix Σ

i(j)
t|t and

likelihood Li(j)t|t . In the collapse step, the prior probability of each origin state is combined
with the transition probability and the likelihood of each transition using Equation 4. The
end result of the collapse step is a mean vector, covariance matrix and a probability for
each model.

Combining the BDLM framework with SKF involves several unknown parameters that
need to be learned from data. In common SHM applications, only structural responses
y1:t are available and the state of the structure st remains a hidden variable (i.e. non-
observed). Therefore, the task of inferring st from y1:t can be categorized as semi-supervised
learning [32]. In that context, the set of parameters P∗ is estimated employing the Maximum
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Likelihood Estimation (MLE) technique where the log-likelihood function is

ln(y1:T |P) =
T∑
t=1

ln p(yt|y1:t−1,P)

=
T∑
t=1

ln

 S∑
j=1

S∑
i=1

p(yt, st = j, st−1 = i|yt−1,P)


=

T∑
t=1

ln

 S∑
j=1

S∑
i=1

p(yt|st = j, st−1 = i,yt−1,P)× p(st = j, st−1 = i|yt−1,P)


=

T∑
t=1

ln

 S∑
j=1

S∑
i=1

p(yt|st = j, st−1 = i,yt−1,P)× p(st = j|st−1 = i) . . .

· · · × p(st−1 = i|y1:t−1,P)


=

T∑
t=1

ln

 S∑
j=1

S∑
i=1

Li(j)t · Zi(j) · πit−1|t−1

 .
(7)

In this paper, the Newton-Raphson algorithm [33] is employed for estimating

P∗ = arg max
P

ln(y1:T |P).

3 Methodology for Anomaly Detection

This section presents an Offline Batch Procedure (OffBP) for anomaly detection applicable
for full-scale structures such as bridges and dams. The OffBP employs the entire dataset for
estimating the model parameters P using the MLE presented in Section 2. Because class
labels are not observed, only the structural responses are employed in a semi-supervised
learning context. In the OffBP, model parameters are assumed to be constant over time.

The key part of the OffBP anomaly detection lie in the model architecture employed
for each state as well as in the transition probability matrix describing the switch between
states. For the model architecture, each state has its own transition matrix At and model
error covariance matrix Qt. According to the SKF theory in Section 2, the parameters from

the matrix Q
i(j)
t need to be identified both for the stationary cases, i.e. i = j, and in the

case of a state transition, i.e. i 6= j. In common case, a state transition is defined by a
change in velocity and acceleration in the baseline behaviour. Therefore, the state transition
is considered to only affect the baseline behaviour of the structure, which is separated from
the external effects such as temperature and loading. The baseline behaviour regroups
the local level, trend, and acceleration components. In the presence of a state transition,
the model architecture must allow for an increase in the uncertainty for the local trend

and acceleration components. For this purpose, the standard deviations in Q
i(j), baseline
t are
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treated as an unknown parameter to be inferred from observations. An example for such as
this case will be illustrated in Section 4.2. The transition probability matrix Zt is identified
based on the number of states. For S states st ∈ {= 1, 2, 3 · · · , S}, the matrix Zt is defined
as

Zt =


Z11 Z12 · · · Z1S

Z21 Z22 · · · Z2S

...
...

. . .
...

ZS1 ZS2 · · · ZSS


where Zij = Pr(st = j|st−1 = i) with

∑S
j=1 Z

ij = 1.

The performance of the Newton-Raphson (NR) algorithm in Section 2 for learning
parameters depends on (1) the initial parameter values P0 and (2) the initial mean µ0

and covariance Σ0 for the hidden states. The log-likelihood function is usually non-convex;
poor guesses for either initial parameter values or hidden state initial values are prone to
lead to a local maximum. In the case of anomaly detection, such a local maximum can
trigger false alarms. In order to overcome this limitation, random sets of initial parameter
values should be tested during the optimization procedure to ensure proper initial values.
The second limitation is addressed using what we define as the multi-pass technique. The
multi-pass recursively employs the Switch Kalman Smoother (SKS) [26] for estimating µ0

and covariance Σ0 for hidden states. Figure 2 illustrates the utilization of the multi-pass in
the OffBP. During training, the model is first built using the initial parameter values Pn,

Pn D µ0,Σ0

Newton-Raphson
algorithm

Pn+1,Ln+1

converged rem(n+ 1, N) = 0

Switching
Kalman Smoother

µnew
0 ,Σnew

0 Lnew > Ln+1

P∗

no

yes

yes

yes

n = 0

no

n
=
n

+
1

no
n = 0

Figure 2: Illustration of the offline batch procedure using the multi-pass. rem(n + 1, N)
indicates the remainder after dividing N into n+ 1.
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initial values for hidden states {µ0,Σ0}, and the training data D. The NR algorithm is thus
employed for estimating the model parameters Pn+1 and the corresponding log-likelihood
Ln+1. After N iterations, µnew

0 and Σnew
0 are estimated using SKS and the index n is reset

to 0. To be accepted as new initial values, the log-likelihood evaluated using {µnew
0 ,Σnew

0 }
needs to be greater than Ln+1. This procedure is repeated until the convergence criterion
is reached. The final output of the procedure is the set of optimal parameters P∗. For
the practical applications, N should be chosen so that the convergence criteria is not met
before reaching N iterations. In common cases, N increases with the number of parameters
to be estimated. In order to increase efficiency, the amount of data employed for estimating
the initial values µnew

0 and Σnew
0 can be smaller than the training data employed for the

parameter optimization procedure.

4 Case-Study

In this study, the approach proposed for anomaly detection is applied to the displacement
data collected on a dam located in Canada. The sensor studied is located on the west
bank of the dam as shown in Figure 3. The displacement of the dam is monitored by an

Downstream

Dam displacement
 along the x-axis

West bank

Z
X

Y

Uptream

East bank

Figure 3: Location plan of sensors deployed across the structure to monitor the dam
behaviour.

inverted pendulum system that provides the measurements in three orthogonal directions.
The X-direction points toward the West Bank, the Y-direction follows the water flow and
the Z-direction points upward.

4.1 Data Description

In order to examine the potential of the proposed anomaly detection method, this paper
studies the horizontal displacement data along the X-direction recorded over the period
of 13 years and 1 month (8364 time stamps) as shown in Figure 4. The observation error
standard deviation σR = 0.3 mm was provided by the instrumentation engineers. Based
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Figure 4: X-direction displacement data collected over the period of 13 years and 1 month.

on the raw data, one can observe a linear trend and a seasonal pattern with a period of
one year. The seasonal pattern reaches its maximum during winter and minimum during
summer and is non-harmonic because of the lack of symmetry with respect to the horizontal
axis. The non-harmonic behaviour can be explained by the dependence of the displacement
data on the water temperature [14, 34], where its variation is not harmonic due to the
unbalanced duration between the reservoir warming and cooling periods. Figure 5 presents
the time-step length for the entire dataset. Time-step length varies in the range between

02-12 06-03 09-07 12-10 16-02100

101

102

103

Time [YY-MM]

T
im

e
st

ep
siz

e
[h

] = 36 days

= 24 hours
= 12 hours

= 1 hour

Figure 5: Time-step size is presented in a log scale.

1 hour to 36 days in which the two most frequent time steps are 12 and 24 hours. In
order to adapt with the non-uniformity of time steps, the parameters need to be defined as
a function of the time-step length where the reference time-step is selected by the most
frequent one [25].

4.2 Model Construction

The probability of a state switch is estimated for two model classes representing respectively
a state st ∈ {1 : Normal , 2 : Abnormal}. The set of components employed in each model
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class is identical and follow

xt =

 xLLt︸︷︷︸
local level

, xLTt︸︷︷︸
local trend

, xLAt︸︷︷︸
local acceleration

, xT1,S1t , xT1,S2t︸ ︷︷ ︸
cycle, p = 365.24 days

, xT2,S1t , xT2,S2t︸ ︷︷ ︸
cycle, p = 182.62 days

, xARt︸︷︷︸
AR


ᵀ

(8)

In order to differentiate models, the local acceleration component for the Normal model
class is forced to be equal to zero at every time step. This is done by assigning a value of
zero to the line and row corresponding to the local acceleration component in the transition
matrix At and model error covariance matrix Qt, see Appendix A for details. This constrain
forces the Normal model class to have a constant velocity, i.e. acceleration = 0, while still
allowing the Abnormal model to have a non-zero acceleration. The baseline behaviour is
defined as the interaction of the local level, trend, and acceleration components. For both
models, a superposition of two hidden harmonic components with a period of 365.24 and
182.62 days is used to describe the relationship between the displacement data and the
hidden non-harmonic seasonal effect observed in the data, i.e. water temperature. Also,
the AR component captures the time dependent model prediction errors.

The transition probability matrix is

Z =

[
Z11 Z12

Z21 Z22

]
, (9)

where Zij = Pr(st = j|st−1 = i) with i, j = 1, 2 is the prior probability of transitioning from
a state i at time t− 1 to a state j at time t. In order to be valid, this transition matrix
must satisfy

∑
j Z

ij = 1. Given this constraint, only transition probabilities Zii need to be
defined as unknown parameters to be learned using MLE.

As presented in Section 3, the matrix Qt needs to be defined in the case where there is
a state transition between the previous state i at time t− 1 and the arrival state j at time
t. For this case-study, the local acceleration in the normal model is forced to be equal to
zero so that only the uncertainty on the local trend component in the baseline behaviour is
considered. In the case where there is no state transition from the state i to the state j,
the model classes depend only on the arrival states j at time t. Therefore, the matrices
Qi(j),baseline are defined as

Q
1(2), baseline
t =


(σLA)2 · ∆t2

20 0 0

0 (σLTT)2 · ∆t3

3 0

0 0 (σLA)2 ·∆t


Q

2(2), baseline
t = Q2, baseline

t

Q
2(1), baseline
t =


(σLT)2 · ∆t3

3 0 0

0 (σLTT)2 ·∆t 0

0 0 0


Q

1(1), baseline
t = Q1, baseline

t
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where σLA ∈ R+ is local acceleration standard deviation for abnormal model, σLT ∈ R+ is
local trend standard deviation for normal model, σLTT ∈ R+ is local-trend transition (LTT)
standard deviation for the state transition models, and ∆t is the time step at time t. The
full matrix Qt employed in this case-study is presented in Appendix A. In this case-study,
we employ the UD method in the filter step presented in Equation 3.

4.3 Parameter Estimation

The convergence of the parameter optimization is reached when the log-likelihood between
two consecutive loops satisfies

‖log-likelihoodn − log-likelihoodn−1‖ ≤ 10−7 × ‖log-likelihoodn−1‖,

where n corresponds to nth optimization loop. The initial mean µ0 and covariance Σ0 for
hidden states are estimated using the multi-pass presented in Section 3 using a period of
5 years (1694 data points) and the number of iterations N = 30. This period is selected
because of the absence of the state switch which is causing numerical instabilities in the
Switching Kalman Smoother estimations. The set of unknown parameters P is defined as
follow

P =
{
Z11, Z22, φAR, σLT, σLA, σLTT, σT1, σT2, σAR

}
, (10)

where the possible range for each parameter is: transition probabilities; Zii ∈ (0, 1),
autocorrelation coefficient ; φAR ∈ (0, 1), local trend standard deviation; σLT ∈ R+, local
acceleration standard deviation; σLA ∈ R+, transition local trend standard deviation; σLTT ∈
R+, harmonic-component standard deviations for a period of 365.24 and 182.62 days;
{σT1, σT2} ∈ R+ respectively, and autocorrelation standard deviation; σAR ∈ R+. Initial
parameter values are estimated based on engineering heuristics so that

P0 =
{

0.9999, 0.95, 0.986, 1.62× 10−8, 4× 10−4, 0.07, 5.1× 10−7, 2.7× 10−7, 0.03
}
.

This optimization procedure employs the entire dataset (8364 data points) for estimating
the parameter values P∗.

4.4 Results and Discussion

The set of parameters P is estimated with MLE for the entire dataset. The parameter
calibration is done on a computer with 32 Gb of Random Access Memory (RAM) and Intel
i7 processor. The computational time required for the calibration task is approximately an
hour and a half. The optimal parameter values identified are

P∗ = {1, 0.912, 0.996, 3.65× 10−6, 2× 10−8, 7.4× 10−4, 0.062, 1.9× 10−6, 2.78× 10−5, 0.021},

where the ordering of each parameter remains identical as in Equation 10. The log-likelihood
associated with this set of parameters is ln p(y1:T |P∗) = 1784.3. Combining the BDLM
framework with SKF serves two purposes: (1) it enables the detection of anomalies without
triggering false alarms and (2) it decomposes the observations into their hidden components.
Figure 6 presents the probabilities of each model class estimated at each time step. The
method proposed identifies that there is an abnormal event occurring between July 8 and
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Figure 6: Probabilities of the two states are evaluated using SKF algorithm for the entire
dataset.

11, 2010. This anomaly was caused by refection work that took place on the dam in early
July. After the work was completed, the model identifies that the dam behaviour returns
to a normal behaviour. This example of application demonstrates how anomalies can be
detected without triggering any false alarm that would jeopardize the applicability of the
approach.

Figure 7 presents the hidden components estimated for the entire dataset. The solid
black line represents the mean values µ and its ±1σ standard deviation interval is represented
by the shaded region. Figure 7a, b, and c show a sudden change in the local level, trend
and acceleration at the moment when the anomaly occurred. These three figures show
how the baseline behaviour of the structure can be isolated from the effect of external
factors. The external effect is modeled by a superposition of two harmonic components in
Figure 7d and e. The local trend and local acceleration show a stable behaviour before
the anomaly with estimated values of respectively −2.0 mm/year and −0.0054 mm/year2.
During the abnormal event, local trend and acceleration components indicate a discontinuity
before returning to a normal behaviour where the acceleration is zero. After the anomaly,
it is estimated that the rate of change in the structure displacement has increased in
magnitude from −2.0 to −2.9 mm/year. Figure 7f shows that the autoregressive component,
as expected, follows a stationary procedure. If it would not be the case, the non-stationary
would indicate that either the component choice, or the optimal parameter identified are
inadequate. Note that the sudden jumps in uncertainty bounds in Figure 7b and c are
caused by prolonged duration without data as illustrated by the non-uniformity of time-steps
in Figure 5.

This case-study illustrates the potential of a combination of the BDLM framework with
SKF for detecting anomalies in the behaviour of structures. One limitation of the current
method is that the unknown parameters associated with the models are assumed to be
constant over time. Another limitation is that there is currently no quantitative guarantee
that the approach is suited for other types of anomalies not similar to the case studied
here. This aspect will need to be addressed in future work. The development of an online
anomaly detection methodology is the subject of current research.
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Figure 7: Expected values µt|t and uncertainty bound µt|t± σt|t for hidden components of a
combination of models 1 and 2 are evaluated using SKF algorithm.
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5 Conclusion

This paper presents a new approach combining the Bayesian Dynamic Linear Models
framework with the Switching Kalman Filter theory for detecting anomalies of the behaviour
structures. The key aspects are that (1) it enables early anomaly detection, (2) it is robust
towards false alarms in real operation condition, and (3) it does not require labeled training
data with normal and abnormal conditions. The approach is applied to the horizontal
displacement data collected on a dam in Canada. In the case study considered, the method
has shown that it was capable to detect the changes in the dam behaviour caused by the
refection work. It also provided the specific information about the dam behaviour over
time. This new approach offers a promising path toward the large-scale deployment of SHM
system for monitoring behaviour of a population of structures.
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[12] P. Léger, M. Leclerc, Hydrostatic, temperature, time-displacement model for concrete
dams, Journal of engineering mechanics 133 (3) (2007) 267–277. doi:10.1061/(ASCE)
0733-9399(2007)133:3(267).
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Appendix A

The transition matrix (At), the observation matrix (Ct), the observation error covariance
matrix (Rt), and the model error covariance matrix (Qt) for normal model class and
abnormal model class are defined following

Normal model class

A1
t = block diag




1 ∆t 0

0 1 0

0 0 0

 , [ cosωT1 sinωT1

− sinωT1 cosωT1

]
,

[
cosωT2 sinωT2

− sinωT2 cosωT2

]
, φAR


C1
t = [1, 0, 0, 1, 0, 1, 0, 1]

R1
t =

[(
σR
)2]

Q
1(1)
t = block diag

(σLT)2 ·


∆t3

3
∆t2

2 0

∆t2

2 ∆t 0

0 0 0

 ,
 (σT1)2 0

0
(
σT1
)2
 ,
 (σT2)2 0

0
(
σT2
)2
 , (σAR)2



Q
2(1)
t = block diag



(
σLT
)2 · ∆t3

3 0 0

0
(
σLTT

)2 ·∆t 0

0 0 0

 ,
 (σT1)2 0

0
(
σT1
)2
 ,
 (σT2)2 0

0
(
σT2
)2
 , (σAR)2



Abnormal model class

A2
t = block diag




1 ∆t ∆t2

2

0 1 ∆t

0 0 1

 , [ cosωT1 sinωT1

− sinωT1 cosωT1

]
,

[
cosωT2 sinωT2

− sinωT2 cosωT2

]
, φAR


C2
t = [1, 0, 0, 1, 0, 1, 0, 1]

R2
t =

[(
σR
)2]

Q
1(2)
t = block diag



(
σLA
)2 · ∆t2

20 0 0

0
(
σLTT

)2 · ∆t3

3 0

0 0
(
σLA
)2 ·∆t

 ,
 (σT1)2 0

0
(
σT1
)2
 ,
 (σT2)2 0

0
(
σT2
)2
 , (σAR)2



Q
2(2)
t = block diag

(σLA)2 ·


∆t2

20
∆t4

8
∆t3

6

∆t4

8
∆t3

3
∆t2

2

∆t3

6
∆t2

2 ∆t

 ,
 (σT1)2 0

0
(
σT1
)2
 ,
 (σT2)2 0

0
(
σT2
)2
 , (σAR)2


where ∆t is the time step at the time t.
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